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Summary. The Schwarzschild Interior Solution represents a static sphere the proper
density of which has the same value throughout. Though it is sometimes referred to as an
"incompressible" sphere it is physically unacceptable since (formally) the speed of sound
within it is infinite. Perhaps the most natural analogue of the classical incompressible sphere
is therefore a sphere such that the speed of sound is everywhere just equal to the speed of
light. This paper investigates spheres of this kind in some detail.

1. Introduction

The static spherically symmetric solution of the gravitational field
equations generally known as the Schwarzschild Interior Solution is frequent-
ly said to represent an incompressible fluid sphere *, on the grounds that
the total density p (= 7^) has a fixed value throughout the sphere. Un-
fortunately, p being thus independent of the hydrostatic pressure p, the
velocity of sound is everywhere infinite, so that this solution lacks physical
meaning in the sense that it is certainly physically unrealizable. For this
reason it is desirable to seek some alternative definition of an "incom-
pressible fluid", but any such definition will have some degree of ar-
bitrariness 2. Now, in a Newtonian situation, incompressibility of any
medium entails the possibility of transmitting a mechanical disturbance
with infinite speed. It suggests itself therefore, to adopt the view that in a
relativistic situation the speed of propagation of a sound wave (i.e., mechani-
cal shock wave of sufficiently small amplitude) should be the largest possible
permitted by the internal consistency of the theory, that is to say, the
speed of light. Accordingly we here lay down that the equation of state of
the fluid constituting the sphere shall be 3

(1-1) P = P-P»,

* Present Address: Physics Department, Harvard University, Cambridge, Mass.
1 E.g., R. C. Tolman, Relativity, Thermodynamics and Cosmology (Clarendon Press,

Oxford, 1934), Chap. 7, p. 245.
2 See the discussion of Synge: J. L. Synge, Relativity: The Special Theory (North-Holland

Publishing Company, Amsterdam, 1958), Chap. 8, § 15, p. 306.
3 Units are such that the speed of light c and Newton's constant k both take the numerical

value unity. The subscripts b and c refer to the boundary and centre of the sphere respectively.
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[2] The relativistic incompressible sphere 7

since this relation entails that the velocity of sound is everywhere unity.
The object of the present work is to investigate in some detail the con-
sequences of adopting (1.1).

A second order differential equation which is central to the whole
problem is derived in Section 2. It is solved in a series of ascending powers
of the radial variable for sufficiently small values of the central density
Pe (p6 ^z 0), and under these conditions expressions are obtained for various
quantities associated with the sphere, such as its field producing mass, its
coordinate radius, and so on (Section 3). In Section 4 an exact but irregular
solution of the central equation is presented, and in Section 5 this is made
the basis for a heuristic investigation concerning the asymptotic form of the
solution, valid for sufficiently large pc. After some incidental remarks
concerning certain known general inequalities relating to regular static
spheres (Section 6), Sections 7 and 8 finally deal with the results obtained
by numerical integration of the equations of the sphere.

2. Basic equations

(a) The field being static, static and spherically symmetric canonical
coordinates may be chosen so that the metric takes the form

(2.1) ds* = -e-A<r><fr2-r2(rf02+sin2 8

The field equations are then *

(2.2)

(2.3)

(2.4) p' = -

primes denoting derivatives with respect to r. It is convenient to use the
notation introduced elsewhere,5 i.e., write

(2.5-7) P = ±np, x = ri, w = r~a j\2vdr,

where

(2.8) v = 4jrp.

Then from (1.1) and I (2.11) it follows that

(2.9) 2(1—2zw)(2xw<xx+5wiX) + (2zwx+±w—vb)(4xwx+6w—vb) = 0.

Taking vb not to be zero, write

(2.10) u = Zv^w, z = \ybx.

4 Reference 2, p. 245. The cosmical constant is taken to be zero.
6 H. A. Buchdahl, Phys. Rev. 116 (1959), 1027. This paper will be referred to as I.
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Then, if dots denote derivatives with respect to z, (2.9) gives rise to the
central equation

(2.11) 42(1—2zu)u+8z*ui+8zuu+2(5-9z)u+3{4:U-Z){2u-l) = 0.

It may be noted that

(2.12) P = £»6(2ZM+3W—3).

(b) The central value of u is

(2.13) ue = l+v,

say, so that

(2.14) r, = PJPb-l > 0,

granted that the sphere is regular at the centre.
If 3pJPc = P(< 3) (cf. I, Section 2)

r, = j8/(3-/J).

Consequently, if it be assumed, as is frequently done, that the trace of
the energy-momentum tensor cannot be negative, one has /? sS 1, i.e.,

(2.15) rj^l

The physically interesting values of rj therefore appear to lie in the narrow
range 0 < r\ 5S \.

