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We use three-dimensional (3-D) fully kinetic particle-in-cell simulations to study
the occurrence of magnetic reconnection in a simulation of decaying turbulence
created by anisotropic counter-propagating low-frequency Alfvén waves consistent with
critical-balance theory. We observe the formation of small-scale current-density structures
such as current filaments and current sheets as well as the formation of magnetic flux ropes
as part of the turbulent cascade. The large magnetic structures present in the simulation
domain retain the initial anisotropy while the small-scale structures produced by the
turbulent cascade are less anisotropic. To quantify the occurrence of reconnection in our
simulation domain, we develop a new set of indicators based on intensity thresholds to
identify reconnection events in which both ions and electrons are heated and accelerated
in 3-D particle-in-cell simulations. According to the application of these indicators, we
identify the occurrence of reconnection events in the simulation domain and analyse
one of these events in detail. The event is related to the reconnection of two flux ropes,
and the associated ion and electron exhausts exhibit a complex 3-D structure. We study
the profiles of plasma and magnetic-field fluctuations recorded along artificial-spacecraft
trajectories passing near and through the reconnection region. Our results suggest the
presence of particle heating and acceleration related to small-scale reconnection events
within magnetic flux ropes produced by the anisotropic Alfvénic turbulent cascade in the
solar wind. These events are related to current structures of the order of a few ion inertial
lengths in size.
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1. Introduction

The solar wind is a low-collisionality plasma produced in the solar corona (Marsch
2006). It expands across the solar system exhibiting spatial and temporal variations in
composition, density, velocity and temperature as well as in the electric and magnetic
fields. The solar wind shows a non-adiabatic temperature profile with distance from
the Sun (Gazis & Lazarus 1982) which suggests the presence of local heating and
particle-acceleration mechanisms (Goldstein et al. 2015). Unlike in collisional plasmas,
in the solar wind, the energy dissipation cannot be attributed to the viscous interaction
due to binary particle collisions nor to any process that depends directly on collisions,
such as the collisional electric resistivity for instance. In the solar wind, the magnetic-field
fluctuations exhibit a power-law distribution of the magnetic energy across a large range
of spatial scales from 0.1 au to subproton scales (Coleman 1968; Marsch & Tu 1990)
which indicates the presence of turbulence in the solar wind. The energy cascade has
three regimes: the so-called injection range in which the power index of the magnetic-field
fluctuations is −1 (Kiyani, Osman & Chapman 2015); an inertial range in which the power
index varies from −3/2 to −5/3 (Iroshnikov 1963; Marsch & Tu 1990; Podesta 2009;
Boldyrev et al. 2011); and a dissipation range in which the power index is less clearly
defined (Goldstein, Roberts & Fitch 1994; Li, Gary & Stawicki 2001; Howes et al. 2008b)
with spectral breaks at electron scales (Alexandrova et al. 2009; Sahraoui et al. 2009). The
transport of energy between scales is known as the energy cascade. At subproton scales,
kinetic dissipation mechanisms become important, particles are energised, and the entropy
of the system irreversibly increases (Tatsuno et al. 2009; Eyink 2018; Verscharen, Klein
& Maruca 2019). The nature of the fluctuations at subproton scales and the properties
of the plasma determine whether the turbulent energy is mainly dissipated by ions or
whether it cascades to electron scales at which it is ultimately dissipated by electrons. In
the framework of wave turbulence, the energy-dissipation mechanisms are classified into
two main categories: resonant heating such as Landau damping and ion-cyclotron damping
(Marsch, Vocks & Tu 2003; Kasper, Lazarus & Gary 2008) and non-resonant heating such
as stochastic heating (Chandran et al. 2010, 2013). In this framework, turbulent fluctuations
with polarisation properties consistent with kinetic Alfvén waves (KAWs) and whistler
waves are often evoked as the mechanisms that carry the turbulent cascade to electron
scales. In general, observations more often find evidence for KAW-like fluctuations than
for whistler-wave-like fluctuations (Smith, Vasquez & Hollweg 2011; Podesta & TenBarge
2012; Salem et al. 2012; Podesta 2013; Goldstein et al. 2015). Another mechanism
proposed to carry the turbulent cascade to subproton scales is magnetic reconnection
(Sundkvist et al. 2007; Franci et al. 2017; Loureiro & Boldyrev 2020).

Magnetic reconnection is a process in which particles are heated and accelerated
while the magnetic-field topology changes. It takes place when magnetic structures
form a region in which the frozen-in condition is locally broken allowing the exchange
of particles between the magnetic structures and leading to a change in the magnetic
connectivity (Hesse & Schindler 1988; Pontin 2011). Magnetic reconnection is a
multiscale phenomenon that appears in both space and laboratory plasmas under
conditions reaching from fully collisional to effectively collisionless. It has been
predicted to occur in coronal mass ejections, solar flares, explosive events in planetary
magnetospheres, accretion discs, star-formation regions, fusion plasmas and in the solar
wind (see Priest & Forbes 2007; Zweibel & Yamada 2009). In the latter, reconnection
events are characterised by streams of particles associated with Alfvénic disturbances
and magnetic-field rotations (Gosling et al. 2005; Davis et al. 2006; Gosling, Eriksson
& Schwenn 2006; Phan et al. 2006; Phan, Gosling & Davis 2009; Gosling 2012;
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Phan et al. 2020). These structures are interpreted as the so-called ‘exhaust regions’
of reconnection events. Although magnetic reconnection has been studied for over 60
years, there is still no consensus in terms of a complete theory to describe magnetic
reconnection at all scales involved. The problem is rooted in the fact that the range of
spatial (L) and temporal (τ ) scales involves fluid-like behaviour at L � ρi, di, where ρi
is the ion gyroradius and di is the ion inertial length, as well as kinetic behaviour and
energy dissipation at subproton scales, L � ρi, di. In addition, since plasmas are often
in a turbulent state, the presence of a turbulent field alters the onset and evolution of
reconnection events (Matthaeus & Lamkin 1986; Strauss 1988; Lazarian & Vishniac 1999;
Kim & Diamond 2001; Servidio et al. 2011; Boldyrev & Loureiro 2017; Adhikari et al.
2020; Loureiro & Boldyrev 2020). It is unclear how turbulence and reconnection affect
each other and how the energy is partitioned between particles and fields through both
processes. For instance, although the role of reconnection in the small-scale turbulent
cascade has been studied previously (Franci et al. 2017; Boldyrev & Loureiro 2017;
Cerri & Califano 2017; Papini, Landi & Del Zanna 2019b), it is still unclear how 3-D
reconnection proceeds in the turbulent solar wind. It is not well understood whether 3-D
reconnection disrupts current sheets and coherent magnetic-field structures associated
with intermittency at small scales in the same way as it disrupts these structures at large
scales (Boldyrev et al. 2013; Mallet, Schekochihin & Chandran 2017). Moreover, it is
unclear how reconnection changes the turbulent cascade as the wavevector anisotropy
increases with decreasing scale and how turbulence affects the reconnection process itself
(Boldyrev & Loureiro 2017). Therefore, it is necessary to study the energy partition as
well as the links between turbulence and reconnection at small scales in order to fully
understand the mechanisms of energy dissipation and plasma heating in the solar wind.

The use of numerical simulations has been proved to be an invaluable tool to
test existing theories over a wide range of parameters. Moreover, using simulations,
we self-consistently explore nonlinear problems which lie beyond analytical theory.
Simulations expand our knowledge regarding magnetic reconnection processes in two
dimensions (Birn et al. 2001; Shay et al. 2001; Loureiro et al. 2009; Servidio et al.
2009, 2010; Bessho et al. 2017) and in three dimensions (Hesse, Kuznetsova & Birn
2001; Pritchett & Coroniti 2001; Lapenta 2003; Lapenta et al. 2006; Kowal et al. 2009;
Daughton et al. 2011; Baumann, Galsgaard & Nordlund 2013; Liu et al. 2013; Pritchett
2013; Muñoz & Büchner 2018). The use of high-performance computing facilities and
increasing computational capabilities facilitate the study of plasmas from first principles
using particle-in-cell (PIC) simulations (Lapenta 2012; Germaschewski et al. 2016). These
simulations are able to resolve proton and electron scales and to account for phenomena
that only reveal themselves using kinetic theory. For instance, electron-kinetic effects can
affect ion-scale processes (Told et al. 2016) even in linear theory. These effects may
be even enhanced in nonlinear processes. Currently, full PIC simulations are unable to
cover the whole range of scales involved in natural plasma turbulence and reconnection
since they are expensive in terms of computing memory and require small time steps to
satisfy stability criteria. However, their ability to model the physics behind the energy
partition at small scales makes PIC the most appropriate method to address subproton and
electron-scale phenomena as well as collisionless energy dissipation.

