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CONVERGENCE OF ISOTROPIC SCATTERING

TRANSPORT PROCESS TO

BROWNIAN MOTION

SHINZO WATANABE*} AND TOITSU WATANABE**}

Introduction

Let us consider transporting particle in the n-dimensional Euclidian

space Rn. It is assumed that a particle originating at a point x^Rn moves

in a straight line with constant speed c and continues to move until it

suffers a collision. The probability that the particle has a collision between

t and t + Δ is kΔ + o(Δ), where k is constant. When a particle has a col-

lision, say at y in Rn, it moves afresh from y with an isotropic choice of

direction independent of past history.

It has been proved that, when c and k grows up indefinitely under

the relation k\c2 = 2/n + 0(1), the distribution of a particle converges weakly

to that of Brownian motion for the one-dimensional case by N. Ikeda and

H. Nomoto [2] (cf. M.A. Pinsky [4]), and for the two-dimensional case by

To. Watanabe [6] (cf. A.S. Monin [3]).

The purpose of this paper is to show that the same result is also valid

for the multi-dimensional case.

In section 1, we shall define the n-dimensional transport process with

speed c. In section 2, we investigate the resolvent and its Fourier trans-

form. In section 3, using the result of section 2, we shall show that the

distribution of transport process with speed c converges to that of the

Brownian motion as c ̂  oo under the assumption: k\c2 = 2/n + 0(1) (Theorem

1). In section 4, we shall show that the transport process with speed c

converges weakly to the Brownian motion, considering them as the measures

on the space ^ of continuous functions.
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§1. Definition of transport process.

Let S71'1 be the {n — 1)-dimensional unit sphere in the w-dimensional

Euclidian space RΛ and let a be the uniform probability measure on (S71"1,

BiS71"1)). We shall denote by S the product space of Rn and Sn~\ and

B{S) the topological Borel field.

Let Θ = [θ(t)9 + °°, PΘ, ̂ S 7 1 " 1 ] be a right continuous strong Markov

process of pure-jump type on S71"1 defined by the following conditions:

(i) P,W) = Θ, t<τ\t<τ) = l;

(ii) p θ ( τ > t ) = e-kί;

(iii) Pe(β(τ)^Γ) = σ(Γ), ΓGBiS*'1);

where τ = inf {t : θ{t) ψ θ{0)} and A; is a positive constant. The formula

(1.1) A(t) = [θis) ds
Jo

defines /^-valued continuous additive functional of 0. For each point

, we define the following:

(1.2) »<*••>(*) = (x + cΛ(t), θ(t));

(1.3) P(χ>θ) (χ(*>θ) (t)<ΞB) = PeW*^ ( ί)eB), B<ΞB{S).

Then it is easy to see that JIT<*•*>== [X<* *> (0» + °°> P<* *>, (α?,^)eS] is a

system of Markov family of random functions. Hence there corresponds the

strong Markov process X = [X{t) = (x{t), θ{t))9 + oo, p(Xtβ)9 ( χ ^ ) e S ] (cf. [1]).

DEFINITION 1.1. We call the Markov process X the n-dimensional isotropic

scattering transport process with speed c9 or simply, the transport process with speed

c.

§ 2. Fourier transform of resolvent operator.

Let us first introduce some spaces of functions defined on S and Rn.

C0(S) be the space of continuous functions on S such that \imf(x,θ) — 0
|#|-»oo

with sup-norm || ||.

Lι{S) be the space of integrable functions on S with norm ||/|Ui =

)I dx

L2{S) be the Hubert space of square-integrable functions on S.
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C0{Rn) be the space of continuous functions on Rn such that lim F(x) = 0
μj->co

with sup-norm ||| ||).
L^R") be the space of integrable functions on Rn with norm | | |F | | | L i =

\RJF(x)\dx.

L2(Rn) be the Hubert space of square-integrable functions on Rn.