Let M be the field producing mass of the sphere and R its coordinate
radius; and write

(2.16) [i = MjR.

Then from (2.10) and 1(2.17)

(2.17) *,«»=/*.

The use of boundary conditions is already implicit in 1(2.17). They are
also required in fixing the relation between v and v which follows from (1.1)
and (2.4):

(2.18)

In particular

(2.19)

ev = (l — 2fi)(2vjvb—l)-1.

= (1-2^/(1 + 2,).

3. Solution in series (rj small)

For sufficiently small values of rj the central equation (2.11) may be
solved as a series in ascending powers of ?/. (In view of the complexity
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of the equation it will simply be assumed that for a certain range of values
of Y) the various series considered below do indeed converge: rapidly so if
successive early terms of the series rapidly decrease in magnitude.) Some
tedious work leads to the result

u =

The pressure vanishes at the boundary. Using (3.1) in (2.12) one there-
fore gets an algebraic equation which determines zb as a function of tj. It
turns out that

(3.2) zb = 2^(l-^+4j^_SfffV)+W)-

It will be observed that the ratio of successive terms of this series is of the
order of 5. One therefore cannot expect the first few terms of the series
for zb to be a useful approximation unless zb is less than of the order of
-Jy, say. Using (3.2) in (3.1) one can now go on to express ub as a function
of TJ. With (2.17) one thus gets

(3.3) r

From these results one deduces that

(3.4) %

whereas for the Schwarzschild sphere the factor in brackets is of course
absent. Inverting (3.3),

(3.5) , = ^ ( 1 + ^ B + i J L U . / 4 . + ^ l / l i 8 ) + O C u . ) j

one has a relation which allows one to replace r\ everywhere by the directly
observable quantity /*. (Recall that the gravitational redshift is given
immediately by the value of the quantity

(3-6) A = (gii)b = 1-2/z,

(cf. I Section 1).)
The (negative) gravitational potential energy of the sphere is (cf. I

Section 6)

(3.7) Q = M0-M = j * (d*—l)vr*dr.

One thus has to evaluate the integral

'" [{l-2zu)-i-l](2zu+3u)zldz.
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It turns out that

(3.8) Q= ( 3 M ^ f

Another quantity of interest is the physical radius

(3.9) R* = j*elxdr.

One finds

(3.10) R* = ti

4. An exact irregular solution

It may be confirmed by direct substitution that (2.11) has the following
exact solution:

(4.1) u = lz~i+\.

(4.1) violates the condition of regularity at the centre in as far as the
pressure and density become infinite at the centre whilst g44 vanishes there.
On the other hand ex remains finite there, whilst M, R, • • •, etc., are also
finite. Still taking vb ^ 0 (since otherwise R and M will be infinite), the
units used here may be further restricted by arranging vb also to take
the numerical value unity. Then one has in the first place

(4.2-5) P = ^ r - i _ | , *, = ^

(4.2) and (4.4) show that

(4.6) zh = i p = \.

Then, in view of (2.10),

(4.7) M = l y 2 - R = W 2 -

The evaluation of R* and Q leads to elementary integrals with the results

(4 8) R

Q = i [15V3 arcsin (l/\/3) -3-^6—4^2].

5. Heuristic considerations concerning the limit r\ -*• oo

The exact solution presented in the preceding section gives an infinite
central value of u, whatever the value of vb may be. Presumably the solution
of (2.11) corresponding to a finite, sufficiently large, value of ue will be
closely approximated by (4.1) except in a certain neighbourhood of the
origin. To investigate this situation write
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(5.1) s = l/wc (= »,/».),

and set

(5.2) u = ucU, z = S/MC.

In terms of the original variables therefore

(5.3) U = wjwc, s = wex.

Then (2.11) becomes

-e(18sU'+30U) + 9e2 = 0,

where primes now denote derivatives with respect to s. Note that

(5.5) P = wc(2sU'+3U-3s).

The exact solution (4.1) becomes

(5.6) U = i s - i+Je

in the present variables.
We now make the heuristic assumption that for sufficiently large s the

required solution of (5.4) has the form

(5.7) U ~ Js-i+fc+r,
where the function /"satisfies the equation which arises from the substitution
of (5.7) into (5.4) when only terms linear in F and its derivatives are
retained. This equation turns out to be

(5.8) ( i_2 e s)s 2 r"+(4-7es)r '+3( l -£s)r= 0.

