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Abstract

The convergence of free-energy calculations based on importance sampling depends heavily on
the choice of collective variables (CVs), which in principle, should include the slow degrees of
freedom of the biological processes to be investigated. Autoencoders (AEs), as emerging data-
driven dimension reduction tools, have been utilised for discovering CVs. AEs, however, are
often treated as black boxes, and what AEs actually encode during training, and whether the
latent variables from encoders are suitable as CVs for further free-energy calculations remains
unknown. In this contribution, we review AEs and their time-series-based variants, including
time-lagged AEs (TAEs) and modified TAEs, as well as the closely related model variational
approach for Markov processes networks (VAMPnets). We then show through numerical
examples that AEs learn the high-variance modes instead of the slow modes. In stark contrast,
time series-based models are able to capture the slow modes. Moreover, both modified TAEs
with extensions from slow feature analysis and the state-free reversible VAMPnets (SRVs) can
yield orthogonal multidimensional CVs. As an illustration, we employ SRVs to discover the CVs
of the isomerizations ofN-acetyl-N0-methylalanylamide and trialanine by iterative learning with
trajectories from biased simulations. Last, through numerical experiments with anisotropic
diffusion, we investigate the potential relationship of time-series-based models and committor
probabilities.

Introduction

Obtaining the correct free-energy landscapes, and possibly the dynamics underlying biological
processes remains a challenging task for computer simulations, since not only accurate force
fields are required, but also ergodic sampling of the configurational space, which is often hindered
by high free-energy barriers. To accelerate sampling, a variety of enhanced-sampling strategies
(Abrams and Bussi, 2013; Chen and Chipot, 2022; Hénin et al., 2022) have been developed to
apply biasing forces or potentials onto a surrogate of the reaction coordinate (RC), which chiefly
consists of collective variables (CVs) able to achieve time scale separation or capture the essential
slow degrees of freedom (DOFs) of the underlyingmechanics of the process of interest. Discovery
of suitable CVs has been traditionally guided by chemical and physical intuitions. For example, a
Euclidian distance and a set of Euler and polar angles have proven appropriate CVs to describe
the relative position and orientation of the binding partners in protein-ligand complexes
(Gumbart et al., 2013; Fu et al., 2017). This approach, however, requires in-depth knowledge
of the biological process at hand, rationalising the absence of standardised protocols for the
design of suitable CVs for a broader gamut of biological processes. In order to address this
difficulty, a variety of data-driven and machine-learning approaches have been explored,
including, albeit not limited to, principal component analysis (PCA) (Pearson, 1901; Altis
et al., 2007; Maisuradze et al., 2009), time-structure based independent component analysis
(tICA) (Molgedey and Schuster, 1994; Naritomi and Fuchigami, 2011), and spectral gap
optimization of order parameters (SGOOP) (Tiwary and Berne, 2016). Inspired by the devel-
opment of artificial intelligence, data-driven approaches have been extended and melded with
deep neural networks (DNNs), most notably autoencoders (AEs) (Hinton and Salakhutdinov,
2006), for example, molecular enhanced sampling with AEs (MESA) (Chen and Ferguson, 2018),
AEs in machine-learning collective variable (MLCV) (Chen et al., 2022a), free-energy biasing
and iterative learning with AEs (FEBILAE) (Belkacemi et al., 2022), and extended AEs (Frassek
et al., 2021), to name but a few. These classical AE-based schemes are powerful for constructing a
low-dimensional latent space from atomic coordinates, or known CVs, which maximises the
explained variances. The temporal information of the simulation trajectories is, however, ignored
in classical AEs. A number of strategies have been put forth to take time explicitly into account in
NN-based models, which includes, but is not limited to variational approach for Markov
processes networks (VAMPnets) (Mardt et al., 2018), time-lagged AEs (TAEs) (Hernández
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et al., 2018;Wehmeyer andNoé, 2018), modified TAEs (Chen et al.,
2019a), past–future information bottleneck (PIB) (Wang et al.,
2019) and log-probability estimation via invertible NN for
enhanced sampling (LINES) (Odstrcil et al., 2022). As we will show
in our numerical experiments, the variables that can maximise the
explained variances do not always necessarily coincide with the
important DOFs of the process of interest. This observation raises a
question – are classical AEs always able to identify the relevant
CVs? If not, could time series-based models solve the problem?
In this contribution, we review the use of classical AEs, TAEs,
modified TAEs, VAMPnets as well as their variants for CV discov-
ery in an attempt to address these questions. In addition, we
illustrate in a series of numerical experiments the strengths and
limitations of CV-discovery methods based on classical AEs for the
identification of relevant DOFs in molecular processes. Next, we
show how to overcome these limitations by turning to time-series-
based techniques, such as TAEs, modified TAEs and state-free
reversible VAMPnets (SRVs) (Chen et al., 2019b). Finally, we use
trajectories from biased simulations of N-acetyl-N0-methyl-
alanylamide (NANMA, also known as alanine dipeptide) and a
terminally blocked trialanine as training data as examples of CV
discovery by iterative learning using SRVs. We also outline the
potential relationship between the committor probability (Geissler
et al., 1999; Berezhkovskii and Szabo, 2019) and the latent variable
learned from time-series-based techniques.

Methods

In this section, we review the AEs that have been employed for the
purpose of CV discovery, with an emphasis on the comparison of
classical AEs, TAEs, modified TAEs, as well as VAMPnets and
SRVs, which are closely related to TAEs (Wehmeyer and Noé,
2018). We further elaborate on the implications of turning to TAEs
and possibly to SRVs, as opposed to mere AEs, and why for specific
applications, it is crucial to introduce a temporal component to the
problem at hand. Next, we detail our iterative strategy leaning on
biased trajectories to train the AEs, and rationalise why biasing is of
paramount importance.