Let us denote by Tt, ί i>0, the semigroup corresponding to the trans-

port process X, i.e.,

(2.1) Ttf(x,θ) = E(x,θ)[f(x(t))l

where E{Xtθ) is the expectation with respect to P(ar,^-measure and by RλΨ

λ>0, the resolvent of Tt. Then we have

LEMMA 2.1. (i) Ttf9 / E C 0 ( 5 ) or Lι{S) or L2(S), is a solution of the fol-

lowing integral equation:

(2.2) u{t,x,θ) = f{x + cθt,θ)e~kt + k j e~ks ds \ n_χu{t — s, x + cθs,<Θ)dσ(-9).

Moreover, \\Ttf\\^\\f\\ or \\ Ttf\\Li ^ Il/Li or \\Ttf\\L*^ \\f\\L*.

Let A with domain D(A) be the infinitesimal generator of Tt, t^O, in L2(S)

and let T*, A* be the adjoint of A and Tt, respectively.

(ii) D{A) = {f<ΞL2(S):<θ, gard/>eL2(S)} and

(2.3) A f(x,θ) = c(θ, grad /> - k f{x,θ) + k\ J{x,&) dσ(<θ),

where (θ, grad /> = Σ d,-^ f{x,θ)9 θ = [θ19 , θn)

(iii) D(A*) = D{A) and

(2.4) A*f(x,θ) = - c(θ, grad f> - k f{x,θ) + k\ nJ{x,$) dσ{8).

(iv) If we put f*{x9θ) = f{x, - θ), then T*Jix9θ) = Ttf*(x9 - θ).

Proof It follows from the strong Markov property of X that Ttf is a

solution of (2.2) and the boundedness of Ttf follows by solving the equation

(2.2) with the method of succesive approximation, (ii) follows from (i), and

(iii) follows from (ii) by integration by parts.

According to the general theory on semigroup, Ttf, f e D{A), is a

unique solution of
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-z-Γ- u = Au = c<0, g r a d u> — ku + k \ Λu(β) dσi-9)

u(t)-*f as £->0.

Putting u*(t,x,Θ) = Ttf*(x, —0), we get

^— &* = — c <0, grad u*y — ku* + k\u*(β) dσ($)

u*{t)~+f as

On the other hand, T*f, f^D(A*), is a unique solution of

~γ- v = i4*v = - c (θ, grad ?;>-

1 v{t)-+f as

Hence T*f(x,θ) = Γt/*(α?, - 0). Thus we complete the proof.

REMARK. If /(#,#) is a function independent of 0, then T*f(x,θ)

Ttf{x, - 0).

Let P be the mapping defined by

and let us denote the integration of / over S71"1 with respect to σ by /,

i.e.,

f(χ) = \sn_v

We now define the Fourier transform as a function of x by the fol-

lowing :

(2.5)

where <f,a> = ί^j + + ? A for ί = (ξ19 , f 5 ) e ί Λ .

REMARK.

Putting

we have, because of the space-homogeneity of X,

E(Xtθ) [exp {- 2πi <f, ίc(0>}] = exp {- 2τrί <£, α;>} φ(ξ,θ, t).
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Further we have

LEMMA 2.2. Let F<ΞD{Rn){\D(Rn) be a function such that

Then

(2.7) JT(Rλ P F) (ξ) =

where Φ{ξ,Θ,λ) = [~e-λtφ{ξ,θ, t) dt and Φ{ξ,λ) = [ .Φfc.MO dσ{θ).
Jo Jsn~

Proof

The right hand side of (2.7)

= \ exp {- 2πi <£, x>} F{x) dxdσ(θ) ΓV^£ ( O ι < ? )[exp {- 2ττt <£, &(*)>}] <**
JίS JO

(PF) (x,θ) Eix,S)[exp {- 2πi iξ,x(φUdx dσ{θ)

f T*(PF) {x,θ) exp {- 2τrί <£, x>} dac rf<y(^)

2 ί̂ <?,»>} Jo; dσ{θ)^λtTt{PF){x,θ) dt

— the left hand side,

since T*t{PF) {x,θ) = Tt{PF){x,θ) by the remark of Lemma 2.1. Thus the

proof is complete.