It has the solution
r = A* Re G+B* Im G,

( ' ' G = s*F(n+l, w+f; 2«+4; 2BS), (»= - f + J V 3 ) -
where A* and B* are constants. (The hypergeometric function which occurs
here is in fact an elementary algebraic function of s.)

The case e = 0 corresponds to finite central density but zero boundary
density. (The "boundary" occurs at infinity.) For all finite s one then has

(5.10) F= A0Resn+B0Imsn,

where Ao = A^£=o, etc.
In view of (5.5)

(5.H) P - ^(i^-fe+T1*),
with

F* = 2sF'+3F;
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so that the boundary value sb of s is the first positive zero of the right
hand member of (5.11). To progress beyond this point we now restrict e
to be small. When s is sufficiently small one deduces from (5.9) that

(5.12) r*(s = l/6e) = 0 (el),

granted that A and B are continuous functions of e in a neighbourhood
of the point e = 0, at which their values are Ao, BQ (cf. (5.10)). Then
from (5.11)

(5.13) sb = l/6£+O(ei).

Inserting (5.13) in (5.9) one gets

When e is sufficiently small the term O(e$) may be discarded and A\
B t replaced by Ao, Bo respectively. In this way one arrives at a result
of the general form

(5.14) rb ~ Aei sin (T+OC),

where A and a are certain constants and

(5.15) T = f v / 3 m ( 1 / £ ) •

i"',)* may be evaluated after the same fashion. Thus generically

(5.16) rb* ~ 3V2£ei sin

where B and /? are certain constants related to A and a. However, the
relationships in question are so complicated that we do not consider them
explicitly here.

(5.11) and (5.16) now yield

whence

(5.17) i?

Again, since M = sb Ub R it follows from (5.17) and (5.14) that

(5.18) M ^

where c and y are related to the constants introduced earlier. (If R and M
are required in cgs units factors (c2l4nkpb)i and (c6/4:Tck3pb)i have to be
supplied on the right of (5.17) and (5.18) respectively.)

According to (5.17, 18) one has for sufficiently small values of e a
curve in the R—M plane which spirals around the limiting point %. If
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the line joining this point to points in the spiral has a certain direction
when e = e, and, as e increases, it first resumes this direction when
e = e", then

(5.19) e"js' = ein'Vs « 1415.4.

6. Concerning certain inequalities

Some general inequalities which appear in I were subsequently
strengthened in a paper 6 hereafter referred to as II. These gave some
information about the spheres under review without limitation on the
values of r\. However, for general values of this parameter the inequalities
in question are algebraically somewhat involved. Accordingly we restrict
ourselves to the case r\ = \ (i.e., /? = 1) this device being motivated partly
by (2.15) and partly by the fact that when r\ = \ neither the series ex-
pansions of Section 3 nor the asymptotic results of Section 5 are of any
use. The inequalities to be considered are 11(4.10) and 11(5.9) which read

and

(6.2) A < 1-f

in the present context. Here d = 2M/R3, so that (6.2) gives

(6.3) M > 5-^5/54 sw 0.2070,

whilst (6.1) becomes

(6.4) M < 7R3/(18R2+4).

(6.3) and (6.4) together give rise to the further inequality

189#3-45v/5-R-10\/5 > 0,
i.e., approximately,

(6.5) R > 0.82236.

It is worthy of note that the number on the right is greater than R^ =

7. Numerical results

Equation (2.11) was integrated by numerical methods on an IBM
1620 computer. The work was carried out for a reasonably large selection
of values of rj. It will suffice here to present an extract of the results ob-
tained, in the form of Table I which gives P as a function of r for a few

« H. A. Buchdahl, Astrophysical Journal, 146 (1966), 275.
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TABLE I