Classical AEs

Consider a simulation trajectory of a molecular object of n atoms
with coordinates x tð Þ�x1 tð Þ,⋯,xn tð Þ , and a transformation s tð Þ
of m component, namely s tð Þ� s1 x tð Þð Þ,⋯,sm x tð Þð Þ. These trans-
formations can be choice functionsmapping to a single component of
a coordinate such as s1 tð Þ� x1x tð Þ , or some nonlinear functions
mapping atomic coordinates to internal variables like dihedral angles,
as long as the derivatives ∇xs are well defined. An AE (Hinton and
Salakhutdinov, 2006; Goodfellow et al., 2016), as illustrated in Fig. 1a,
can be regarded as amultilayer NN, which consists of an encoder part
and a decoder part. In previouswork employing AEs in CV discovery
(Chen and Ferguson, 2018; Chen et al., 2018; Belkacemi et al., 2022;
Chen and Chipot, 2022), the inputs of the encoder are s tð Þ , and
the encoder transforms them into a vector of latent variables ξ�
ξ1,⋯,ξd, which are then decoded into ŝ tð Þby the decoder. In general,
for the purpose of dimensionality reduction, d is much smaller than
m . A typical loss function – that is, a real-valued function for
measuring the performance of a NN, ℒ , is equal for the classical
AEs to the mean-squared-error (MSE), namely,

ℒ=
1
N

XN
j= 0

ksðjΔtÞ� ŝðjΔtÞk2, (1)

where Δt is the time interval for discretizing and saving the
trajectory, and N is the number of frames of the trajectory. It ought
to be noted that since PCA can be interpreted as finding directions
for projecting the data sets that either maximise the variance or
minimise the reconstruction error, an AE that uses linear activation
functions for all layers and MSE loss can strictly speaking be
approximated to PCA. Nonlinear AEs resting on nonlinear activa-
tion functions can be regarded as a generalisation of PCA.Methods
based on classical AEs have been applied to explore the conform-
ational changes of chignolin (Belkacemi et al., 2022) and Trp–cage
(Chen and Ferguson, 2018), to analyse the dynamic allostery trig-
gered by ligand binding or mutagenesis (Tsuchiya et al., 2019),
christo decode the conformational heterogeneities underlying the
cytochrome P450 protein (Bandyopadhyay and Mondal, 2021),
and to cluster the folded states of the ββα –protein (Ghorbani
et al., 2021).

Time-lagged AEs

The slow modes of molecular dynamics (MD) trajectories could be
identified by exploiting their Markovianity and modelling the
dynamics by means of a master equation (Mezić, 2005; Mitsutake
et al., 2011; Noé and Nüske, 2013; Husic and Pande, 2018). From
this perspective, various efforts have underscored that the slow
modes can be expressed as the eigenfunctions of the Markov
transition-rate matrix – or operator, and finding these eigenfunc-
tions is tantamount to maximising the following functional in a
variational principle sense (Takano and Miyashita, 1995; Noé and
Nüske, 2013):

R f θ
� �

=
〈f θ x tð Þð Þf θ x tþ τð Þð Þ〉
〈f θ x tð Þð Þf θ x tð Þð Þ〉 , (2)

where f θ are the eigenfunctions, and τ is the time lag. From a
different point of view, Eq. (2) can be regarded as a normalised
autocorrelation function, and the discovery of slow modes can be
done by maximising it (Schwantes and Pande, 2013). McGibbon
et al. (2017) showed that the second leading eigenfunction of
the transfer operator could be used as an appropriate CV – which
they term a natural reaction coordinate since it is the most
slowly decorrelating mode and maximally predictive of future
evolution (Sultan and Pande, 2017). Akin to the relationship
between PCA and AEs, maximisation of the correlation function
in Eq. (2) can be approximated as the minimization of reconstruc-
tion loss between f θ x tð Þð Þ and f θ x tþ τð Þð Þ by means of a regres-
sion approach, which leads to a TAE (Wehmeyer and Noé, 2018).
In other words, assuming the time lag τ can be discretized as αΔt,
and s tð Þ is whitened (Kessy et al., 2018) by zero-phase compo-
nents analysis (Bell and Sejnowski, 1997), the loss function in
TAEs is:

ℒ=
1

N�α

XN�α

j= 0

ksðjΔtþαΔtÞ� ŝðjΔtÞk2: (3)

TAEs can be considered as NN-based extensions (see Fig. 1a) to the
dynamical mode decomposition (DMD) (Schmid, 2010) and time-
lagged canonical correlation analysis (TCCA) (Hotelling, 1936).
TAEs have been successfully applied to study the conformational
changes of villin (Wehmeyer and Noé, 2018), and its extension by
variational AE (Hernández et al., 2018) has been employed to train
transferable CVs between one protein and its mutants (Sultan et al.,
2018).
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Modified TAEs

Chen et al. (2019a) revealed that TAEs with nonlinear activation
functions tend to learn a mixture of slow modes, as well as the
maximum-variance mode, and in some cases the slowest mode
could be missing, leading to suboptimal CVs. To overcome this
limitation, they proposed a modified TAE in the same work, which
uses similar Siamese NNs (see Fig. 1b) as VAMPnets (Mardt et al.,
2018), alongside its state-free reversible variant (Chen et al., 2019b).
The loss function of modified TAEs is

ℒ=

PN�α

j= 0
kξ̂ðjΔtþαΔtÞ� ξ̂ðjΔtÞk2

ðN�αÞσ2ðξ̂ðjΔtÞÞ , (4)

where the σ2 ξ̂ jΔtð Þ
� �

is the variance of the encoder output. In
addition, Chen et al. (2019a) also showed that for those cases where
m= 1, the modified TAEs are equivalent to the SRVs (Chen et al.,
2019b), albeit the latter can guarantee the orthogonality of the latent
variables by employing a variational approach in Eq. (2) with an
eigendecomposition, as will be discussed in the following section.