Kinetic simulations of magnetic reconnection are often based on idealised conditions,
such as the Harris current-sheet configuration (Shay et al. 2001; Scholer et al. 2003;
Ricci et al. 2004; Shay et al. 2004; Daughton, Scudder & Karimabadi 2006; Daughton
et al. 2011; Leonardis et al. 2013; Liu et al. 2013; Beresnyak 2016; Goldman, Newman
& Lapenta 2016). In this work, we study the formation of current structures and the
occurrence of 3-D magnetic reconnection as a result of turbulent dynamics in PIC
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simulations of collisionless anisotropic Alfvénic turbulence. We initialise our simulation
with counter-propagating Alfvén waves that then self-consistently interact and generate
turbulence (Howes & Nielson 2013; Howes 2015a), current-sheet structures (Howes 2016),
and regions of magnetic reconnection. The overall objective of this work is to discover the
properties of reconnection events that terminate the inertial-range cascade of solar-wind
turbulence and define criteria that identify such features in future 3-D simulations and
in spacecraft data. These results will allow future work to advance the study of linked
reconnection and turbulence based on a solid and consistent framework of observable
features. In § 2, we describe our initial conditions for the simulation as well as our
numerical set-up. We present our results in § 3 and our conclusions in § 4.

2. Simulation

We use the explicit Plasma Simulation Code (known as PSC) (Germaschewski et al.
2016) to simulate eight anisotropic counter-propagating Alfvén waves in an ion–electron
plasma. Since the theories of turbulence dissipation through reconnection in the solar
wind are intrinsically connected to anisotropy through the generation of thin structures
that form the precursors of current sheets, our initial waves are anisotropic. The anisotropy
of the initial fluctuations is set up according to the theory of critical balance by Sridhar
& Goldreich (1994) and Goldreich & Sridhar (1995), henceforth GS95. A detailed
explanation of the initial conditions is presented in Appendix A. The normalisation
parameters are the speed of light c, the vacuum permittivity ε0, the magnetic permeability
μ0, the Boltzmann constant kb, the elementary charge q, the ion mass mi, the initial
density of ions and electrons ni = ne, and the ion inertial length di = c/ωpi, where
ωpi = √

niq2/miε0 is the ion plasma frequency. We set βs,‖ = 1 and Ts,‖/Ts,⊥ = 1, where
βs,‖ = 2nsμ0kBTs,‖/B2

0, B0 is the background magnetic field, and the index s indicates
the plasma species. Here Ts,‖ and Ts,⊥ are the parallel and perpendicular temperatures,
respectively. The magnetic field is normalised to the value of the constant background
field B0 and the Alfvén speed ratio is VA/c = 0.1, where VA = B0/

√
μ0nimi is the ion

Alfvén speed. We use 100 particles per cell (100 ions and 100 electrons) and a mass ratio
of mi/me = 100 so that de = 0.1di, where me is the electron mass and de is the electron
inertial length. The simulation box size is Lx × Ly × Lz = 24di × 24di × 125di, and the
spatial resolution is �x = �y = �z = 0.06di. We use a time step of �t = 0.06/ωpi.
In our normalisation, the Debye length λD = di

√
βi/2VA/c defines the minimum spatial

distance that must be resolved in the simulation and λD = 0.07di. Although our numerical
parameters VA/c and mi/me are not identical to the corresponding parameters in the solar
wind, they allow us to perform simulations within the computational limitations. With
these parameters, the simulated electrons are mildly relativistic, which they are not in the
real solar wind. However, the effect of mildly relativistic electrons on the propagation and
damping of kinetic-scale normal modes, including KAWs, Alfvén/ion-cyclotron (known
as A/IC) waves and fast-magnetosonic/whistler (known as FM/W) waves, is negligible
(Verscharen et al. 2020) and not important for the evolution of the turbulent cascade,
regardless of the processes that carry the cascade to subproton scales.

3. Results

In this section, we discuss the time evolution (§ 3.1) and the spectral properties
(§ 3.2) of the turbulence in our simulation. We then define a new set of indicators of
reconnection based on two-dimensional (2-D) and 3-D reconnection models and study
a self-consistently formed reconnection region in detail (§ 3.3). We record and discuss the
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plasma properties that an artificial spacecraft observes in the spacecraft frame as it passes
through our simulation box (§ 3.4).

3.1. Time evolution and formation of current structures
We first identify a representative time tR for our subsequent analysis of the turbulence
properties. The root mean square (r.m.s.) of the current density Jrms is an indicator
commonly used to identify the time at which the system reaches a quasi-stationary state.
At this time, the generation of current sheets by waves is balanced by their decay so that
the growth of Jrms saturates, which marks the time of maximum turbulent activity in the
simulation (Franci et al. 2017). The r.m.s. of a quantity ψ is defined as

ψ rms =
√

〈ψ2〉 − 〈ψ〉2, (3.1)

where 〈· · · 〉 represents the spatial average over the whole simulation domain. Figure 1
shows the time evolution of the r.m.s. of the current density J (blue), the magnetic field B
(black) and the ion velocity vi (red) in our simulation. Since we start our simulation under
the assumption that the linear time τl is approximately equal to the nonlinear time τnl, we
estimate τnl ∼ τl ∼ 1/k‖VA ∼ Lz/2πVA ≈ 200/ωpi. This estimate for the nonlinear time τnl
is, therefore, related to the scale of the initial fluctuations and represents an upper limit. We
observe a peak in Jrms at t = 12/ωpi which is due to the self-consistent formation of current
structures as a response to the initial magnetic-field fluctuations. The variation in Brms and
Jrms during the initial phase, between t = 12/ωpi and t = 96/ωpi, suggests that the system
is still in a phase of self-adjustment. The formation of the plateau in Jrms at t ≈ τnl/2 ≈
100/ωpi indicates that the system has reached a quasi-stationary state. Therefore, we expect
the formation of current structures such as current sheets and current filaments by this
time. The vertical dashed line marks the time t = 120/ωpi at which Jrms begins to decrease
monotonically until the simulation ends. In this sense, the time t = 120/ωpi represents the
beginning of the decaying phase in our system. As the system evolves in time, current
and magnetic structures dissipate, and we expect an exchange of the energy stored in the
magnetic field with the kinetic energy of the particles. Based on these considerations, we
use the time tR = 120/ωpi to study the spectral properties of the turbulence in our system.

Figure 2 shows a 3-D rendering of the magnitude of the transverse magnetic field |Bxy| =√
B2

x + B2
y at two different time steps: t = 0 (panel (a)) and t = tR (panel (b)). Figure 2(a)

shows the anisotropic interference pattern of the linear superposition of Alfvén waves at
t = 0. Initially, there are no coherent eddies present because no nonlinear interaction has
taken place yet. However, the initial magnetic-field fluctuations are already anisotropic.
Figure 2(b) shows that at time t = tR, there is a clear presence of magnetic eddies with
varying cross-section diameters LD and elongations L‖, where L‖ represents the length of
these eddies along the local magnetic field. Even though we start with a superposition of
only eight waves, nonlinear interactions generate magnetic eddies of different shapes and
anisotropies. At this time, the magnetic-field structures consist of a combination of linear
fluctuations and magnetic eddies. To estimate the shape of the magnetic structures at t =
0 and t = tR, we calculate �B =

√
B2

x + B2
y + (Bz − B0)2 and use an intensity threshold

defined as �B > 〈�B〉 + 2�Brms. We define a magnetic structure as the combination of
those cells in our simulation that are connected as next neighbours and fulfil this threshold
condition. The exact value of the threshold is chosen to improve the performance of the
algorithm in the identification of these structures. After the identification of the structures,
we calculate their principal axes. We define LD =

√
L2

⊥1 + L2
⊥2, where L⊥1 and L⊥2 are the
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FIGURE 1. Time evolution of the r.m.s. of the current density J (blue), magnetic field B (black)
and ion velocity vi (red). The vertical dashed line marks the time tR = 120/ωpi at which Jrms

begins to decrease.

two orthogonal diameters in the plane perpendicular to the local magnetic field and L‖ is
the elongation of the structure along the local magnetic field.