P as function of r

r

0

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

rj -^0.01

.0100000

.0095582

.0082345

.0060347

.0029680

0.04

.040000

.039478

.037916

.035320

.031705

.027087

.021492

.014944

.007476

0.1

.100000

.099300

.097206

.093732

.088901

.082744

.075304

.066627

.056767

.045787

.033750

.020726

.006787

0.2

.20000

.19895

.19581

.19062

.18341

.17427

.16326

.15050

.13609

.12016

.10283

.08426

.06456

.04390

.02240

.01939

0.5

.50000

.49750

.49006

.47780

.46094

.43977

.41465

.38599

.35423

.31984

.28333

.24515

.20580

.16571

.12528

.08490

.04488

.00548

1

1.00000

.99377

.97526

.94507

.90412

.85363

.79503

.72989

.65985

.58652

.51142

.43595

.36132

.28855

.21844

.15161

.08847

.02928

4

4.00000

3.93686

3.75456

3.47285

3.11991

2.72696

2.32316

1.93210

1.57023

1.24698

.96594

.72652

.52555

.35855

.22061

.10705

.01360

9

9.00000

8.17323

7.92177

6.80034

5.55634

4.36136

3.31858

2.46603

1.79804

1.28778

.90283

.61334

.39493

.22891

.10144

.00247

19

19.0000

17.8027

14.7737

11.1170

7.82439

5.30740

3.54850

2.36819

1.58294

1.05514

.69317

.43884

.25561

.12038

.01832

99

99.0000

72.4646

34.6386
15.2861

7.44603

4.08621

2.45369

1.56164

1.02598

.67988

.44311

.27368

.14797

.05193

values of r\. (The step length of 0.05 does not correspond to that used in the
course of computation when it was 0.01 in some cases and 0.005 in others.
The number of significant figures has also been reduced.) Other functions
of interest are easily obtained from Table I, if necessary by an elementary
integration. For example,

(7.1) = A/(2P+1), w = r-3j\2Pdr 3>

and so on. (As regards A, see Table II.)
The coordinate radius R (and, consequently, quantities like M, R*,

etc.) cannot be read off from Table I. For each value of r\ the step length
was, in the course of computation, reduced further and further as the bound-
ary was approached until with a step length < 10~7 a value of r was
arrived at for which P < 10~9. This value of r was taken to be R. Table II
gives the values of certain parameters associated with the spheres for
various values of r\.

It will be noted that 3 m 0.78 when rj has the largest value allowed
by (2.15). In this case the solution evidently differs already fairly widely
from the Schwarzschild Interior Solution.

To compare the results of Section 5 with those obtained by purely
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TABLE II

R, R*. M, Q, 6, A as functions of rj

n

0.01
0.02

0.04
0.06

0.08

0.1
0.2

0.3

0.4

0.5
1

4

9

19
99

500

3000
00

R

.238788

.329534

.444973

.522017

.578984

.623294

.750431

.808671

.839581

.857036

.876076

.808156

.751419

.710576

.683262

.702602

.711184

.707107

R*

.24034

.33370

.45567

.53998

.60439

.65607

.81616

.90024

.95145

.98518

1.05362

1.06059

1.03212

1.01039

1.01208
1.04899

1.06590
1.06604

M

.0045568

.0120231

.0298317

.0483071

.0667074

.0838287

.151331

.195204

.224525

.244853

.288551

.293441

.271559

.250662

.226652

.231054

.237084

.235702

Q

.04534

.032743

.001297

.003025

.005308

.007999

.024029

.039870

.053581

.065053

.099682

.13414

.13370

.12808

.11820

.11988

.12404

.12439

S

.9940

.9882

.9767

.9656

.9547

.9442

.8952

.8518

.8130

.7779

.6437

.3336

.1920

.1048

.0213

.0040

.0007
0

A

.96184

.92703

.86592

.81406

.76957

.73101

.59668

.51722

.46515

.42860

.34126

.27380

.27721

.29448

.33656

.34229

.33327

.33333

numerical work the case s = 0 may be considered first. According to (5.10)
F has then the form

(7.2) = As-$ sin

where A and a are constants of integration. Eq. (5.4) was integrated
numerically for values of s up to 1405. By inspection of the results obtained
one finds that the largest zero less than 1405 of

(7.3) D = si(U—l/4s)

occurs at st tus 1103.3, and here D is increasing. As s decreases from sx a
minimum of D first occurs at s2 & 179.47. Thus sjs2 & 6.1475, whereas
(7.2) implies the value exp (^/•y/3) aa 6.1337 for this ratio, and this result
is very satisfactory. The next zero of D occurs at s3 as 28.121, whereas
st exp (—2TII\/3) & 29.326, again a satisfactory result. More generally,
from the calculated values sx — 1103.3 and D(s2) = —0.04299 one can ob-
tain approximate values of A and a, viz.

(7.4) A = 0.0430, a = —1.336.

One may also fit the results contained in Table II to eqs. (5.17). It
turns out that with the values
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(7.5) B = 0.245, 0 = 0.495; c = 0.128, y = -0.0185

good agreement may be obtained. In fact the range of values of r] over which
an adequate fit may be achieved is surprisingly large when one considers
that s has values less than of the order of l/6e in the region in which P •£ 0.

As regards the inequalities of Section 6, (6.3, 4) now yield
0.2070 < M < 0.2559, where the computed value of R has been used to
calculate the upper bound. The actual value of M lies quite close to the
latter, as might have been expected, since when 6 is not too small (6.1) is
generally a strong inequality. Finally, the actual value 0.8570 of R also
lies quite close to the lower bound which appears in (6.5).

Australian National University
Canberra
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