VAMPnets and its state-free reversible derivative

VAMPnets (Mardt et al., 2018) employ the same Siamese NN
(Bromley et al., 1993; Chicco, 2021) (see Fig. 1b) as discussed

previously, but instead of turning to the regression approach of
Eq. (3), they solve the variational problem in Eq. (2) by employing
TCCA on the encoded features. Assuming that the encoder can be
expressed as a zero-mean multivariate basis function, f s tð Þð Þ, the
loss function of VAMPnets is,

ℒ=
���Cðt, tÞ�1

2Cðt, tþ τÞCðtþ τ, tþ τÞ�1
2

���2
F
, (5)

where �k kF denotes the Frobenius norm of a matrix, and the
correlation matrices C t, tð Þ , C t, tþ τð Þ and C tþ τ, tþ τð Þ (Wu
and Noé, 2020) are defined, respectively, as:

C t, tð Þ =
1

N�α
X̂ tð ÞX̂ tð ÞT

C t, tþ τð Þ =
1

N�α
X̂ tð ÞX̂ tþ τð ÞT

C tþ τ, tþ τð Þ =
1

N�α
X̂ tþ τð ÞX̂ tþ τð ÞT,

8>>>>><
>>>>>:

(6)

where the elements in X̂ tð Þand X̂ tþ τð Þare X̂ij tð Þ= f i s jΔtð Þð Þand
X̂ij tþ τð Þ= f i s jΔtþαΔtð Þð Þ , respectively. If the dynamics are
reversible, which is the case in equilibrium MD simulations, the
loss function relates to the eigenvalues of the Koopman operator of

the Markov process by ℒ= �Pm
i= 1

λ2i , where λi is the eigenvalues

Fig. 1. (a) Schematic representation of a neural network used in an autoencoder (AE), or in a time-lagged autoencoder (TAE). (b) Schematic representation of a Siamese neural
network used in modified TAEs, in state-free reversible VAMPnets (SRVs), and in a slow feature analysis (SFA). (c) Calculation of the reweighting factor Δt0m in Eq. (11). (d) Workflow
employed in this work of data-driven collective-variable (CV) discovery from biased molecular dynamics (MD) simulations.
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solved from the following generalised eigenvalue problem
(Schwantes and Pande, 2013):

C t, tþ τð ÞV=C t, tð ÞVΛ: (7)

Here, Λ is diag λ1,⋯,λmð Þ , and V is a matrix containing the
eigenvectors. The optimization of the loss function can be regarded
as maximising the total kinetic variance (Noé and Clementi, 2015).
After optimization, the learned CVs can be obtained by linear
combinations of the components of f , with the weights from the
eigenvectors, namely ξ i =

P
jkij f j, where kij is the -jth component

of the -ith column vector ofV. The number of learned CVs should
not be greater than the number of components of f . The use of
Eq. (7) with basis function f can be viewed as an extension of tICA
(Naritomi and Fuchigami, 2011), with a kernel function (Schwantes
and Pande, 2015), while the kernel functions are approximated by
the NNs. This loss function is also employed by both SRVs (Chen
et al., 2019b) and deep-TICA (Bonati et al., 2021). It ought to be
noted that while the principle of Eqs. (6) and (7) is generally
considered to have been proposed as early as 1994 by Molgedey
and Schuster (1994), a similar methodology has been devised
independently in many other fields under different names, such
as relaxation mode analysis (Takano and Miyashita, 1995; Mitsu-
take et al., 2011), second-order independent component analysis
(Belouchrani et al., 1997), and temporal decorrelation source sep-
aration (Ziehe and Müller, 1998). VAMPnets have been utilised to
find metastable states in the folding of the N-terminal domain of
ribosomal protein L9 (NTL9) (Mardt et al., 2018), to determine a
kinetic ensemble of the 42-amino-acid amyloid-β peptide (Löhr
et al., 2021). In addition, its state-free reversible variant has been
employed for identifying the metastable states of DNA hybridiza-
tion/dehybridization (Jones et al., 2021).

Iterative learning with a biased trajectory

A common shortcoming of all data-driven dimensionality reduc-
tion methods is that the learned models may perform poorly on
unseen data. To be specific, if the states of interest are not part of the
training set, the learned CVs could lose the information about
them. To address this difficulty, one can turn to an iterative learning
strategy, that is, one can run the following iterations until some
convergence criteria are met, namely, (a) feeding the model with an
initial trajectory, (b) biasing the next round of the simulation with
the learned CVs, and (c) using the biased trajectory to train the
model again. This strategy has been employed in MESA (Chen and
Ferguson, 2018), FEBILAE (Belkacemi et al., 2022), deep-TICA
(Bonati et al., 2021) and PIB (Wang et al., 2019). Specifically, in this
contribution, we start by training the SRVs with an initial trajectory
from extended generalised adaptive biasing force (egABF) (Zhao
et al., 2017) simulations along candidate CVs chosen coarsely by
physicochemical intuition – that is, educated guesses, and employ
well-tempered meta-extended ABF (WTM-eABF) (Fu et al., 2019)
simulations along the learned CVs in successive iterations, as
depicted in Fig. 1d. A key issue of iterative learning is the reweight-
ing of the biased trajectory, or in plain words, making the training
from a short biased trajectory equivalent to that of a long unbiased
trajectory. We summarise hereafter the alternate approaches for
processing the biased trajectories.

No reweighting
Instead of reweighting, one can train an AE with the biased trajec-
tory as is. This strategy is used in the MESA protocol (Chen et al.,

2018). With FEBILAE, it was shown, however, that ignoring the
biases could introduce systematic errors (Belkacemi et al., 2022).

