HOMOTOPICAL NILPOTENCY OF LOOP-SPACES

C. S. HOO

1. Introduction. In this paper we shall work in the category of countable
CW-complexes with base point and base point preserving maps. All homo-
topies shall also respect base points. For simplicity, we shall frequently use
the same symbol for a map and its homotopy class. Given spaces X, Y, we
denote the set of homotopy classes of maps from X to ¥ by [X, ¥Y]. We have
an isomorphism 7: [2X, V] — [X, QY] taking each map to its adjoint, where
Z is the suspension functor and Q is the loop functor. We shall denote 7(1sx)
by ¢ and 7'(lgx) by e.

Suppose that X, ..., X, arespaces. For0 =7 =<n — 1,let T, (X1, ..., X,)
be the subset of the cartesian product X; X X: X ... X X, consisting of
those n-tuples with at least ¢ coordinates at the base points. If the spaces

X1, ..., X, are understood, we shall frequently abbreviate 7;(X4, ..., X,)
by T, Since maps preserve base points, given maps f;: X; — ¥V, for
k=1 ...,n we see that fi X ... X f, maps T;,(Xy...,X,) to
Ti(Yy,...,7,). Wedenote the restrictionof f1 X ... X foto T (X1, ..., X,)
by Ti(f1,...,fs). Thus, T:(f1,...,fs) is @ map from T;(Xy,...,X,) to
T,(Yy,...,Y,). We see that T is the usual cartesian product functor, 7' is
the so-called ‘‘fat wedge’’, and 7,_; is the one-point union functor. We have
natural transformations of functors 7; — T;_y for < = 1, ..., n, induced by

the obvious inclusions. Let us denote the composition 7°; — Ty by j;, where
we shall drop the suffix < if it is understood from the context. The quotient
To/T: is the smash product functor A. We may consider j; as a natural
fibration. Let F; be the fibre and u;: F; — T; the inclusion.

2. Given spaces Xy, ..., X,, let us consider the fibration

FilXy .o X)) =2 To(Xy, o X)) =L To(Xy, - . -, X

Then it can be checked that there is map 6;: QTy — Q7T; such that
Q)0 >~ 1gp,. In fact, if pg: To(Xy, ..., Xs) — Xy is the projection and
w: X — T:(Xy, ..., X, the obvious inclusion, then we can and shall take
0; = Q(up1) + ...+ Q(@wpn). Further, 6; is an H-map if ¢ = n — 2; see
(7, Lemma 1 or 3, Theorem 2.14). Thus we, have a split short exact sequence
of H-spaces:

*—>QF,—QE> QT,-%) QT — *.
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Consider 0,(Qj,): QT ; — QT ;. From the exact sequence we see that there
exists a unique element d; of [27";, @F;] such that

lﬂ'rz_ = (Qui)dz + 01(9].1) = (Qui)dz + kz_:lﬂ(tkpkji).
Givenamapf: X - T;(Xy, ..., X,) we define a map
Hln(j‘) = d1<9f>. QX HﬂFi(le e ey Xn)'

Then we have that

@OHI() + 3, 2upii ).

Note thatif = 2and 7 = 1, then F1(X;, X2) = X1 b X, the ““flat product”,
and if f: X - X, V X.isa map, then H:2(f): QX — Q(X1 b X,) is the dual of the
Hopf construction used in (4). In the general case, we note thatif g: ¥V — X
is another map, then H/(fg) = H (f)(Qg). If fi: X — Y) are maps for

of

k=1,...,n, then we have a map
Ti(fy, oo fu): Ti Xy oo o, X)) = Ti(Yy, ..., 1)
This map induces a map
Fi(fi,. . fu): FiXy, ..., Xp) 2> F(Yy, ..., 1)
such that T;(f1, ..., fo)us ~u,Fi(f1,...,fn). Then,ifg: Z—>T(Vy, ..., V)

isa map, we easily check that

AT o S} = @UORF U SNHIE) + 2, Wi Tl )8

and HM T (fy, ..., fu)g}l = QUF.(f1,..., )} H ().

