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Abstract

Suppose Xj,i = 1 , . . . , n are independent and identically distributed with E\X{\
r < oo, r = 1, 2

If Cov ((X - /*)', S2) = 0 for r = 1, 2 , . . . , where /x = EX,, S2 = £"= 1 (X, - X)2/(n - 1), and
X = Y11=i Xi/n' tn e n w e show that X, ~ ,yK(^,<72), where a2 = Var(X,). This covariance zero
condition characterizes the normal distribution. It is a moment analogue, by an elementary approach,
of the classical characterization of the normal distribution by independence of X and S2 using semi-
invariants. More generally, if Cov ((X - ii)', S2) = Oforr = 1 , . . . , *,then E((Xi-M)/c0r+2 = EZr+2

for r = 1 , . . . , k, where Z ~ jV'(0, 1). Conversely Corr((X — n)'', S2) may be arbitrarily close to unity
in absolute value, but for unimodal X\, Corr2(X, S2) < 15/16, and this bound is the best possible.

2000 Mathematics subject classification: primary 60E05, 62E10.

1. Introduction

The classical characterization of the normal distribution by independence of X and S2

by Geary [4] depended heavily on a result of Fisher [3], obtained from his introduction
of ^-statistics, whose sampling cumulants were shown to be obtainable by combina-
torial methods (see also David and Barton [1]; Kendall and Stuart [7, Chapter 12]).
Our approach is direct, but still depends on the prior finite moments assumption.

In a famous paper Lukacs [9] showed, using characteristic functions and dispensing
with the excessive moment conditions providing only E{X\) < oo, that indepen-
dence of X and S2 is enough to characterize the normal distribution. Kawata and
Sakamoto [6] in a paper submitted in 1944 but whose publication was delayed due to
World War II, showed (understandably unaware of Lukacs [9]) also using character-
istic function technology, that the condition E(X2) < oo could be removed entirely.
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A simpler proof of this is indicated in Quine [11]. These few remarks supplement the
reviews of characterizations of the normal distribution within Quine [11] and Quine
and Seneta [12] regarding assumptions behind these characterizations.

In this paper, we show that if, instead of the independence of X and S2, we suppose
that (all moments are finite and)

Cov( (X- /x ) r ,S 2 )=0 , r = l , 2 , . . . ,

then the underlying distribution is normal. In other words, the infinitely many zero
correlations condition has the same effect as if we supposed independence. The form
of this characterization (by zero correlations) appears to be new. However, if we first
express the zero correlations condition in an equivalent form as

E((X - (x)r, S2) = (T2E((X - /z)r), r = 0, 1, 2 , . . . ,

we have, according to Lukacs [10], that this last condition is equivalent to the so-called
regression property E(S2\X) = E(S2). Therefore it is equivalent to the classical
differential equation for the characteristic function of the normal probability density
function which has received exhaustive treatment in the past 50 years (see Kagan,
Linnik and Rao [5, Theorem 6.3.1] and Rao and Shanbhag [13, Chapter 9]). Thus we
see an unexpected equivalence of the zero correlations condition and the regression
condition.

However, the main new result which emerges from our working is the consequence
of assuming only a fixed finite number of zero correlations. It may be stated as follows.

THEOREM. Suppose that the distribution of the X 's has its first k + 2 moments finite.
Then the zero correlations condition

Cov((X-/x) r ,52) = 0 , r = 1,2 Jfc,

implies that the distribution of the X's has the same j-th central moments, j =
1, 2, ..., k + 2, as a normal distribution with the same mean and variance.

For example, if k = 1, then the skewness of the underlying distribution of X is
zero.

In the proof of the characterization below, the only change needed to see the validity
of the theorem, is to replace r = 1, 2 , . . . with r = 1, 2 , . . . , k.

In our final section, Section 3, we examine the other extreme: there exist distribu-
tions where the same correlations may be as close to +1 or to — 1 as we like. However,
using a theorem of Khinchin on unimodal distributions (of which the normal distribu-
tion is one), it is shown that for such distributions the absolute value of correlations is
bounded away from 1, and, in fact, we derive a best possible bound.
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This paper is in the spirit of work on characterization by Lukacs and Lancaster,
who both published in the first volume of the Journal of the Australian Mathematical
Society.

2. Proof of the characterization

By putting X, - /x in place of X,, since S2 is unaffected, we may without loss of
generality assume fi — EXX = 0 and so our assumption becomes

Cov(Xr,S2) = 0 r = l , 2 , . . . ,

that is,

(1) J j

Let fir = E(Xr), so MI = fi = 0, H2 = E(X2) = a2. Recall that

(2) E(S2) = a2.

