Thus the probability of getting no swap tends to $1/e$ as n tends to infinity. If the same analysis is carried out for $4n$ cards (n sets of 4), a similar, but messier, calculation shows that the probability of no snap tends to $1/e^3 = 0.0498 \ldots$ as n tends to infinity. This value is very different from the probability $0.01623 \ldots$ obtained in the case $n = 13$ of a similar but essentially different matching problem posed as Problem 73.F in the October 1989 Gazette.

References

IAN ANDERSON

Department of Mathematics, University of Glasgow G12 8QW

76.6 On the scalar triple product and determinantal products

The purpose of this note is to comment on F. Gerrish's note, published with the same title in the Gazette of December 1988. A confirmation of the multiplication rule for third order determinants was obtained by extending a prior note by H.B. Davies in the Gazette of December 1987. Gerrish's use of a Cartesian base to effect a second expansion could leave the reader with the impression that the resultant rule depended in an essential way on the use of such a base. Any interested reader can verify that the rule is more general, and that it follows immediately from effecting Gerrish's second expansion using any set of linearly independent vectors.

J.R. GOSSELIN

Dept of Physics, Royal Military College of Canada, Kingston, Ontario Canada K7K 5LO.

76.7 A drawbridge in balance

Recently in the Gazette of June 1990, 124–127, Martyn Cundy described the curve that a counterbalance weight for a drawbridge must follow in order to be in equilibrium in all possible positions. The curve is a cardioid. The photograph below shows one such bridge. It was taken in Australia in 1976. My notes on the photograph only say "Kyalite River", and as I remember it was near the point where South Australia, New South Wales and Victoria meet.