Direct reweighting
Assuming that the biasing potential along s , Vb sð Þ , is suitably
converged, then the unbiased time average of an observable Xt of
the process of interest can be computed as

⟨Xt⟩=

Z t

0
Xte

βVbðsτÞdτ
Z t

0
eβVbðsτÞdτ

, (8)

where β= 1=kBT , kB is the Boltzmann constant and T is the
temperature of the simulation. Combining Eq. (8) with Eq. (1)
yields the weighted MSE loss function, expressed as

ℒw =

PN
j= 0

wðjΔtÞksðjΔtÞ� ŝðjΔtÞk2

PN
j= 0

wðjΔtÞ
, (9)

where the weight for each time frame, w jΔtð Þ , is computed as
eβVb s jΔtð Þð Þ . Whereas this reweighting strategy is straightforward
for classical AEs, and is utilised in FEBILAE (Belkacemi et al.,
2022), transposing it to TAEs, modified TAEs and VAMPnets is
not obvious, since Eqs. (2), (3), (4) and (6) include correlations
between two observable quantities that may carry different weights.

Reweighting by uneven time intervals
Yang and Parrinello (2018) developed a numerical scheme by
treating the biased trajectory as an unevenly spaced time series.
Under these premises, the calculation of the elements inC t, tþ τð Þ
follows:

Cik t, tþ τð Þ=

PN�α

j= 0
Δtjξ̂ i jΔtð Þξ̂k jΔtþαΔtð Þ

PN�α

j= 0
Δtj

, (10)

and since the time intervals Δtj in an unbiased trajectory are even,
the overlapping time between frames jΔt and jΔtþαΔt is the same
for all time-lagged pairs. As a result, theΔt factors appearing in both
the numerator and the denominator cancel out. In a biased trajec-
tory, however, Δtj may differ between any two frames. To reweight
the time series, we first need to compute the unbiased time interval
for each frame, namely Δt∗j =ΔteβVb s jΔtð Þð Þ (see also Eqs. (2)–(4) in
Hamelberg et al., 2004), and then find the overlapping time for each
time-lagged pairs ξ jΔtð Þ and ξ jΔtþαΔtð Þby following the sequence
of steps:

(1) Compute the unbiased simulation time for each frame as a
cumulative sum of Δt∗j , namely, t∗j =

Pj
l= 0Δte

βVb s jΔtð Þð Þ;
(2) Compute the unbiased lagged simulation time for each frame

as T∗
j = t∗j þ τ, where τ is the specified time lag;

(3) Two monotonically increasing sequences St = t∗0,⋯, t∗N
� �

and ST = T∗
0 ,⋯,T∗

N

� �
can be obtained from the previous

steps. Now one can construct a union set of St and ST with
elements lying between T∗

0 and t∗N , namely, Su =

t0j ∈ St ∪ ST jt0j >T∗
0 ∧ t0j < t∗N

n o
, and then sort Su by increas-

ing order;
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(4) Assuming that Su has M elements t01,⋯, t0M in increasing
order, for each element t0m , we can find an index i such that
t∗i < t0m < t∗iþ1 , and also an index j such that T∗

i < t0m <T∗
iþ1 .

Since the finding of indices can be viewed as mappings or
functions, then we obtain a list LwithM�1elements including
all triplets f mð Þ,g mð Þ,Δt0m

	 

, where f mð Þ= i, g mð Þ= j and

Δt0m = t0mþ1� t0m (see Fig. 1c for a schematized representation of
the Δt0m calculation);

(5) The reweighted correlation function can be calculated as:

Cik t, tþ τð Þ=
PM�1

m= 1
Δt0mξ̂ i f mð Þð Þξ̂k g mð Þð Þ

PM�1

m= 1
Δt0m

: (11)

Koopman reweighting
Wu et al. (2017) proposed an approximation of the weighted
correlation by means of Koopman reweighting, namely,

Cik t, tþ τð Þ≈

PN�α

j= 0
w jΔtð Þξ̂ i jΔtð Þξ̂k jΔtþαΔtð Þ

PN�α

j= 0
w jΔtð Þ

: (12)

In contrast with Eq. (11), Eq. (12) uses only theweight of time frame
jΔt. This strategy has been used by McCarty and Parrinello (2017)
for improving the selection of CVs with tICA. To determine a
suitable reweighting strategy for the iterative learning, we compare
the accuracy of Eqs. (11) and (12) for reweighting in numerical
examples, as will be discussed in the following section.

Results and discussion

In this section, we discuss through a series of numerical examples
the limitation of AEs for learning slowmodes, and how to introduce
temporal information could address this limitation. Next, we
review the possible shortcoming of using nonlinear activation
functions in TAEs, and show how it can be dealt with, turning to

either SRVs or an extension of modified TAEs. In addition, we
assess different reweighting schemes consistent with SRVs and
biased trajectories, thereby paving the way for iterative learning
with CV-based enhanced sampling. Next, we illustrate our protocol
in the discovery of CVs of two prototypical biological processes,
namely the isomerization of NANMA and trialanine. Finally, we
reveal the potential connection between the temporalmodels inves-
tigated herein with the committor probability (Geissler et al., 1999)
employed in transition path theory (Weinan and Vanden-Eijnden,
2010).