We now apply our results to the nilpotency of loop-spaces; see (1) for
definitions. Let X4, ..., X, bespaces. Foreachk =1, ..., n,lete: 20X, — X,
be a map such that r(e) = lox,. Let ¢ = ye: 2QX; — T;(Xy, ..., X,).
Then 7(e;): QX — QT,. Note, of course, that r(e,) is Q. Let
Cn: To(QTy, ..., Q0T;) = QT; be the commutator map of weight 7; see (1).
Letc, = 7 Heu(r(er) X oo X 7(e))}: STQX ..., X)) > Ti(Xy, ..., X,).
We have, of course, a map é, for each 7. However, the 7 shall be understood
from the context, and we shall suppress it from the notation for ¢, unless it is
absolutely necessary in order to avoid confusion, in which case we shall write
Cn,: for the obvious ¢,. Applying the above method, we now have maps
H@E,): Q2T Xy, ..., X,) > QF (X4, ..., X,) satisfying the relation

Q, = Qu)H{" () + kz,l Q(ubrfiCn)-

Lemma 1. Q¢, = (Qu,)H /[ (E,).
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Proof. Consider jié,: ZT6Q(X1, ..., X,) » To(Xy, ..., X,). We have that
7(ji€n): To — QTs. We note that ToQ(Xy, ..., X,) =0T ,(Xy, ..., X,).
Now, using the fact that @j; and Qp, are H-maps, we have that
7(ji&) = (Q)7(@) = Qde(rler) X ... X 7(en))

= ¢, (r(jir) X ... X 7(ji€n)).
Hence, for each k, we have that

@pi)r(Giln) = Qe)en(r(ier) X ... X 7(jien))
= e (r(prjier) X ... X 7(prjien)).
We have used ¢, to denote the commutator maps of weight # for various
different spaces. Since 7(pzje,) = 0 for r £ k, it is clear that the last map
on the right-hand side is homotopically trivial. Hence, 7(pzj¢,) = 0 for all &,
and hence p;j,¢, = 0 for all % since 7 is an isomorphism. It follows then that
jifn = 0 by the property of direct products. Thus, we have that Q¢, =
(Qu ) H " (Cn).
LeMMA 2. There exists a map by ZTQ Xy, ..., X,) — Fi(Xy, ..., X,
such that wb; = é, and H/(é,) = Qb,.
Proof. According to the proof above, we have that j;é, = 0. From the
exact sequence of the fibration

F2s 1, I 1,
we have a map b;: 7@ — F;such thatu; = ¢, Hence, (Qu;) (Q,) = (Qc,).
Since Q¢, = (Qu;)H"(é,) and (Qu,)# is a monomorphism, it follows that
HE,) = Q..

Now suppose that X1 = Xy =-.-- =X, =X and 7 =#un — 1. Then we
have a generalized folding map V: T,_1(X, ..., X) — X. It is easily checked
that Vé, = 71(c,), where ¢,: TeQ(X, ..., X) — QX is the commutator map

of weight » for QX.

TueoreM 1. ¢, = Q(Vu,_1)H,_1"(C,)e', where ¢, is the commutator map of
weight n for QX. Hence, nil X < n if and only if Vi,—1bp—1 =2 *.

Proof. By Lemma 1, we have that Q¢, = (Qu,—1)H,—1"(¢,). Hence, 2(V¢,) =
Q(Vitp-1)H,_*(¢,). Since V¢, = 7 1(c,), we have that 7(Vé,) = ¢,. Hence,
¢ = Q(Vé,)e = Q(Vu,_1)H,_1"(é,)e’. Since H,_"(¢,) = Qb,_;, we have that
¢n = 7(Vit,_1b,_1) and the result follows.

Remark. We observe that if Q(Vu,_1) =~ *, then Q(V7) =~ %: Q(X b X) — QX.
This is easily seen by embedding X X X in To(X, ..., X) as the first two
coordinates. This induces maps which yield a diagram

XbX -4 xvx Iy xxx

A

Fn_l(X,...,X)—u—> ToaX,..., X)—s To(X, ..., X)
n—1

]n—l
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Since Vf2: X V X — X is actually the folding map, the result follows. We
observe that Q(Vi) >~ is a condition for nil X = 1; see (2; 4). Thus, if
Q(Vit,_1) >~ #, then nil X < 1.

Now, suppose that X is an H’-space with comultiplication ¢: X — X V X
such that jop >~ A: X X X, where j: X V X — X X X is the inclusion and A
is the diagonal map. Define ¢35 = (¢ V1)p: X > X VX VX, ¢ =
1V e¢)p:X—>XV XVX. Let Y be aspace and let fy, fo, f3: X — ¥ be
maps. Then T2(f1, fo, f3): T2(X, X, X) = T5(Y, Y, Y) and VI:o(fy, fo f3) s,
VTo(f1, fo, f3)ds': X — V. Itis easily checked thatin [X, Y], VIy(f1, fo, f3) 3 =
(f] +f2) +f3 and VTz(f],fg,fg)tﬁgl = f1 + (fz +f3) By the above methods,

we see that
T s(f1, fo, f3) P3} = (Quz)ﬂ{Fz(fl,f2,fa)}H23 (¢3) + L;l QupriaT2(f1, for f2) s}
Hence,

Q(fr+ f2) + 3} = UYTo(f1, fo, f3)bs} = LVua) QA Fa(f1, fo, f3) 1 Ho' (3)
+ 2 A VibiiaTa(fr, fo f3) 63}