LEMMA 2.3. (i) φ(ξ,θ,t) is the solution of the following integral equation:

(2.8) φ(ξ, θ, t) = <p0 (ξ, θ,t)+k ( V o t e . 0, 5) £ ( f , ί - 5) ds,
Jo

ze Aβ^ φo{ξ,θ,t) = e~kt exp {- 2τπ <f,c^ί>}.

(ir) φ[ξ91) is the solution of

(2.9) ψ(ξ, t) = ? 0 ( f f ί) + * (Vo(?, 5)^(f, t - s) ds.
Jo

( ϋ ) Φ(ξ, i) = (l- kΦ0(ξ, ^ ) ) - 1 Φ 0 ( ί , X),

where Φ0(ξ,λ) = t%-"^ 0 ( f , ί ) </ί.
Jo

/1 Availing iΓαc,s formula, we have

φ{ξ,θ, t) = Eθ\exp \-2πi(ξ, *\ cθ{s) ds>]: t <
L I Jo J
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= e~kt exp {-

= 9o(S*O>t) + [k e~ks exp {-2πi(ξ,cθs>}φ{ξ9t-s) ds
Jo

= the right hand side of (2.8), which implies (i).

(ii) is clear from the convolution rule on Laplace transform, and so

we can complete the proof.

§3 Convergence in distribution.

Hereafter we assume:

klc2 = 2\n + 0(1) when c -> oo.

Since there is no essential difference in the following discussions, we shall

assume always "k/c2 = 2/n" for the sake of simplicity. Then we have

LEMMA 3.1. lim Φ(ξ,λ) =
λ+(\2πξ\2l2) *

Proof.

e-kt \ f exp {- 2πi<ξ,cθt>} dσ{θ) dt

where α- - 1, «- = - -L, d? = ̂ _ _ a n d

ω sin 7 1"" 2

0

\ smn"
Jo

ωdω

n-2
2

' n-2 \c I
2

n-4

w-2 Vx P w-2
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since

(3.2) Γ V " dt [ , exp {- i<rj9θ0) dσ{θ)
Jo Jsn

= Γ\ smn^ωdω] \ e~λt dt I exp {ί \η\t cosco} sinΛ~

'* (i \η\ tcosω)2m . n

o J Jo \w=oJo (2m)\

CO \γ, J 2771

— 2 J «m 52m+l
w=0 Λ

Hence

(3.3) Φ{ξ,λ) = ^ ^

1 -

(l2πgl2/2) ' w h i c h completes the proof.

Let B = [^(0> + °°J Pχ9 x^Rn] be the ^-dimensional Brownian motion,

and Tf, £;>(); Rf, λ>0, be the semigroup and resolvent of B, respectively.

Then we have

LEMMA 3.2. Let F^U{Rn){\L\Rn) such that ^F^U(Rn,dξ). Then

| | l ^ P F 7 ? f F I | | 0 as

Proof. By Lemma 3.1 and the Lebesgue's convergence theorem, we get,

noting \φ(ξ, λ)\t£±-,
A

\RίPF{x)-RΪF{x)\

{2πi<x,ξ}} |

-> 0, which implies the lemma.
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LEMMA 3.3. Let F be as in Lemma 3.2. Then

\\RλP F- P RλP F\\->0 as c-+oo.

Proof. It follows from the strong Markov property of X that

^T{RλP F) (ξ,θ) = ( nexp {- 2πi<ξ9x»dx (V»rff [e~kt(PF) (x + cθt,θ)]
jRn JO

+ [ exp {-2πi<ξ,x>}dx\°°e-λtdίύ*e~ksds\ Ύ^ΛPF) (x + cθs,$)
jRn Jo L Jo Js""1

The first term of right hand side

t V " e-kt exp {2πi<ξ,cθt>} dt
Jo

\

λ + k-2πi(ξ,cθ> *

The second term

exp {—2πi<ξ,x>}Tt-,{PF) (x + cθs,&) dx dσ(Ό)