AEs discover the high-variancemodes instead of the slowmodes

To illustrate the intrinsic limitations of classical AEs for capturing
the most dominant features, we compared them and TAEs to learn
a one-dimensional CV from overdamped Langevin dynamics tra-
jectories with the following two-dimensional triple-well potential,
using X and Y as the input features for NNs, setting α to 1.0 and to
10.0,

V X,Yð Þ= 3e�X2
e� Y�1

3ð Þ2=α� e� Y�5
3ð Þ2=α� �

�5e�Y2=α e� X�1ð Þ2 þ e� Xþ1ð Þ2
� �

þ0:2X4þ0:2 Y�1
3

� �4

=α2:

(13)

The unit of variables X and Y is angstrom, and the unit of the
output of V X,Yð Þ is kcal mol�1. The corresponding potential
energy surfaces and the time evolution of the variables are shown
in Fig. 2a,b,e,f. It can be easily deduced from Fig. 2a,e that for both
α= 1.0 and α= 10.0, the important DOF should be X. As depicted
in Fig. 2c,g, when training the trajectories by AEs, the value of the
bottleneck layer, ξ , varies along X if α is 1.0, but switches to vary
along Y if α increases to 10.0. This seemingly surprising result
indicates that AEs erroneously learn two distinct important DOFs,
when there should be only one along X . In stark contrast, TAEs
behave consistently for both α=1.0 (Fig. 2d) and α=10.0 (Fig. 2h),
and the learned variable highly correlates with the movement along

Fig. 2. Potential energy surfaces of VðX,YÞwith (a) α= 1.0 and (e) α= 10.0; Time evolution of X and Ywhen (b) α= 1.0 and (f) α= 10.0; Projections of the encoded variable ξ on X and Y
from AEs training with trajectories of (c) α = 1.0 and (g) α = 10.0; Projections of the encoded variable ξ on X and Y from TAEs training with trajectories of (d) α = 1.0 and (h) α = 10.0.
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X , which is also the most dominant mode. The projections of the
one-dimensional learned variable onto X and Y of other models
discussed in this contribution are shown in Supplementary Fig. 1. It
can be rationalised by the fact that AEs actually learn the variables
that correspond to the highest variance, which is, indeed, reflected
in our analyses, with a variance for X tð Þ of 1.0, greater than that for
Y tð Þ, equal to 0.18, when α= 1.0. Conversely, when α= 10.0, the
variance for X tð Þ is 0.78, smaller than that of Y tð Þ, equal to 0.99.
This discrepancy in the variances may also explain why AE fails
to encode the correct important DOF when α= 10.0. The present
comparison underscores that it is crucial to introduce temporal
information into the models for learning the slow modes, as
opposed to the high-variance ones. Nevertheless, as discussed in a
recent review of Markov state models, sometimes slow modes may
still not coincide with the important DOFs that are sought (Husic
and Pande, 2018). We, therefore, need to select proper candidate
CVs, or features, as the learning input, and that is why we advocate
here to combine data-driven and intuition-based approaches.

Both nonlinear modified TAE and SRVs can correctly learn the
slow modes

Chen et al. (2019a) have illustrated that nonlinear TAEs learn a
mixture of slowmodes and high-variance modes, and proposed the
nonlinear modified TAEs that can learn correctly the slow modes,
but comparing to SRVs, modified TAEs cannot generate orthog-
onal and multidimensional latent variables that are suitable for
CV-based biased simulations. Here, we confirm their results
numerically by using the potential depicted in Fig. 2c, but we also
propose that the modified TAE can be extended to slow feature
analysis (SFA) (Wiskott and Sejnowski, 2002; Berkes and Wiskott,
2005; Song and Zhao, 2022) (see Fig. 1b), which can render the
latent variables orthogonal in multidimensional cases, since Eq. (4)
resembles the SFA loss function in the one-dimensional case. In an
SFA, if the encoder, f, is multivariate, Eq. (4) should be formulated
as the following generalised eigenvalue problem:

A =
1

N�α
½X̂ðtþ τÞ� X̂ðtÞ�½X̂ðtþ τÞ� X̂ðtÞ�T

AV=Cðt, tÞVΛ:

8<
: (14)

The corresponding loss function is the sum of squared eigenvalues
in Eq. (14), namely, ℒ=

Pm
i= 1λ

2
i . Akin to SRVs, the CVs are then

expressed as linear combinations of the components of f . We note
that our use of SFA in conjunction with NNs is quite similar to the
deep SFA (DSFA) for change detection in images (Du et al., 2019),
except that in our two encoders, the weights and biases are shared.
At first glance, Eq. (14) looks similar to Eq. (7), and also the loss
function of SFA resembles that of SRVs, except that the former does
not have a negative sign. Indeed, in the linear case, the twomethods
have been proved to be equivalent (Blaschke et al., 2006; Wang and
Zhao, 2020), but the relationship is not so clear in the nonlinear
case, whereby a NN with nonlinear activation functions is
employed to encode X̂. Consequently, to investigate the perform-
ance of finding nonlinear latent variables for slow modes, in this
section, we benchmark a TAE, modified TAE, SRVs and SFA using
the unbiased trajectory generated from the potential energy func-
tion Eq. (13), with α= 10:0 . We used two hidden layers with
hyperbolic tangent as the activation functions in both the encoder
and the decoder part of TAEs, giving a final architecture of
2-40-40-n -40-40-2. The activation functions of the input, the
bottleneck and the output layer are linear. Similarly, we used an

architecture of 2-40-40-n for the other Siamese NNs (modified
TAE, SFA and SRVs). We have tested both cases, where n= 1 and
n= 2, and used a time lag of 0.02 ps.

The projections of the encoded values in the one-dimensional
case – that is, the outputs of the bottleneck layer in the TAE, the last
layers in the modified TAE and the linear combinations of basis
functions of SFA and SRVs – are gathered in Fig. 3a–d. In Fig. 3a, we
can clearly see that the latent variable of the TAE is split into the left
and right sides along X , and on each side, ξ varies along Y . This
result implies that while the nonlinear TAE is able to learn a latent
variable, distinguishing the two basins shown in Fig. 2c, it is also
affected by the high-variance mode in Y . In stark contrast, the
modified TAE, SFA and SRVs, with nonlinear activation functions,
appropriately learn the slow modes, that is, the learned CV varies
almost only along the transition between the two basins. In the two-
dimensional case, comparing Fig. 3f,j, we note that the modified
TAE learns two nearly identical modes, both varying along X. The
generalisation of the modified TAE, using the SFA loss function
embodied in Eq. (14), is, however, able to recognise two distinct,
approximately orthogonal modes (see Fig. 3g,k), in line with the
results of the SRVs (see Fig. 3h,l).