Figure 3(a) shows the probability distribution function (PDF) of L‖, LD, and the aspect
ratio L‖/LD at t = 0 and figure 3(b) at t = tR. The mean value and standard deviation of
the distributions of L‖, LD, and L‖/LD at t = 0 are L‖ = (16.33 ± 8.32)di, LD = (1.55 ±
0.95)di, and (L‖/LD) = (11.01 ± 7.06)di. At t = tR, we find L‖ = (2.16 ± 5.08)di, LD =
(0.62 ± 0.72)di, and L‖/LD = (2.55 ± 1.94)di. According to this analysis, the nonlinear
interaction has formed magnetic structures with smaller elongations and cross-section
diameters continuously distributed between LD = 1di and 8di. The distribution of aspect
ratios is less uniform at t = tR than at t = 0. The number of magnetic structures with
nearly isotropic aspect ratios is greater at t = tR. To study the distribution of the large-scale
structures at t = tR, we further apply a filter to remove all regions with an equivalent
volume V � 1d3

i , where V is defined as the space filled by the sum of all contiguous cells
associated with a given magnetic structure. For all structures with V > d3

i , we find L‖ =
(14.97 ± 9.01)di, LD = (3.14 ± 2.25)di, and L‖/LD = (5.46 ± 2.48)di. The distribution
of the large-scale magnetic structures maintains an anisotropy consistent with our initial
conditions. Figure 3(c) shows the scaling between L‖ and LD for the magnetic structures at
t = 0. The linear fit to these structures, dashed line, reveals the scaling L‖ ∼ L0.66

D , which is
consistent with our initial anisotropy, i.e. L‖ ∼ L2/3

D . Figure 3(d) shows the scaling between
L‖ and LD for the magnetic structures at t = tR. The orange dots represent structures
satisfying V > d3

i while the blue dots show structures satisfying V � d3
i . The linear fit

to the former population, top black dashed line, reveals the scaling L‖ ∼ L0.7
D . In contrast,

the linear fit to the latter population, bottom red dashed line, shows an isotropic scaling,
L‖ ∼ LD. Around LD ∼ di, we find a transition and mixing between structures with both
scalings. This suggests that the large-scale structures tend to maintain the initial anisotropy
while the small-scale structures become more isotropic. This isotropic scaling at subproton
scales has also been observed in hybrid simulations (Franci et al. 2018; Arzamasskiy et al.
2019; Landi et al. 2019).
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(a)

(b)

FIGURE 2. Three-dimensional rendering of the transverse magnetic field magnitude |Bxy| =√
B2

x + B2
y at t = 0 (a) and t = tR (b). The colour bar ranges from the minimum magnitude

(black) to the maximum magnitude (yellow) throughout the simulation domain at t = tR. We use
the same colour bar in both panels for a direct comparison. The initial background magnetic
field is directed along the z-direction. At the initial time, the fluctuations are anisotropic
and elongated along the z-direction. At t = tR, small-scale magnetic eddies have formed and
interact nonlinearly with each other. The eddies present varying cross-section diameters LD and
lengths L‖.
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FIGURE 3. (a,b) Probability distribution functions (PDF) of elongations L‖ (top), cross-section
diameters LD (middle), and aspect ratios L‖/LD (bottom) of the magnetic structures at t = 0 (a)
and t = tR (b). (c) Scaling between L‖ and LD at t = 0. The black dashed line shows the linear fit.
(d) Scaling between L‖ and LD of the large-scale population (orange) and small-scale population
(blue) at t = tR. The top black dashed line shows the linear fit to the former while the bottom red
dashed line shows linear fit to the latter.

Figure 4 shows 3-D renderings of Bz and |J | at t = tR. Figure 4(a) shows Bz, from
the same vantage point as figure 2(b). Although the initial B0 is uniform and points
in the +z-direction, nonlinear interactions generate regions in which Bz is negative.
These regions are mostly localised in the centres of the small eddies in figure 2(b).
Figure 4(b) shows that the locations of the most intense current filaments coincide with
the centres of the magnetic eddies. Current filaments are intense quasi-cylindrical current
structures. Similar to the case of the magnetic structures, we apply the threshold |J| �
〈|J|〉 + 4(|J|)rms to determine the shape of the current filaments. The mean cross-section
diameter of these current filaments is L̂D = (1.94 ± 0.84)di. Their mean elongation
is L̂‖ = (12.32 ± 6.70)di, and their mean aspect ratio is L̂‖/L̂D = (6.84 ± 3.48). The
filaments are mostly elongated along the z-direction. Some filaments have undergone
bending and twisting due to the nonlinear interactions. The elongations of the current
filaments are distributed similarly to the elongations of the magnetic eddies (not shown
here) and vary in the range of scales from ∼4di to ∼30di. Panel (b) shows in addition
the formation of thin current-sheet-like structures at the edges of the eddies where
the perpendicular component of the magnetic field is nearly zero (see figure 2b). We
define current sheets as current structures in which Lcs � δcs and Δcs � δcs, where Lcs
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is the current-sheet length along the local magnetic field, Δcs is the current-sheet width
tangential to the magnetic eddies, and δcs is the current-sheet thickness normal to the edge
of the eddies. The formation of these current sheets is due to the turbulent motions that
squeeze the eddies together. In the supplementary material available at https://doi.org/10.
1017/S0022377821000404 we provide a movie that shows the time evolution of the volume
rendering of Jz in the zx-plane. We observe the tearing and breaking up of current sheets as
well as the onset of instabilities arising from the nonlinear interactions and of jets oblique
to the major axes of the current sheets as a result of the turbulent evolution. However, a
detailed study of these phenomena is beyond the scope of this work.

3.2. Evidence of turbulence
A broad power-law spectrum of the fluctuations indicates the presence of turbulence as
the energy cascades from large to small scales. To analyse the spectral properties of the
system, following Franci et al. (2018), we calculate the energy associated with the 3-D
Fourier modes ψ3D(k) of a quantity ψ as

ψ3D(k) = ψ̃(k)ψ̃∗(k), (3.2)

where k is the wavevector, ψ̃(k) is the 3-D spatial Fourier transform of ψ and ψ̃∗(k)
represents its complex conjugate. If ψ is a vector quantity, the 3-D Fourier transform is
taken over each component, and the product is defined as

ψ̃(k)ψ̃∗(k) =
∑

i

ψ̃i(k)ψ̃∗
i (k), (3.3)

where the index i represents the components x, y, and z. Since our system does not
include any anisotropy within the plane perpendicular to the background magnetic field
on average, we assume that the energy distribution in the turbulent fluctuations remains
axially symmetric on average. Thus, the wavevector can be expressed, without loss of
generality, as its perpendicular and parallel components (k⊥, k‖). We note that the local
(rather than the global) average magnetic field defines the cylindrical symmetry axis for
the turbulent fluctuations (Cho & Vishniac 2000). However, we use the global background
magnetic field as a proxy. This simplification is motivated by the strong alignment of the
eddies with the background magnetic field at this time in our simulation (see figures 2
and 4). Moreover, the definition of the local magnetic field is a matter of ongoing research
and debate (Podesta 2009; Chen et al. 2011; TenBarge et al. 2012; Oughton et al. 2015;
Gerick, Saur & von Papen 2017), and the development of an anisotropic energy cascade
is sufficient for the determination of reconnection events in the present study.1 Thus, we
calculate the perpendicular and parallel components of the wavevector as k⊥ =

√
k2

x + k2
y

and k‖ = kz, respectively, and assume that the fluctuations are statistically independent
of the azimuthal angle. We integrate ψ3D over concentric rings in k⊥-space. The energy
associated with the jth-ring is

ψ
j

2D(k⊥, k‖) =
∫ k j

⊥+dk⊥

k j
⊥

ψ3D(k⊥, k‖)2πkj′
⊥ dk′

⊥, (3.4)

where the thickness dk⊥ of these rings is taken as the magnitude of the smallest
perpendicular wavevector in our system dk⊥ = 2π/

√
2Lx. To visualise the energy cascade

1An analysis of the fluctuations with respect to the local magnetic field based on second-order structure functions
supports this assumption and is provided in Appendix B.
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(a)

(b)

FIGURE 4. Visualisations of the simulation domain at t = tR. (a) Three-dimensional rendering
of the magnetic-field component Bz. Blue represents the negative, red the positive and white
the zero values of Bz. The eddies’ centres present different values of Bz with either positive or
negative polarity. (b) Three-dimensional rendering of the magnitude of the current density |J |
from the same vantage point as panel (a). The colour represents in blue (red) the smallest (largest)
values of |J |. Filaments of intense current density are aligned with the eddies’ centres. Current
filaments and extended current-sheet-like structures are mainly elongated along the z-direction.
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(a) (b)

(c) (d)

FIGURE 5. Isocontours of log10 PB
2D of the fluctuating magnetic field as a function of k‖ and

k⊥ at different time steps. The dashed lines provide a reference for the scaling of k⊥ and k‖.
The horizontal (vertical) dashed line marks k⊥de = 1 (k‖di = 1). At t = 0, the spectrum shows
the modes of our initialisation and their Fourier harmonics. At t = 12/ωpi, the cascade in the
perpendicular direction (vertical axis) has proceeded beyond electron scales (k⊥di � 10). At
t = tR, although the perpendicular cascade has not proceeded significantly farther, the cascade
in the parallel direction (horizontal axis) has reached the kinetic range (k‖di ≈ 1) up to ion
scales but not to electron scales. At t = 240/ωpi, the distribution has not considerably changed
compared with t = tR.

in k-space as well as the level of anisotropy in the system, we compute the reduced 2-D
power spectral density Pψ2D(k⊥, k‖) as

Pψ2D(k⊥, k‖) =
∑

j

1
k⊥
ψ

j
2D(k⊥, k‖). (3.5)