We first consider the case of an odd r. Put r = 2w — 1, u» = 1, 2 , . . . . Then by (1)
and (2),

= E

2iu+l

2w-l

We prove, by induction on w, that if (1) holds for all r = 2v — 1, v > 1, then

(4) fi2v-i = 0, v > 1.

At w = 1, by independence of the X,'s and since EX, = 0, (3) becomes
J2"=] £(^,3) = tiE{X\) since the X,'s are identically distributed. Hence, using
( l ) a t r = 3, gives/i3 = 0 .
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\2w-l .
Now suppose fi2s-\ = 0, s = 1,2,... ,w. Expanding (Yl"=\ %i) "" m general

gives a sum of products; at least one factor of each summand must be an A", to an
odd power, since all powers must add to 2w — 1. Multiplying C%2"=\ ^<) *" by
(YH=i Xf) makes the odd powers of summand factors at most 2w — 1, except for
leading terms which are of form X]w+X. Thus, by the inductive assumption,

A similar argument gives

and = 0 .

Thus (3) becomes (n — l)/x2u)+1. Hence, using (1) at r = 2w + 1 gives faw+i = 0,
completing the induction. We needed to only assume that (1) held at all r — 2v — 1,
v = 1,2, . . . .

We next consider the case of even r. For r = 2u>, u> > 1, using (1) and (2) yields

(5)

We prove by induction that if (1) holds for all r > 1, then

(6) fJ,2v = a

and

(7)

2D

2"u!
n\ v>\.

Both are clearly true at v = 1. Now suppose both are true for v = 1 , . . . , w, and
consider

(
„ v 2(ui+l)

E*
https://doi.org/10.1017/S144678870001435X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001435X


[5] Normal characterization by zero correlations 355

where the sum is over all partitions of 2(w + 1), JZ"=i h = 2(to + 1), where each
of j \ , . . •, jn is an even integer. Contributions from products involving X, to an
odd-power are zero since we have proved /x2r+i = 0, r = 0, 1, 2, Thus putting
jt — 2x,, the summation is over all partitions of length n and hence expression (8)
becomes

E
bt»=uj+l

E

f 2<"'
\ZJCl , .

Taking out the leading terms gives

XI+—+X,
IX\, . . . , lXnJ

where in the summation xt < w, i = 1, . . . , n. By induction on w (using (6) for
v < w) yields

An A
,(2x,)! (2xJ!

• a

(2(u;
2

Therefore,

(9) E
(2(u;

2(u,+1) B ~

Also, from the inductive hypothesis, (using (7)) we have

2u> '

(10) E ~
,(2w)\
2ww\'

https://doi.org/10.1017/S144678870001435X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001435X


356 Eugene Seneta and Gabor J. Szekely [6]

Next consider

E

2w

E* = E*?" E*?
ki=l

where the second sum is taken over {_/,-} such that X "̂=i ./< = 2u>, but with 0 < jt <
2w — 1, i = 1, . . . , n.

Now

/ 2u; \ ,
= I . . ) (/Ay,

\7l. • • • . in/

with only j \ , . . . , jn all eve« integers, j , = 2x,, since ^2r-i = 0, r > 1 and hence
0 < x, < w — 1. Then, using (6) atv < w (according to the inductive hypothesis),
this equals

2 (2*! + 2)!(2x2)! • • • (2xn)\

••(2xn)! l2"+>(xi

H +
1)!

Xl\---xn\

(2w)l<r2lw+1) f/(, u;!
(2u; + n) xx\---xn\

Thus, summing over the x, 's, we obtain

(2w)\a2(w+1)

w\2u (2w+n)(nw -n).

Therefore

E

2w
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so that

(11) E
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+n(n -
((2u0!
2ww\

2ww\

the expression for the second term following from the inductive hypothesis (with (6)
evaluated at v = w).

Thus from (5),

\ 2w

(11) (9) - (n - l)(10)
n

2ww\
(2w + n){nw - n}o2

(2(io

2u'u;!

2ww\
(2w)\

(2w + ri)no

= (n - l)/x2(lu+i) +

= (n - 1)/X2(UI+D +

2w+l(w + 1)!

(2w)!a2("'+1)

-a

2ww\
{-n -2wn + (2w+ 1)}

= (n - l)fi2( W+i)

2ww\
(2w)\
2ww\

- n + (2w + 1)}

{(n - \){2w + 1)}

= (n - l)/i2(u)+i) - (« - 1)
(2(u>

Since we assume (5) is zero for all r > 1, we obtain (6) at v = w + 1. Further,
substituting fi2(w+u into (9), we obtain

_ n]
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which is (7) at v — (w + 1). This completes the inductive proof, and so (6) and (7)
hold for all v > 1, under the blanket assumption that

= 0 , r>\.