Furthermore, we compared the two reweighting schemes,
namely reweighting by uneven time intervals (Eq. (11)) and Koop-
man reweighting (Eq. (12)), for the calculation of the weighted
correlation in SRVs from an egABF biased trajectory, with α= 1:0.
The variations of the two learned CVs, ξ1 (Fig. 3q) and ξ2 (Fig. 3r),
using Koopman reweighting, closely correlate with the reference
ones (Fig. 3m,n) obtained from an unbiased trajectory. The results
from the reweighting strategy with uneven time intervals (see
Fig. 3o,p) clearly depart from the reference ones. Hence, we chose
the Koopman reweighting scheme for learning CVs from biased
simulations in our iterative approach. The accuracy of the scheme
leaning on uneven time intervals for the evaluation of the correl-
ations may, nevertheless, be improved by means of interpolations,
either explicitly or implicitly via Fourier transform (Scargle, 1989),
which falls beyond the scope of the present contribution.

Iterative learning of the CVs for the isomerizations of NANMA
and trialanine

From the benchmarks of the previous two sections, we have con-
cluded that SRVs are able to find both slow and orthogonal modes
in multidimensional cases, and SFA performs similarly. In this
section, we further test SRVs (Chen et al., 2019b) for the purpose
of CV discovery based on biased simulations, applied specifically to
the isomerization of NANMA and of trialanine, both in vacuum.
Both peptides have been widely used as case examples in the
development of novel enhanced-sampling and path-searching
methods (Pan et al., 2008; Hénin et al., 2010; Branduardi et al.,
2012; Valsson and Parrinello, 2014; Tiwary and Berne, 2016; Chen
et al., 2022a). In contrast with a previous study that uses deep-TICA
in a single iteration (Bonati et al., 2021) to find from a trajectory
with biasing potentials the slowmode along ϕonly, we employed an
iterative learning approach, akin to FEBILAE (Belkacemi et al.,
2022), using an initial trajectory from an egABF (Zhao et al., 2017)
biased simulation, and performed Koopman reweighting (see
Eq. (12); Wu et al., 2017), as described in the Methods section.
The guidelines for choosing the NN hyperparameters, the param-
eters of the iterative learning and the simulation details can be
found in the Supplementary Material.

From the reference free-energy landscape of NANMA along
backbone angles ϕ and ψ (Fig. 4a), we are able to identify the
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minimum free-energy pathway connecting states C7ax and C7eq, via
the extended form, C5 (shown as grey dots in Fig. 4b), turning to the
multidimensional lowest energy (MULE) algorithm (Fu et al., 2020).
The projection of the learned CV ξ1 onto ϕ and ψ in Fig. 4d clearly
distinguishes the C7ax and C7eq states, and interprets C5 as an
intermediate state. We can also identify three basins on the PMF
along the learned CV ξ1 (Fig. 4c), and by analysing the MD trajec-
tories we have found these basins corresponding, indeed, to C7eq, C5

and C7ax, respectively. Moreover, the free-energy difference between
C7eq and C7ax obtained from Fig. 4c is equal to 2.1 kcal�mol�1, which
only deviates slightly from the reference result (2.3 kcal�mol�1)
deduced from Fig. 4b. The free-energy difference between C7eq and

C5 obtained from Fig. 4c amounts to 1.2 kcal�mol�1, which is also
very close to the reference result (1.0 kcal�mol�1). Additionally, the
major free-energy barrier, separating C5 from C7ax in Fig. 4c, on the
PMF along ξ1 is equal to 8.2�kcal mol�1, which marginally deviates
from the ground-truth reference (8.1 kcal�mol�1, marked by the red
circle in Fig. 4b). In summary, not only is the learned CV, ξ1, able to
discriminate qualitatively between the different metastable states
encountered in the isomerization of NANMA, but the PMF along
this learned variable also quantitatively predicts the correct free-
energy difference and barrier.

In the paradigmatic case of NANMA, the selected candidate
CVs actually coincide with the physically correct ones, namely ϕ

Fig. 3. Projections of the one-dimensional CV ξ learned from unbiased trajectories when α= 10:0on X and Y of (a) TAE, (b) modified TAE, (c) SFA and (d) SRVs. Projections of the 2D
CVs (ξ1,ξ2) learned from unbiased trajectories when α= 10:0on X and Y of (e,i) TAE, (f,j) modified TAE, (g,k) SFA and (h,l ) SRVs. Projections of the 2D CVs (ξ1,ξ2) learned by SRVs from
an unbiased trajectory when α= 10:0 (m,n), from an egABF biased trajectory reweighted by Eq. (11) (o,p), and from an egABF biased trajectory reweighted by Eq. (12) (q,r).
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and ψ. Had we only a limited knowledge of the underlying dynam-
ics of the process at hand, and hadwe included some candidate CVs
that are not relevant, could our protocol still be able to learn the
correct CVs? To answer this question, we tackled the more chal-
lenging example of trialanine, for which we pretend that we do not
know that the three ϕ dihedral angles are important (Valsson and
Parrinello, 2014; Tiwary and Berne, 2016) to its isomerization, and
blindly select all the backbone, ϕ and ψ, angles (see Fig. 4a) to form
the candidate CVs, and see whether the learned CVs can render a
satisfactory picture of the conformational changes. The ground-
truth reference three-dimensional free-energy landscape along the
three known important CVs (ϕ1 , ϕ2 , ϕ3 ) is shown in Fig. 4f, and
eight metastable states can be identified in the basins marked as A,
B,M1,M2,M3,M4,M5 andM6. Fig. 4 depicts the three-dimensional
free-energy landscape along the learned CVs (ξ1, ξ2, ξ3), where we
can also identify eight basins. After analysis of the trajectory, we
have discovered that these basins correspond to the
conformations A, B and M1–M6, which indicates that the learned
CVs are able to discriminate between the important conformations.
Moreover, by applying MULE on the three-dimensional free-
energy landscape along (ξ1, ξ2, ξ3), we determined the minimum
free-energy pathway as A-M1-M3-B (shown as black spheres in
Fig. 4g), which coincides with that found in the reference three-
dimensional free-energy landscape along (ϕ1 , ϕ2 , ϕ3 ) (shown as
black spheres in Fig. 4f). It ought to be noted that a previous study
(Chen et al., 2022b) demonstrated that pathway A-M1-M3-B also
corresponds to themost probable transition pathway (MPTP) (Pan
et al., 2008). The free energies determined along theMFEP from the
three-dimensional free-energy calculation along (ξ1, ξ2, ξ3) and the
reference is shown in Fig. 4h in blue and red, respectively. The
deviation between the blue and red curves may stem from discret-
ization issues and difficulty to enhance sampling in the three-
dimensional space (see Supplementary Material for details).