Figure 5 shows the logarithm of the 2-D reduced power spectral density of the
magnetic-field fluctuations PB

2D normalised to max PB
2D in the k‖–k⊥ plane at t = 0 (a),

t = 12/ωpi (b), t = tR (c) and t = 240/ωpi (d). The horizontal dashed line marks k⊥de = 1
which corresponds to k⊥di = 10 owing to our mass ratio of mi/me = 100. The vertical
dashed line marks k‖di = 1. At t = 0, the energy is entirely stored in the initial modes.
At t = 12/ωpi, the isocontours show that the energy has already cascaded to k⊥de >
1 whereas the parallel cascade has not yet reached the kinetic range. At t = tR, the
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perpendicular cascade has not proceeded any farther but the parallel energy transport
reached k‖di > 1. At t = 240/ωpi, the energy distribution has not considerably changed
compared with the distribution at t = 120/ωpi. For comparison with analytical predictions,
we overplot the expected critical-balance scaling of k⊥ ∼ k3/2

‖ as a dashed line at small
k⊥. We note, however, that PB

2D exhibits a broad distribution in k-space around this
prediction. In order to explore the anisotropy of the cascade in more detail, we compute
the perpendicular one-dimensional (1-D) reduced power spectral density,

Pψ1D⊥(k⊥) =
∫ ∞

0
Pψ2D(k⊥, k‖) dk‖, (3.6)

and the parallel 1-D reduced power spectral density,

Pψ1D‖(k‖) =
∫ ∞

0
Pψ2D(k⊥, k‖) dk⊥, (3.7)

of multiple fluctuating quantities ψ . Figure 6(a) shows the perpendicular 1-D reduced
power spectral density of the magnetic-field fluctuations PB

1D⊥ (black line), of the ion
velocity fluctuations Pvi

1D⊥ (red line), and of the ion density fluctuations Pni
1D⊥ (blue

line) at t = tR. The vertical dashed lines mark k⊥di = 1, k⊥de = 1, and k⊥λD = 1. The
enhancement in Pvi

1D⊥ at k⊥di = 17 is an artefact created by Debye-length effects and the
finite spatial resolution of the system. The scale of the initial waves in the perpendicular
direction coincides with the transition point of the energy cascade from inertial to
kinetic scales, i.e. k⊥di = 1. Therefore, our simulations do not describe the cascade at
k⊥di � 1. During the first nonlinear time, the system develops a broadband spectrum of
perpendicular density fluctuations in the kinetic range. Furthermore, PB

1D⊥ and Pvi
1D⊥ exhibit

similar spectral indices in part of the kinetic range between k⊥di ∼ 3 and ∼6. Within the
same interval, Pni

1D⊥ follows a steeper spectrum. These features suggest the presence of both
Alfvénic and compressive fluctuations, consistent with the presence of KAWs. Also PB

1D⊥
in the interval k⊥di ∼ 1.8 to ∼7 follows a power-law scaling with a spectral slope of −3.
In the range between k⊥di ∼ 7 and ∼20, the slope is slightly steeper with a power index
of approximately −4.2 Although we calculate the energy spectrum of the magnetic-field
fluctuations using the global background magnetic field, these values are within the range
of slope variability measured in the solar wind (Chen et al. 2010a; Bruno, Trenchi &
Telloni 2014) as well as in hybrid simulations (Franci et al. 2018; González et al. 2019).

Figure 6(b) shows the parallel 1-D reduced power spectral density of the magnetic-field
fluctuations PB

1D‖ (black line), ion velocity fluctuations Pvi
1D‖ (red line), and ion density

fluctuations Pni
1D‖ (blue line) at t = tR. The vertical dashed lines mark k‖di = 1, k‖de = 1,

and k‖λD = 1. At k‖di � 1, PB
1D‖ and Pvi

1D‖ follow a similar trend as expected for Alfvénic
turbulence. The spectral slope for PB

1D‖ is close to −2 between k‖di ∼ 0.1 and ∼0.3 which
is in agreement with the magnetic-field power spectrum k−2

‖ observed in the solar wind
(Bavassano & Bruno 1989; Grappin, Velli & Mangeney 1991; Wicks et al. 2010, 2011;
Chen et al. 2011). At smaller parallel scales, the spectrum steepens to −2.5 between k‖di ∼
0.4 and ∼2 and farther towards −4 between k‖di ∼ 2 and ∼4. Both the perpendicular
and parallel spectral indices have values of -4. The equality of these exponents has been
observed in 3-D hybrid PIC simulations and has been suggested to be a consequence of the

2We note that we observe a change in slope within a single decade in k⊥. The interpretation of a change in slope
over such a small range of scales must be interpreted with caution. Although it indicates a steepening in PB

1D⊥ towards
increasing k⊥, the scale separation is insufficient to apply Kolmogorov-like scaling arguments to these spectral slopes.
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(a) (b)

FIGURE 6. (a) Perpendicular and (b) parallel reduced 1-D power spectral densities PB
1D‖,⊥

(black), Pvi
1D‖,⊥ (red), and Pni

1D‖,⊥ (blue) at t = tR. The vertical dashed lines indicate k‖,⊥di = 1,
k‖,⊥de = 1, and k‖,⊥λD = 1.

anisotropy being frozen at subproton scales (Franci et al. 2018; Arzamasskiy et al. 2019;
Cerri, Groselj & Franci 2019; Landi et al. 2019). Although we initialise the system with
non-compressive waves, the simulation swiftly develops a cascade of density fluctuations
which suggests that compressive modes form self-consistently in the energy cascade. The
development of compressive fluctuations has been suggested to depend on the plasma
parameters rather than the initial conditions (Cerri et al. 2017a). The level of compressive
fluctuations in our simulation is greater than observed in the solar wind (Chen 2016),
but the reasons for the creation of such strong compressive fluctuations is unknown. At
k‖di ≈ 1.4, the slope of Pvi

1D‖ separates from the slope of PB
1D‖ and approaches the slope of

Pni
1D‖ . The flattening of Pni

1D‖ at k‖di ≈ 4 is due to finite particle noise.

3.3. Reconnection sites
In this section, we confirm that magnetic reconnection occurs in our simulation domain.
Methods to find reconnection sites in 2-D simulations are based on the identification of
magnetic islands and their closest x-point within a current sheet (Wan et al. 2014a; Papini
et al. 2019a). However, the interaction of magnetic structures such as flux tubes, which
are the 3-D equivalent of 2-D magnetic islands, is more complex than in the 2-D case,
and magnetic reconnection does not happen at a single point but in an extended region
(Daughton et al. 2011; Liu et al. 2013; Daughton et al. 2014). In 2-D and 3-D theories
of reconnection, strong current sheets are often associated with reconnection events as
the key locations of energy dissipation. However, there are events in which the x-points
are not placed exactly within the current sheet (Priest & Démoulin 1995). The presence
of a strong guide magnetic field and asymmetries of the reconnection event can shift
the position of the x-point and even preclude the reconnection event (Eastwood et al.
2010, 2013). Moreover, proton temperature anisotropies in reconnection events can trigger
kinetic instabilities, which then have a stabilising effect on the current sheet (Matteini et al.
2013).

In our turbulent simulation set-up, we expect that once the reconnection events have
occurred, most of them exhibit local asymmetries due to the turbulent nature of the
domain. Moreover, the background magnetic field acts as a guide field in our reconnecting
flux ropes. Therefore, in order to capture all reconnection events in such a complex and
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asymmetric field geometry, we require a new method to determine reconnection sites in our
3-D simulations. Strong gradients in at least one component of the magnetic field as well
as magnetic null points are common features of both 2-D and 3-D reconnection events.
Strong gradients directly relate to the presence of current sheets according to Ampère’s
law. The presence of magnetic null points is not a requirement for reconnection though.
In 2-D reconnection, for instance, the presence of a guide field removes this requirement
(Hesse, Kuznetsova & Birn 2004). 3-D reconnection, on the other hand, can take place
in collapsing structures that form current sheets related to quasi-separator lines, which
do not require magnetic null points (Pritchett & Coroniti 2004; Pontin 2011). Exhaust
regions in which particles are accelerated to velocities near the Alfvén speed are another
common feature. Magnetic reconnection not only accelerates particles but also increases
their thermal energy. Hence, an enhancement in the population of heated particles is a
further indicator of reconnection as long as it occurs near a region in which accelerated
particles and magnetic field gradients are present.