*ds [exp 2τπ<£, cθs>} J^F{ξ) φ(ξ, t - 5)]

, X) Xe-^ke-™ exp {2πi<ξ, cθt}} dt
J 0

k

Hence we have from Lemma 2.2

\\RλPF(x,θ)-PRλPF(x,θ)\\

^ ||] jT(RλP F) (ξ, θ) - J Π Λ P F) (?) II) L\dξ)

= III ̂ ' F t f ) Φ(ξ, λ) [U + ft - 2?rf<f, c ^ - ^ l + ft)] - , ^ F ( f ) Φ(ζ, X)

-> 0 as c-^-00,

completing the proof.

THEOREM 1. Let F^C0(Rn). Then

\\TtP F- P T?F||->0 αί

/i Since any F^C0(Rn) can be approximated by the function as in

Lemma 3.2 it follows from Lemma 3.2 and 3.3 that
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\\RλP F-P R?F\\-+0.

Hence, by the Trotter's theorem, we can conclude the theorem.

COROLLARY. P(Xt9){x{t)<=E)-+ PB

x{B{t)^E) as c->oo for every E^B(Rn)

such that BE has the Lebesgue measure 0.

§4. Weak convergence.

Let <ĝ  be the Frechet-space of all continuous functions; ίe[0, oo)->-

w{t)^Rn, with compact uniform topology and B{^) be the topological

Borel field on ^ . Since x(t) are continuous in t, they induce the

probability measure on (<ĝ ,2?(C)). We denote them by the same symbols

Pix,β) and PB

X, respectively. We assume, as in § 3, k\c2 = 2/n(**}.

DEFINITION 4.1. If, for any continuous function Ψ on ^ ,

lim \^Ψ(u>) dPix>θ)(w) = \^Ψ{w) dPB

x(w) ((a,0)eS),

then we call that X = \%(t)%P{Xtθ{\ converges weakly to B = [B(t)9 Pξ],

THEOREM 2. The transport process X with speed c converges weakly to

Brownian motion B as c->oo.

LEMMA 4.1. Ex[\x(t) - x{0)\4]^K{n)t2

Proof. We have only to show that

because X is homogeneous with respect to x^Rn. The coefficient of (—2πiξ)4

in

4! Jo

is equal to that of (— 2πiξ)A in

0(f>>O = \ e~λtEQ[exip {—2πi(ζ9x{t))}~\ dt,
J 0

which is given by

3n k2 , 1 ( I _, Λ fe4 ,
:)4 4 \ (n + 2) / ^ 2 (^ + &)4

Every following discussion remains valid if A;/c2 = 2/^+o(l) (c-»oo).
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(cf. (3.3)). Hence we have

(4.1) -jϊ-EoK^xiφ']

s ince S o * • " w d t S > - s ) P e - k S s q d s = n π

Therefore

—

= the right hand side of (4.1)

because

and similarly

A;4 [\t - s)2e-kss* ds ^ Γ ( 4 ) ί2.
Jo

Thus we get

Eol)χ(t)\il= Έ

0(n)t* = K(n)t\

completing the proof.

LEMMA 4.2. E(Xfθ)[\x(t) - x{s)V]<K{n)\t - s\2.
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Proof. It follows from the spatial homogeneity in x^Rn of X and the

equivalence of [ϊx(t), P(0,Θ)] and [x{t), P(0,rβ)]> where T be a rotation around

the origin, that

Eix.9)[\x(t) - x(s)\*] = EiOtθ)[\x(t) - x(s)\*]

= £«,.*) Πr-'αKO - r^(5) | 4 ] = Ei0,rθ)ί\χ(t) - x(s)n

= E(XJΘ)[\x(t) - x(s)\4l

i.e., E(Xtθ)[\x(t)-x(s)\4'] is independent of fleS71"1. Hence £ ( a. l β

" #(s)!4]i which concludes the proof by Lemma 4.1.

Proof of Theorem 2 is the direct consequence of the Prohorov's theorem

by Theorem 1 and Lemma 4.2.
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