However, if we reweight the free-energy landscape along (ξ1 , ξ2 ,
ξ3) to that along (ϕ1, ϕ2, ϕ3), and identify the MFEP again, we can
observe that the resulting profile (green curve in Fig. 4h) is very
close to the reference one (red curve in Fig. 4h). We, therefore,
conclude that the CVs (ξ1, ξ2, ξ3) obtained from SRVs with iterative
learning reproduce the correct dynamics underlying the isomeriza-
tion of trialanine, even if some fast and non-important candidate
CVs are included.

Comparing the NN hyperparameters used in the NANMA and
the trialanine test cases as shown in Supplementary Table 1, we can
see that more neurons or computational units are used in the latter
case. Therefore, if the presented approach is applied to larger
biological objects, it is likely that the choice of candidate CVs differs
from those for NANMA and trialanine, and the NNs will become
more complex through (a) an increase of the number of layers and
neurons, and (b) combination of different types of layers, for
example, dropout and convolution layers, for training.

Potential connections between TAE, modified TAE
and committor

In transition path theory (Weinan and Vanden-Eijnden, 2010),
considering that a molecular process characterised by two meta-
stable states A and B, the net forward reactive flux from state A to
state B can be expressed as a time-correlation function (Krivov,
2021; Roux, 2021),

JAB =
1
2τ
〈 q s tþ τð Þð Þ�q s tð Þð Þ½ �2〉, (15)

where the committor, q sð Þ, is the sum of the probability over all
paths initiating from s that ultimately reach B before visiting A .
By definition, q sAð Þand q sBð Þare equal to 1 and 0, respectively, and
as a sum of probability, q should be bounded, namely q∈ 0,1½ � .

Fig. 4. (a) Structure of NANMA and two dihedral angles ϕ and ψ as candidate CVs. (b) Reference free-energy landscape of the NANMA isomerization along ϕ and ψ. The grey dots
show theminimum free-energy pathway (MFEP) fromC7eq to C7ax via C5. The dominant free-energy barrier on theMFEP ismarked by the red circle. (c) The PMF along the learned CVψ1.
The threebasins correspond to C7eq, C5 and C7ax, respectively. (d) The value of learned CV ξ1 projected on ϕ andψ. (e) Structure of trialanine, the candidate CVs (ϕ1,ψ1, ϕ2,ψ2, ϕ3,ψ3), and
the eight basins (A, B, M1, M2, M3, M4, M5, M6) found in the free-energy landscapes along the reference CVs in (f) and the learned CVs in (g). The basins A, B, M1, M2, M3, M4, M5

and M6 are marked in blue, red, yellow, green, orange, white, cyan and pink, respectively. (f) Reference 3D free-energy landscape along (ϕ1, ϕ2, ϕ3) and the corresponding MFEP
(black dots). (g) 3D free-energy landscape along the learned CVs (ξ1,ξ2,ξ3) and the corresponding MFEP (black dots). (h) MFEPs found from the reference free-energy landscape
along (ϕ1, ϕ2, ϕ3) (red), the free-energy landscape along the learned CVs (ξ1,ξ2,ξ3 ) (blue), and the free-energy landscape reweighted from (ξ1,ξ2,ξ3 ) to (ϕ1, ϕ2, ϕ3) (green).
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Similar to the minimization in Eq. (4) for learning CVs, it can be
envisioned that the committor function q sð Þ can also be obtained
by the minimization of Eq. (15) with the following restraints,

q s tð Þð Þ=
0:0, s tð Þ∈A

f θ s tð Þð Þ, s tð Þ∉ A∪Bð Þ
1:0, s tð Þ∈B

8><
>: , (16)

where f θ s tð Þð Þ is the output of a one-dimensional NN-based
function with θ as its parameters. Based on such a minimization,
He et al. (2022) have recently proposed the committor-consistent
variational string (CCVS) method, where f θ s tð Þð Þ is parametrized
by a linear combination of basis functions constructed from Vor-
onoi cells supported by images of strings, and then optimised by an
iterative Monte-Carlo procedure, as a way to determine the under-
lying transition pathway. At first glance, Eq. (15) looks similar to
the numerator in Eq. (4) multiplied by a constant in one-
dimensional cases. The main difference is that Eq. (15) is not scaled
by the variance of f θ s tð Þð Þ or q s tð Þð Þ. Instead, as shown in Eq. (16),
the committor-based loss function explicitly requires boundary
conditions to identify the two metastable states, A and B, before
training. In stark contrast, the loss function of modified TAEs in
Eq. (4) does not feature boundary conditions, and works as a
method for blind separation. The CCVS authors have further
demonstrated that their method is sensitive to the diffusivities of

the components in s, for example, the anisotropic diffusivities along
X and Y of the Berezhkovskii–Szabo potential (Fig. 5a) resulting in
different isocommittors (Weinan et al., 2005).