During magnetic reconnection, the electric field is responsible for the energy exchange
between particles and fields in the current sheet. The associated energy exchange is
quantified by J · E (Somov & Titov 1985; Ni et al. 2016). We expect to find coherent
regions in the simulation domain in which J · E is non-zero. According to 3-D steady-state
theories of magnetic reconnection (Hesse & Schindler 1988; Priest, Hornig & Pontin 2003;
Pontin 2011), when a magnetic field line enters a diffusion region, the integral of the
parallel electric field (E‖ = E · B/|B|) along the magnetic field line within the diffusion
region must be different from zero. Since a non-zero E‖ can indicate the presence of
non-vanishing diffusive terms in Ohm’s law, we use the presence of non-zero E‖ as a
possible indicator for a diffusion region located within a finite volume. Although E‖ is
not a good indicator in the absence of a guide magnetic field, we expect to find coherent
regions in the simulation domain with non-zero E‖.

In summary, we identify the following indicators that we consider essential for the
presence of reconnection in a region of our simulation domain. We adopt a clustering
detection method (Uritsky et al. 2010) based on the mean value of each quantity ψ , its
r.m.s. value ψ rms, and a threshold value Nth. Thus, we search the simulation domain for
regions in which ψ � 〈ψ〉 + Nth(ψ)

rms. Our indicators for magnetic reconnection are the
following.

C1 Current-density structures, |J | � 〈|J |〉 + Nth(|J |)rms.3
C2 Fast ions and electrons, |vi,e| � 〈|vi,e|〉 + Nth(|vi,e|)rms.
C3 Heated particles, Ti,e � 〈Ti,e〉 + Nth(Ti,e)

rms.
C4 Energy transfer between fields and particles, |J · E − 〈|J · E|〉| � Nth(|J · E|)rms.
C5 Non-zero parallel electric fields, |E‖ − 〈|E‖|〉| � Nth(|E‖|)rms.

To find the number of events satisfying these conditions, we use the first-neighbour
volumetric method described in § 3.1. We apply the algorithm to identify clusters of
contiguous cells fulfilling each condition separately as well as combinations of them.
Afterwards we apply a filter to remove all regions with an equivalent volume V � 1d3

i ,
where V is defined as the sum of the volumes of all contiguous cells associated with
the cluster. This is motivated by the fact that we are mostly interested in events in which
both ions and electrons experience reconnection. Therefore, we expect to find coherent
regions with a size of at least di. We analyse two values for the threshold: Nth = 3 and
Nth = 4. We present our results in table 1, where C2i and C2e refer to the separate

3We note that, given the ambiguity in the definition of current sheets when studying observational data, the indicator
C1 can be defined as ∇ × B instead of |J |.
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Nth C1 C2e C2i C3e C3i C4+ C4− C5+ C5−

3 149 144 77 92 82 68 77 0 0
4 97 92 29 50 39 23 17 0 0

Nth C1 and C2i,e C1 and C3i,e C1 to C3i,e C1 to C4− C1 to C4+

3 34 55 24 3 3
4 9 27 6 6∗ 6∗

TABLE 1. Number of events in our simulation domain at time t = tR fulfilling each condition.

application of criterion C2 to ions and to electrons, respectively. The same definitions
apply to C3. Next, C4+ and C4− refer to the application of condition C4 separated by
cases in which J · E > 0 (+) and J · E < 0 (−). The same definitions apply to C5. As
expected, a larger number of locations fulfil these conditions if the threshold is lower.
Moreover, all events detected with Nth = 4 are also detected when using Nth = 3. There
are no events that fulfil our condition C5. The reason for this result is that, although local
regions fulfil C5, the volume of contiguous cells fulfilling C5 is never greater than 1d3

i . We
attribute this effect to particle noise, which has a strong effect on parallel electric fields
in PIC simulations. If we reduce the threshold to Nth = 2, the algorithm is also unable to
define clusters of cells, because our method is based on intensity thresholds which perform
well for quantities with heavy tail distributions. The distribution of E‖ in our simulation
is spread with 〈|E‖|〉 = 2.0 × 10−3B0c and standard deviation (|E‖|)std = 1.5 × 10−3B0c.
The same argument applies to J · E. Despite detecting at least 17 regions fulfilling C4
with Nth = 4, there are no regions that satisfy all conditions C1 to C4 within a volume
greater than 1d3

i . However, if we reduce the equivalent volume threshold to 0.3d3
i , we find

six regions that fulfil conditions C1 to C4. We mark the corresponding numbers with an
asterisk in table 1.

In figure 7, we visualise our indicators for magnetic reconnection. We use a 2-D
projection on the zx-plane of a part of our simulation domain, 50di < Lz < 100di.
Figure 7(a) shows the isosurfaces of |J | = 〈|J |〉 + 3(|J |)rms (indicator C1) colour-coded
in light blue. The selected structures mainly correspond to current filaments. Figure 7(b)
shows regions in which |vi| = 〈vi〉 + 3(vi)

rms (green) and |ve| = 〈ve〉 + 3(ve)
rms (purple),

our indicator C2. The locations of fast electrons according to C2 coincide with the
locations of large currents according to C1, since the electrons are the main carriers
of the electric current. This electron behaviour is consistent with observations in space
plasma and reproduced in simulations (Phan et al. 2018). We identify five structures in
which accelerated ions coincide with our condition C1. Figure 7(c) shows isosurfaces of
Ti = 〈Ti〉 + 3(Ti)

rms (gold) and Te = 〈Te〉 + 3(Te)
rms (pink), according to our indicator C3.

Although the electric current is mostly carried by electrons, we find current structures
that are not associated with high-temperature electrons and vice versa. The structures
associated with heated electrons have mostly filamentary shapes. Figure 7(d) shows the
application of our indicator C4. The regions in which J · E = 〈J · E〉 ± 3(J · E)rms is
positive (negative) are colour-coded in red (blue). There are large and diffuse clusters of
positive and negative J · E between z = 55di and z = 85di. We also locate filamentary
structures of positive J · E which partially coincide with the regions fulfilling C3.
Figure 7(e) shows our indicator C5. The regions in which E‖ = 〈|E‖|〉 ± 2(|E‖|)rms is
positive (negative) are colour-coded in orange (blue). The effect of particle noise on
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 7. Reconnection indicators projected onto a 2-D cut in the zx-plane at y = 21di. (a)
Indicator C1: isosurfaces of |J | = 〈|J |〉 + 3(|J |)rms (light blue). (b) Indicator C2: isosurfaces
of |vi,e| = 〈vi,e〉 + 3(vi,e)

rms for ions (green) and for electrons (purple). (c) Indicator C3:
isosurfaces of Ti,e = 〈Ti,e〉 + 3(Ti,e)

rms for ions (gold) and for electrons (pink). (d) Indicator C4:
isosurfaces of J · E = 〈J · E〉 ± 3(J · E)rms for positive J · E (red) and negative J · E (blue).
(e) Indicator C5: isosurfaces of E‖ = 〈|E‖|〉 ± 2(|E‖|)rms for positive E‖ (orange) and negative
E‖ (blue). Panel ( f ) shows, on top of the isosurfaces related to indicators C1 to C4, magnetic
field lines colour-coded with |B|. The magnetic field lines suggest the reconnection of a twisted
flux rope with an adjacent flux rope. The white sphere of radius 1di at (z, x) = (77, 13.5)di in
panel ( f ) is a reference point that marks the position of a reconnection site. In panel ( f ), we also
indicate the regions R1 and R2 defined in the text. We provide a movie of the evolution of the
magnetic field lines in the supplementary material.

the electric field leads to difficulties in the determination of the associated clusters.
Figure 7( f ) shows the combination of our indicators C1 to C4. We define two regions,
R1 and R2, as the regions in which our indicators C1 to C4 are fulfilled. According to our
assumptions, magnetic reconnection is taking place in the vicinity of these regions.

To visualise the change of magnetic connectivity, we trace magnetic field lines in our
simulation domain. The region of most intense |B| is collocated with R1. The magnetic
field lines suggest the reconnection of a twisted flux rope with an adjacent flux rope.
The white sphere of radius 1di at (z, x) = (77, 13.5)di is a reference region that marks
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the position at which the magnetic field lines associated with the flux ropes exchange
connectivity. We provide a movie to support this claim in the supplementary material.
The change of connectivity between the flux ropes lasts for ∼ 96/ωpi ∼ 0.46τnl, which
is a long time compared with the time the turbulent cascade requires to develop. The
long existence of connectivity exchange and of the current structure can be associated
with the suppression of nonlinearities in the current sheet. In 2-D geometries, the rate of
magnetic-flux change between two magnetic islands, the so-called reconnection rate, is
determined by the electric field at the x-point (Smith et al. 2004; Servidio et al. 2011). It
can also be computed as the difference in the out-of-plane component of the magnetic
vector potential between the x-point and the o-point (Franci et al. 2017; Papini et al.
2019a). In three dimensions, the reconnection rate can be computed integrating E‖ along
the magnetic field lines crossing the diffusion region (Schindler, Hesse & Birn 1988;
Pontin 2011). However, the complex structure of the field lines makes the application of
this method to our type of simulations unclear (Liu et al. 2013; Daughton et al. 2014). An
extension of 2-D methods that avoid the use of the electric field (Franci et al. 2017; Papini
et al. 2019a) to the 3-D case requires the calculation of the vector potential which (i) is
elaborate in 3-D PIC simulations of the type used in this study and (ii) impractical in the
comparison with spacecraft data.