Now
VLkijsz(f1,f2, f3)¢3 = ijsz (fl, fz, fa)d)a
= puTo(f1, f2, f3)]eds.
It is easily checked that js¢s >~ A: X — T(X, X, X), the generalized diagonal
map. Hence, VupriaTa(f1, f2, f3)bs = fitrjeds = frprA = fi. Thus,

(1 + f2) + fs} = QVu2)QFo(fy, fo, f3) 1 HY (¢3) + kE_jl .
Similarly, -

Qfr + (o + f3)} = QVu)Q{Fa(fu, fo, f3) 1 H? (¢4) +;_19fk-

Thus, if Q(Vu,) >~ *: QF,(Y, Y, Y) — QY, then
A (fr+ f2) + fs} =Q{fs + (f2 + f2)}
in [QX, QY]
We now consider the function Q: [X, Y] — [QX, QY] induced by the loop
functor. We observe that since X is an H’-space, this function is a one-to-one
into function. In fact, we have the commutative triangle

Q
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where e: ZQX — X is such that 7(¢) = lgx. Now 7! is an isomorphism,
Since X is an H'-space, there is a map s: X — 2QX such that es ~ 1. Hence
¢! is an injection, and hence Q is an injection.

It follows then that if Q(Vus) ~=#: QF,(Y,Y,Y)—QY, then
(fr + fo) + fs = f1 + (f2 + f3), that is, the induced operation in [X, V] is
associative. However, we have observed above that this condition also implies
that [X, V] is abelian. For Q(Vu,) ~ * implies that [QX, QX] is an abelian
group, and our observations above now show that Q: [X, Y] — [QX, QY] is a
monomorphism. We now see that [X, Y] is a commutative, associative loop,
and hence is an abelian group. Thus, we have the following theorem.

TuEOREM 2. Let (X, ¢) be an H’-space and let Y be a space such that
Q(Vuy) >~ #: QF(Y, YV, Y) = QY. Then [X,Y] is an abelian group and
Q: (X, Y] - [QX, QY] is a monomorphism of abelian groups.

The above results can be generalized to z functions. Suppose that (X, ¢)
is a homotopy-associative H’-space and let Y be a space. Suppose that

f1, ..., . are maps from X to Y. Let us define ¢,: X — V’i—; X as follows.
Put ¢ = ¢. Suppose that ¢, has been defined, let ¢,.1 = (¢ V 1)¢,, where 1
is the identity map of V"1, Then we have VIi-1(f1, oo fa)n: X = 7,

where V is the generalized {folding map. It is easily seen that
Vii(ft, .o oy fu)n =f1+ ...+ fu in [X, Y]. By the above methods, we
see that we have that

UTur(f1y« ooy o) n} = Qupe ) Forr1(f1, -+« fo) Va1 (b0)

+ kgl QUubrfn1Tn-1(f1, « « -, fo) Dn}-

Hence,
Q(f1 + ... +fn) = Q{VTn—l(flr te rfn)¢n} n
= Q(Vun—l)Q{Fn~l(fly ... yfn)}Hn—ln(¢n) + ;Q{VLkPk]n-—lT —l(fly ... yfn) ¢n}

= Q(Vun*l)Q{Fn_l(fl, “ee ,fn) }Hnﬁln((f)n) + kZI ka.
Thus, we have the following theorem.

TaeoREM 3. Let (X, ¢) be a homotopy associative H'-space and let fy, . . . , f,
be maps from X to Y, where Y is some space. Then

Ofat -+ Fa) = OV 2 Faao - SVt (80) + 3 U

COROLLARY. Let (X, ¢) be a homotopy-associative H'-space and let ny € [X, X]
be 1x + ...+ 1x (n summands). Then

Uy = Q(Vitp_1)Hy 1" (¢n) + nox.
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Remark. We have seen that if Q(Vu,_;) >~ *: QF,_1(X, ..., X) — QX, then
Q(Vi) >~ *: QX b X) —» QX, and hence QX is homotopy-commutative. We
observe here that if (X, ¢) is an H’-space and ©X is homotopy-commutative,
then X is actually also an H-space. For by Stasheff’s criterion (see 8), since
QX is homotopy-commutative, the map eV: 2QX V 20X — X extends to a
map f: 20X X ZQX — X. Since X is an H'-space, there is a map s: X — ZQX
such that es ~ 1y. Now consider the following diagram, where j denotes the
various natural inclusions:

sVs eV
XVX—3IXVINX— X

LA

X X X —— 30X X 20X
sXs

We can define a multiplication m = f(s X s): X X X - X. Then
mj = f(s X s)j =fj(s Vs)~eV(s Vs)=eV>~V. Hence, m provides an
H-structure on X.
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