As we can see, Eq. (15) resembles the loss function of modified
TAEs embodied in Eq. (4) if ξ̂ is one-dimensional. We found the
similar manifestation of the anisotropic diffusivity in the CCVS
(He et al., 2022) and in the learned CV intriguing, as it suggests the
possibility of encoding kinetics information, such as diffusivities, in
the methodology discussed in the present contributions. Here, we
present a preliminary investigation of this hypothesis, wherein AEs,
TAEs, and modified TAEs are compared, using the Brownian
dynamics trajectories of anisotropic diffusivities sampled from
the Berezhkovskii–Szabo potential (Berezhkovskii and Szabo,
2005) as the training inputs. With the diffusivities along X and Y
denoted Dx and Dy , respectively, we have examined three cases,
namely Dx=Dy = 0:1,Dx=Dy = 1:0 and Dx=Dy = 10:0. The results of
the encoded variables ξ projected back onto the X,Yð Þ plane are
gathered in Fig. 5b–j. Comparing Fig. 5b,e,h, we find that the results
from the classical AE are invariant to the change of Dx=Dy. In stark
contrast, in the cases of the TAEs (see Fig. 5c,f,i) andmodified TAEs
(see Fig. 5d,g,j), the learned CVs are affected by the differentDx=Dy

ratios, which indicates that the time-series-based models are cap-
able of reflecting the anisotropic diffusivity, andmay have potential
connections with the CCVS in the case of a two-state molecular
process. Additionally, since AEs, TAEs and modified TAEs do not

Fig. 5. (a) Berezhkovskii–Szabo potential energy surface (Berezhkovskii and Szabo, 2005). The latent variables projected onto (X, Y) learned by AEs, TAEs andmodified TAEs in three
diffusivity conditions: (b–d) Dx=Dy ¼ 0:1, (e–g) Dx=Dy ¼ 1:0 and (h–j) Dx=Dy ¼ 10:0. The AEs and TAEs are trained with a neural network architecture of 2-10-1-10-2 with linear
activation functions used in all layers. The modified TAEs are trained with a 2-20-20-1 neural network, and the hyperbolic tangent is used as the activation functions for the two
hidden layers with 20 computational units. The time lag for TAEs and modified TAEs is 10 steps.
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utilise restraints similar to those in Eq. (16), the learned CVs at a
specific metastable state do not have a fixed value. In other words,
for a committor q, we have q sAð Þ= 0 and q sBð Þ= 1, but for a good
learned CV ξ, we only know that ξ sAð Þ 6¼ ξ sBð Þ. The exact values of
ξ sAð Þ and ξ sBð Þ are affected by the randomisation of the initial
parameters and optimizers, which explains the colour flipping in
Fig. 5h, contrasting with Fig. 5b,e.

Conclusion

In this contribution, we have reviewed the counterparts of PCA
and TICA in the era of deep learning, including AEs, TAEs,
modified TAEs, SFA and SRVs, examined the limitations of
classical AEs through a series of numerical examples, and con-
firmed that classical AEs capture the high-variance modes in lieu
of the slow modes. This limitation can, however, be overcome by
turning to time-series-based models, such as TAEs, modified
TAEs and SRVs. Our numerical experiments, nevertheless, con-
firm that in nonlinear cases, TAEs still encode a mixture of high-
variance and slow modes, which can be circumvented by turning
to modified TAEs and SRVs. Given that the original form of the
modified TAEs cannot adequately learn the orthogonal latent
variables, we have proposed an extension of the latter models that
expand modified TAEs by SFA, able to yield orthogonal latent
variables. In order to combine time-series-based models with
iterative learning and enhanced-sampling based free-energy cal-
culations, we have examined and compared critically alternate
reweighting schemes that enable models to be trained from biased
trajectories, while preserving the underlying unbiased slowmodes
of the molecular process at hand, thereby paving the way for
iterative learning with enhanced-sampling algorithms. As an
illustration, we have employed our proposed iterative-learning
protocol to discover the CVs describing the isomerization of both
NANMA and trialanine, and showed that the free-energy land-
scapes along the learned CVs feature the correct metastable states,
allowing the minimum free-energy pathways to be identified, and
the free-energy barriers to be computed. In addition, we have
probed time-series-based models in the case of anisotropic diffu-
sivity and found that the learned CV may have deep connections
with CCVS, thus suggesting that these models might be eminently
relevant to learn committor probabilities. To summarise, armed
with a proper reweighting method, SRVs with iterative learning
are well-suited for the discovery of CVs, which can be subse-
quently utilised in free-energy calculations. It ought to be noted,
however, that appropriateness of the time-series-based models is
still subservient to a reasonable choice of the hyperparameters that
control the NN, like the time lag, the number of hidden layers, and
the number of computational units – or neurons – in each layer,
which may affect the resolution of slowness and the degree of
overfitting. Possible solutions to address this issue may include
integrating multiple time lags (Lorpaiboon et al., 2020; Wang and
Zhao, 2020), or using singular spectrum analysis (Hassani, 2007),
which inherently employs multiple time lags. Furthermore, in
order to avoid overfitting and render the models more robust
with respect to unseen or missing data, one may incorporate into
the SRVs probabilistic models, like a probabilistic SFA (Turner
and Sahani, 2007) and a predictive information bottleneck, or PIB
(Wang et al., 2019), with the help of invertible neural networks, or
INNs (Ardizzone et al., 2019).
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