As the flux rope twists, it bends towards the region of changing magnetic connectivity,
henceforth we refer to this region as the ‘x-region’. During the flux-rope bending, plasma
ions are accelerated towards the x-region. To illustrate this behaviour, we visualise the
streamlines of the ion and electron bulk velocities that leave the reconnection region.
Figure 8(a) shows a view over an xy-plane cut of Jz. Grey colour represents negative
values, red colour represents positive values, and white indicates a value of zero for Jz.
The displayed streamlines of the ion bulk velocity emerge from the centre of the x-region.
The streamlines are colour-coded with vix. The dark-blue segment near the dark-grey
region indicates that the ions primarily move towards the reconnection site in the negative
x-direction. As the ions approach the x-region, their speed decreases and their trajectories
are deflected into the y-direction. The displayed streamlines maintain a coherent shape
of width ∼2di along the z-direction. Figure 8(c) shows the same ion velocity streamlines
but over an zx-plane cut of Jz. The region where ions have large |vix| coincides with the
core of the twisted flux rope in Figure 8( f ) (black region) which suggests that they are
accelerated by the bending of the flux rope. Considering that the ion velocity streamlines
are indicative of the shape of the exhaust region associated with the x-region, the branch of
the stream lines on the right-hand side in figure 8(a) represents the reconnection exhaust
of the event. It is 3-D and asymmetric. Likewise, the electron motion associated with the
x-region is asymmetric. However, it differs considerably from the ion motion. Figure 8(b)
shows the electron velocity streamlines colour-coded with vez in the same view as in
figure 8(a). These streamlines remain contained within a smaller region compared with
the ion streamlines. They are mainly aligned with the z-direction. On the left-hand side
of the reconnection site in figure 8(d), the electron streamlines are directed along the Jz
structure as expected since the current is mostly (but not entirely) carried by electrons. In
contrast, on the right-hand side of the reconnection site, the electrons move in directions
towards and away from the reconnection site as is shown by the arrows. Considering the
electron velocity streamlines, the electron exhaust is also asymmetric and 3-D but smaller
than the ion exhaust. The diffusion region associated with the x-region of the reconnection
event is likely to be the large structure of positive Jz crossing the x-region in the z-direction
in figure 8(c). The shape of the electron streamlines suggests a diffusion region that
resembles the distorted diffusion region observed in 3-D Hall magnetic reconnection
(Drake, Shay & Swisdak 2008; Yamada et al. 2014).
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(a) (b)

(c) (d)

FIGURE 8. Streamlines of the ion and electron bulk velocities over 2-D cuts of the simulation
plane showing Jz. (a,b) The view over the xy-plane in which the x-direction points downward and
the y-direction points towards the right-hand side. (c,d) The view over the zx-plane in which the
x-direction points downward and the z-direction points towards the left-hand side. Panels (a,c)
show ion bulk velocity streamlines colour-coded with vix. Panels (b,d) show electron velocity
streamlines colour-coded with vez. The arrows indicate the direction of the ion bulk motion and
of the electron bulk motion.

In summary, our set of indicators suggests the presence of multiple reconnection sites in
our simulation domain. Our automated identification based on our indicators allows for a
detailed inspection of the magnetic-field connectivity of each event. Our method searches
for clusters of cells fulfilling all conditions. This approach misses events in which ions and
electrons are accelerated and heated in different locations near the reconnection site. If the
event is large enough to affect both ions and electrons, we expect streams of accelerated
particles in both species related to the reconnection event. Given the variability in the
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(a) (b)

FIGURE 9. Trajectories of an artificial spacecraft crossing our simulation domain. (a) Trajectory
T1. The spacecraft moves from the top-left corner to the bottom-right corner. This trajectory
crosses a region that we identify as a reconnection exhaust. (b) Trajectories T2 and T3 are parallel
toeach other. The former crosses through the reconnection site while the latter passes out of the
reconnection site.

shape and size of these particle outflows, the volume threshold must be adjusted depending
on the problem at hand in different simulation set-ups.

3.4. One-dimensional trajectories across the reconnection region
In-situ measurements of spacecraft typically record the plasma and magnetic-field
fluctuations along the spacecraft trajectory. In order to compare such measurements with
our 3-D simulations, we ‘fly’ an artificial spacecraft through our simulation box along
three trajectories, T1, T2, and T3, and record the plasma and magnetic-field fluctuations
along these trajectories. According to Taylor’s hypothesis, we assume that the plasma
structures are static as they are convected over the spacecraft with the average solar-wind
bulk speed. The trajectories are taken within the xy-plane and are shown as the white lines
in figure 9. The trajectory T1, shown in figure 9(a), passes close to the reconnection site
when it crosses the white square although it does not carry the spacecraft right through
the centre of the x-region.

Figure 10(a) shows the plasma and magnetic-field fluctuations for our trajectory T1.
We normalise these quantities to their initial values at the beginning of the simulation.
Thus, the ion and electron temperatures are normalised to T0. The magnetic field and its
components are normalised to the initial background magnetic field B0. The ion density
is normalised to the initial density n0. The ion and electron velocities are normalised
to the initial Alfvén speed VA0. The shaded area in figure 10(a) represents the region
delimited by the white square in figure 9(a). The ion and electron temperatures are
positively correlated with each other as well as with the density across this trajectory. The
magnetic-field and ion-density fluctuations exhibit mainly anticorrelation with each other
across the trajectory. This anticorrelation directly reflects the presence of slow-mode-like
compressive fluctuations. The electron speed shows local peaks at r ∼ 11di and r ∼
15di with no associated peaks in ion speed. This behaviour suggests the presence of
local mechanisms that accelerate electrons only. This behaviour resembles electron-only
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 10. (a–c) Plasma and magnetic-field fluctuations associated with our trajectory T1.
(d–f ) Plasma and magnetic-field fluctuations associated with our trajectory T2. Panels (a,d) show
the particle temperature Ti,e, magnetic field B, ion density ni, and particle speed vi,e normalised
as described in the text. The shaded areas mark the data recorded within the white squares in
panel (a,b) of figure 9, respectively. Panels (b,e) show the components of the magnetic field
(black) and ion velocity (red) for T1 and T2, respectively. Panels (c, f ) show the derivative
correlations ρviB and ρ|v||B| for trajectory T1 and for trajectories T2 and T3, respectively.

reconnection events (Phan et al. 2018; Stawarz et al. 2019; Sharma Pyakurel et al. 2019;
Mallet 2020). However, our indicators show that both ions and electrons interact with this
reconnection region.

When the artificial spacecraft trajectory T1 enters the region marked with the white
square in figure 9(a), it encounters a coherent structure which exhibits an enhancement
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in the ion and electron temperatures by a factor of approximately 1.5 to 2 compared with
the background level at r ∼ 20di. At this position, the spacecraft observes a decrease in
the magnetic field associated with an increase in the particle speed as well as an increase
in the particle density. These are characteristic features associated with slow-mode-like
fluctuations and shocks. Since in the trajectories shown in this section, the particle bulk
speed is always less than the local magnetosonic speed, these events are not slow-mode
shocks but rather fluctuations with a slow-mode-like polarisation. At r ∼ 22di, there is
a slight enhancement in the electron speed which corresponds to the spike within the
two large eddies seen in the white square in figure 10(a). At r ∼ 23di, the spacecraft
observes another slow-mode-polarised region which corresponds to the large structure
in the middle of the square. According to the Petschek (1964) model of magnetic
reconnection, the exhaust of particles is limited by a pair of slow-mode shocks. However,
in recent studies of reconnection in the solar wind (Phan et al. 2006, 2009; Gosling 2012),
the boundaries of reconnection exhausts often lack these features. Instead, exhausts are
typically characterised through a rotation in the magnetic field along with a change in the
sign of the correlation between the particle speed and the magnetic field (Gosling 2012;
Phan et al. 2020), consistent with our simulation results. Figure 10(b) shows from top to
bottom Bx, By, Bz, and |B| in black as well as vix, viy, viz, and |vi| in red for trajectory T1.
In the shaded area (i.e., near the reconnection site), the velocity component vix changes
its sign between r ∼ 19di and r ∼ 25di while B undergoes a partial rotation. During the
same interval, viy shows little variation and Biy reverses its sign. Since the background
magnetic field dominates Bz, the variations in the magnetic components Bx and By are more
pronounced than the variations in Bz. As seen in the profile of viz, although ions are mostly
stationary in the direction parallel to the background magnetic field, they are accelerated in
the parallel direction near the slow-mode-like fluctuations. We note that the velocity spikes
and magnetic-field drop-offs as seen in the z-component of B to a certain degree resemble
the properties of the magnetic-field switchbacks observed in the solar wind (Kasper et al.
2019; McManus et al. 2020). Moreover, the blue regions in figure 4(a) suggest the presence
of magnetic reversals within the simulation domain. A comparison and further study is
required to establish a potential correspondence between our simulation and observational
data.