We have used this only for r < 2w to infer that (6) holds for v < w + 1.
As is well known (see, for example, Kendall and Stuart [7, Section 4.23, page 111])

the moment structure

M2,-i = 0 and fj,2v = olv-—'-, v > 1
2"v\

corresponds to the moment structure of a normal distribution about 0.

3. What is the other extreme?

We have just seen that Cov(Xr, S2) = 0, r = 1 ,2 , . . . , characterizes the set of
normal distributions with zero mean. Apart from the degenerate case, this condition
is equivalent to the following condition on correlations:

Corr(Xr, S2) = 0, r = 1, 2, . . . .

For concreteness, here is the exact formula for r = 1

(12) p := Corr(X, S2) =
/i4 - [(« - 3)/(n -

and so

(13) P2 <

In this final section, we show that these correlations can be as close to ±1 as
we want, and for this, it is enough to consider two-point distributions. The random
variable that takes values a < 0 < b, a < b, has 0 expectation if a is taken with
probability b/(b — a) and b is taken with probability —a/(b — a). If a is fixed and
b ->• +oo, then for r > 2, \xr ab r~ ' . Thus

_
Var(Xr) =

, UA (n — 3) ,
Var(S2) = — - " 2

« n(n —
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- , abr+x - a2br

E(XrS2) — , E(Xr)n2 - .
nr nr~l

So, since E(X) = 0, Cov(Xr, S2) = E(XrS2) - E(Xr)fx2 abr+l/nr. Hence

V Var(Xr) Var(52)

as b -> +oo. Similarly, if b is fixed and a -» — oo. the correlation approaches — 1.
However, for unimodal distributions, we show that p2 < 15/16, and so \p\ is

bounded away from 1, and we also show that this bound is best possible. Without
loss of generality suppose that the mode of our unimodal X is 0 and apply Khinchin's
decomposition theorem (see Khinchin [8] or Feller [2, page 155]) which says that X is
unimodal at 0 if and only if X = UV, where U is Uniform (0, 1) and V is independent
of U. Suppose, for 1 < r < 4, E\X\r < oo, so (by independence) E\V\r < oo.

We introduce the following notation: m — E(V)/2, and mr = E(V — 2m)r (the
r-th central moment of V). Then

(14) 3n2=m2+m2,

(15) 4/i3 = m3 + 2mm2,

(16) 5/L/-4 = nit + 3mm-s + 4m2nt2 + mA.

Now notice that Corr2(V - 2m, (V - 2m)2) < 1 implies

(17) m2(m4 - m\) - m\ > 0.

Using (15) and (17), we get 16/^ < A + B + C + D, where

A = [m-i + 2mmi^ = m\ + 4mm2m3 + 4m2m\',\ + 4mm2m3 + 4mm\,

B = (\/m2)(m2 + m2)[m2(m4 — m\) — m\]

= m2m4 — m\— m\ + m2m4 — m2m\ — m2m\/m2\

C = (l/m2)[mm3 + m2(3m2 - m2)/2]2

= m2m\/m2 + 9m4m2/4 + ml/4 — 6m2m\/4 + 3m3/n3 — mmT,m2;

D = (m2 + m2)[lm\ + 16m4 + 23m2m2]/36

= (7ml + Wrn2m\ + 16/n6 + 39/n4m2)/36

since B, C, D are clearly non-negative. Now A + B + C + D = E + F, where

E = m2[m4 + 3mm3 + 4m2m2 + m4 - (5/9)(m2 + m" + 2m2m
2)];

F = m2[m4 + 3mm3 + 4m2m2 + m4 - (5/9)(m\ + m4 + 2m2m
2)].
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Thus,

16//2 < E + F = (m2 + m2)[m4 + 3mm3 + 4m2m2 + m4 - (5/9)(w2 + m2)2]

= 15/i2(M4 - M2).

where the last equality follows from (14) and (16).

By (13) this implies

(18) p2 < 15/16.

To see that the bound (18) is best possible, let X be unimodal random variable

where V has the specific two point distribution (in terms of a and b) discussed above.

Then m = 0, mr ~ — abr~l as b -> 00; and in terms of (14) and (16)

(I2 ~ —abfi, /X3 ~ —ab2/4, /x4 ~ —atf/S.

Thus as & —>• 00,

1 6 M ] j

15/x2(M4-[(«-3)/(«-l)]M2
2)

Hence from (12), as b -> 00, we see that p2 —• 15/16.
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