To visualise the correlation between the magnetic-field and velocity components we
define the derivative correlation between the two variables vj and Bj as

ρvBj = �vj

�r
�Bj

�r
, (3.8)

where �r is a distance increment, �vj = vj(r +�r)− vj(r), and �Bj = Bj(r +�r)−
Bj(r). We use �r = 0.6di to reduce the effect of noise when calculating the derivative
while keeping the spatial step small to cover small-scale fluctuations. Figure 10(c)
shows from top to bottom ρvBx, ρvBy, ρvBx, and ρ|v||B| for trajectory T1, where ρ|v||B| is
defined accordingly with the magnitudes of v and B. The vix and Bx components exhibit
mostly positive correlation along the trajectory. However, there are two strong peaks
of anticorrelation within the shaded area. Likewise, the viy and By components show
more variability in the correlations from positive and negative derivative correlations
within the shaded area than outside the area. This is due to the transit of the artificial
spacecraft through the slow-mode-like fluctuations. In particular, around r = 23di, all
three components present a change from anticorrelation to positive correlation. The
presence of a pair of slow-mode-like fluctuations along with a magnetic-field rotation
suggests that this region is indeed an exhaust region similar to those reported in previous
observational studies in the solar wind (Gosling 2012).
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Trajectory T2 (the white line on the left in figure 9b) carries the spacecraft right through
the centre of the x-region. In figure 10(d), at r ∼ 5di and r ∼ 9di, the artificial spacecraft
records particle temperature minima associated with density cavities as well as local peaks
in the magnetic field. As the spacecraft moves towards the x-region, within the shaded
region, the particle temperature remains approximately constant. There is a local minimum
in the magnetic field which corresponds to the centre of the x-region at r = 14di. On either
side of the x-region, we find small enhancements in the electron speed. These peaks,
in addition to the electron streams in figure 8(d), suggest the presence of electron-only
streams in the vicinity of the x-region. The ion speed decreases as the spacecraft enters
the x-region and increases as the spacecraft leaves the x-region. After leaving this region,
the spacecraft encounters the highly twisted flux rope at r = 16di where it records an
enhancement in all bulk quantities and in the magnetic field. The pair formed by the
x-region and the closest twisted flux rope resembles the known pairs of x-points and
magnetic islands known from 2-D models of reconnection. At the end of the trajectory,
at r ∼ 23di, the spacecraft encounters a slow-mode-polarised structure which corresponds
to the bright structure in the right-bottom-corner of figure 9(b). Figure 10(e) shows the
components of the magnetic field and ion bulk velocity for trajectory T2. From r = 10di
to r = 16di, Bx changes polarity and, from r = 8di to r = 15di, By undergoes a partial
rotation. The change in the sign of viy at the point where the spacecraft enters the shaded
area and its value of approximately zero at the point where it leaves the shaded area in T2
shows a local stream of particles leaving the region along the y-direction. This corresponds
to the right-hand side branch of the ion velocity streamline in figure 8(a). At r = 13di, viz
presents a mild peak corresponding to a weak current sheet. Entering the shaded area and
up to r ∼ 19di, vix is negative along T2 consistent with the stream of ions described in
figure 8.

Trajectory T3 is parallel to trajectory T2, and the separation of these trajectories is
1.5di. Along trajectory T3, Bz and By as well as viz and viy follow approximately similar
behaviours (not shown here). However, the local variations are more pronounced along
T2 as this trajectory crosses through the centres of multiple structures. Figure 8( f ) shows
the derivative correlation of the magnetic field and velocity components for trajectories
T2 (black) and T3 (cyan). Trajectory T2 shows stronger positive and negative correlations
in all components due to the transit through the structures. For the x-component, the peak
of positive correlation corresponds to the transit through the flux rope which is associated
with particle acceleration.

4. Discussion and conclusions

We simulate plasma turbulence created by the collision of counter-propagating Alfvén
waves with a wavevector anisotropy consistent with the GS95 theory of critical balance
at the small-scale end of the inertial range. Our initial waves have wavenumbers near
the spectral breakpoint from the inertial to the kinetic range of turbulence. This choice
allows us to set up the system with Alfvén waves and let the system develop kinetic
and compressive fluctuations in the kinetic range self-consistently and with an anisotropy
reminiscent of the solar wind, with the aim of developing reconnection features consistent
with solar-wind turbulence. The use of a strong anisotropy in the initial waves allows
the system to undergo nonlinear interactions and to create flux ropes during the first
nonlinear time, which is in agreement with earlier simulation work (Grošelj et al. 2018).
Our initial anisotropic set-up reduces the simulation time that a fully 3-D PIC simulation of
turbulence without this imposed anisotropy would require in order to develop reconnection
as a product of anisotropic turbulence.
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The nonlinear interaction of the anisotropic waves self-consistently creates Alfvénic
turbulence and generates magnetic-field and current-density structures such as current
filaments and current sheets as part of the turbulent cascade (Howes & Nielson 2013;
Howes 2015a, 2016). The initial scaling between L‖ and LD, for the magnetic structures,
is L‖ ∼ L2/3

D . At t = tR, the magnetic structures satisfying V > d3
i maintain an anisotropy

consistent with the initial conditions and follow a L‖ ∼ L0.7
D scaling. Although theoretical

predictions including those based on intermittency (Boldyrev & Perez 2012; Boldyrev
& Loureiro 2019), kinetic simulations (Cerri, Servidio & Califano 2017b; Cerri et al.
2019), and observations in the solar wind (Wang et al. 2020) suggest the scaling L‖ ∼ L2/3

D
at subproton scales, our analysis of structures with V � d3

i is more consistent with an
isotropic scaling L‖ ∼ LD which has also been observed in hybrid simulations (Franci
et al. 2018; Arzamasskiy et al. 2019; Landi et al. 2019). The change of anisotropy over
time (figure 3) is also observed in the evolution of the 2-D reduced power spectral density
(figure 5). The anisotropy initially decreases due to the change in the mean value of the
distribution of cross-section diameters and of the elongations of the magnetic structures.

The spectral index of the corresponding perpendicular 1-D power spectrum of the
magnetic-field fluctuations in the kinetic range varies between −3 and −4. Meanwhile,
the spectral index of the parallel power spectrum of the magnetic-field fluctuations varies
from −2 in the interval 0.1 � k‖di � 0.3 to −4 at subproton scales. These results show that
our simulation develops an anisotropic turbulent cascade and the associated 3-D structures
predicted to contribute to reconnection as a dissipation mechanism for turbulence.

The critical-balance theory of Alfvénic turbulence has been tested using gyrokinetic
simulations (Howes et al. 2008a; TenBarge & Howes 2012) and 3-D PIC simulations
(Grošelj et al. 2018). The evolution and morphology of 3-D reconnection events, starting
from a Harris current-sheet configuration, have been studied at kinetic scales (Hesse et al.
2001; Pritchett & Coroniti 2001; Wiegelmann & Büchner 2001; Lapenta et al. 2006; Liu
et al. 2013; Vapirev et al. 2013; Muñoz & Büchner 2018; Lapenta et al. 2020), as has
been the effect of turbulence on the development of reconnection events (Daughton et al.
2014; Lapenta et al. 2015; Pucci et al. 2017; Papini et al. 2019b). However, little attention
has been given to the occurrence of small-scale reconnection as a product of the turbulent
cascade in a fully 3-D geometry. Our study contributes to the understanding, identification,
and geometry of these reconnection events.

We establish a set of indicators to find regions in which magnetic reconnection takes
place in 3-D PIC simulations consistent with magnetic reconnection theories. These
indicators are based on the presence of current-sheet structures (C1), fast particles (C2),
heated particles (C3), diffusion regions marked by energy transfer between fields and
particles (C4), and non-zero parallel electric fields (C5). Since our method is based
on thresholds for the bulk quantities, the selected regions correspond to high-intensity
structures. Our method uses fast ions as an indicator (C2). Thus, it does not identify
all reconnection events, especially not those related to electron-only reconnection. In a
follow-up study, it is worthwhile to investigate the role of the threshold level for the
identification of reconnection sites and the relaxation of ion-based conditions to enable
the identification of electron-only reconnection events. Our method is applicable as a first
approach in the exploration of reconnection events in large 3-D PIC simulations in which
the handling of the kinetic particle information is computationally expensive due to the
large number of particles.

We identify three regions that fulfil our set of indicators C1 to C4 for Nth = 3 and have
an equivalent volume larger than 1d3

i . We also illustrate the working of our method in
a subset of our simulation domain. We inspect the time evolution of the magnetic field
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lines and observe the change of connectivity between a highly twisted flux rope and a less
twisted flux rope. We find a good agreement between the geometry of the flux ropes formed
by turbulence in our simulation with the flux ropes formed by the turbulent disruption of
a Harris current-sheet (Daughton et al. 2011). We observe the occurrence of a complex
reconnection event in which the region of changing connectivity (x-region) has a volume
of ∼ 12.5d3

i . This event dissipates turbulent fluctuations in current structures of the order
of a few di, which are smaller than the smallest events recently observed in the solar wind
(Phan et al. 2020) and different from the events observed in space. These latter events are
mostly very large interface regions between plasmas (Phan et al. 2006; Gosling 2007).
The occurrence of electron-only reconnection (Phan et al. 2018; Stawarz et al. 2019) and
electron-scale turbulent fluctuations suggests that events as the one we describe take place
in the solar wind.

Although there is a good agreement between studies using the Harris configuration and
solar-wind observations (Mistry et al. 2016), our event is considerably more complex than
the idealised steady and non-turbulent Harris current-sheet configuration often invoked to
study magnetic reconnection. The shape of our reconnection region is asymmetric, and the
regions in which particle heating and acceleration occur are mostly associated with current
filaments rather than current sheets. This suggests that the twist of the flux ropes plays a
crucial role for the particle heating in our simulation. In addition, this finding supports
the notion that reconnection events occur in the solar wind through small-scale flux ropes
(Crooker et al. 1996; Moldwin et al. 2000).

We trace 1-D artificial-spacecraft trajectories across the simulation domain to study
the fluctuations in the quantities ni, vi,e, Ti,e, and B. These samplings may facilitate
direct comparisons between our simulations and spacecraft observations in the solar
wind. Our trajectories T1 and T3 pass near the identified reconnection region, and our
trajectory T2 crosses through the centre of the x-region. We observe the presence of
slow-mode-polarised fluctuations as anticorrelated fluctuations in ni and |B|, rotations in
the magnetic field, and changes in the sign of the correlation between the magnetic field
and the ion velocity consistent with reconnection exhausts observed in the solar wind
(Gosling 2012). Our artificial-spacecraft trajectory T2 (figure 10d) shows an enhancement
in all bulk quantities, which may be associated with a reconnecting flux rope. Moreover,
this trajectory suggests that the encounter of a magnetic minimum followed by an
enhancement in all bulk quantities may be associated with the encounter of an x-region
and a flux rope. Such a pair x-region–flux-rope corresponds to the traditional pair
x-point–o-point in 2-D models of reconnection. It would be worthwhile to compare our
simulated spacecraft trajectories with spacecraft observations of small-scale reconnection
events and reconnection exhausts in the solar wind. The instrumentation on-board Solar
Orbiter and Parker Solar Probe has the appropriate time resolution for such a comparison.

In our reconnection event, ions and electrons behave differently as shown in figure 8.
Both ions and electrons move towards and away from the x-region but in different
directions. Our trajectories in the vicinity of the reconnection event suggest that the
slow-mode-like features associated with the partial rotation in the magnetic field and the
change in the vi–B correlation are also present in these spontaneously created small-scale
events.

The finite number of particles per cell has an important effect on the determination of
coherent regions of strong E‖, our indicator C5. Therefore, C5 is not a good indicator when
the number of particles per cell is �100. Although 2-D studies of turbulence, magnetic
reconnection (Franci et al. 2020), and plasma instabilities (Hellinger & Štverák 2018) are
able to use considerably larger numbers of particles per cell (∼1000), our work requires
the third dimension in order to model the turbulence and the complex reconnection
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geometry more appropriately (Howes 2015b; Lazarian et al. 2020). Nonetheless, the
increasing computational power of high-performance-computing facilities will allow us
to perform increasingly more accurate 3-D PIC simulations and to test all of our indicators
over a wider range of parameters. Before these methods become computationally viable,
divergence-cleaning of the electric field (Jacobs & Hesthaven 2009) is a possible route to
reduce the effect of particle noise.

Our data set possibly includes further reconnection sites that can be studied in more
detail in the future. In this project, we use bulk quantities to study the reconnection events.
In our future work, it will be interesting to study the changes in the particle distribution
functions as a result of the identified small-scale reconnection events. Such a more detailed
study of the associated particle kinetics will allow us to understand the energy exchange
between fields and particles and the details of the energy dissipation through small-scale
reconnection events in the solar wind.

Supplementary material and movies

Supplementary material and movies are available at https://doi.org/10.1017/S002237
7821000404.
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Appendix A. Initial conditions of the simulation

We initialise our simulation with eight anisotropic low-frequency counter-propagating
Alfvén waves within a box of volume Lx × Ly × Lz. We take the background magnetic field
to be along the z-axis, B0 = B0ẑ, and set up our fluctuations with wavevectors following
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the theory of critical balance by GS95. According to GS95, turbulence is isotropic at the
large-scale end of the inertial range and develops an anisotropic cascade of energy with
respect to the local magnetic field. The anisotropic cascade of energy is associated with
a wavevector anisotropy k‖ ∝ (|k⊥|)γ , where k‖ and k⊥ are the wavevector components
in the directions parallel and perpendicular with respect to the local background magnetic
field. The index γ is a power index that is approximately constant in each wavevector range
of the turbulent power spectrum. For the inertial range, γ = 2/3. Since the fluctuations are
isotropic at the large-scale end of the inertial range, we express the relation between k⊥
and k‖ as

k‖di = C (k⊥di)
2/3 , (A 1)

where C is a constant which is chosen so that k‖ = k⊥ at the large-scale end of the inertial
range, which we set up as k⊥di = 10−4 consistent with observations (Wicks et al. 2010;
Chen et al. 2012). We define km,⊥ =

√
k2

m,x + k2
m,y, where the index m refers to the mode

of the wave. Since we use periodic boundary conditions in our simulation, we adjust the
wavelengths of our initial modes λm,i so that Li is an integer multiple of λm,i. Then, the
wavevector components are

km,x = m
2π

Lx
km,y = m

2π

Ly
and km,z = m

2π

Lz
. (A 2a–c)

Since we use only m = 1, we drop the index m for simplicity. Each wave satisfies the
Alfvénic polarisation relation

δus,α

VA0
= (−1)α

δBα

B0
, (A 3)

where VA0 = B0/
√
μ0nimi is the Alfvén speed, ni is the ion density and mi is the ion mass.

Here us,α is the bulk velocity of the species s. The index α = 1, . . . , 8 refers to each wave.
The four waves with odd α travel along the z-direction and the other four in the opposite
direction. The amplitude Aα of the perturbation δBα of each wave is perpendicular to both
the background magnetic field B0 and to the wave’s wavevector kα. Thus, we write the
components of the wavevector as

kα,x = kα,⊥ cosφα (A 4)

and

kα,y = kα,⊥ sinφα, (A 5)

where φα is the azimuthal angle of kα,⊥. The waves propagating in the +z−direction
have φα = 0,π,π/4 and 5π/4, whereas the waves propagating in the −z-direction
have φα = π/2, 3π/2, 3π/4 and 7π/4. This distribution of azimuthal angles produces a
quasi-gyrotropic distribution of fluctuations in the plane perpendicular to the background
magnetic field while keeping the initial magnetic field divergence-free. The components
of the fluctuating fields for each wave are given by

δBα,x = −|Aα| cos(kα,xx + kα,yy + (−1)α+1kα,zz + ψα) sinφα (A 6)
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and

δBα,y = |Aα| cos(kα,xx + kα,yy + (−1)α+1kα,zz + ψα) cosφα, (A 7)

where ψα represents a random phase for each α. The amplitude |Aα|, according to
Chandran et al. (2010), follows

|Aα| = CB0
(|kα,⊥|di

)−1/3
. (A 8)

Thus, the components of the total initial magnetic variations are

δBT,x = D
8∑
α=1

δBα,x and δBT,y = D
8∑
α=1

δBα,y, (A 9a,b)

where D is a normalisation constant defined as

D = B0√∑8
α=1 |Aα|2

, (A 10)

which ensures that the total amplitude of all modes |δBT/B0| ∼ 1 at the beginning of the
simulation. We assume that the nonlinear time is comparable to the linear time at the initial
time, thus we initialise the simulation with strong turbulence. The nonlinearity parameter
χ = (δBT/B0)/(k‖/k⊥) ∼ LZ/Lx ∼ 5.2 at the initial time which quantitatively states that
the initialised turbulence is strong. The components of the velocity fluctuations δuT are
calculated self-consistently according to (A 3).

The wavelengths of the initial waves at k⊥di = 1, are λ⊥ = 2πdi and λ‖ = 2π/10−4/3di.
Therefore, the size of the box required to simulate our initial (m = 1) anisotropic Alfvén
waves is Lz = λ‖ and Lx = Ly = √

2λ⊥. However, we use Lz = 125di, Lx = Ly = 24di,
λ‖ = Lz, and λ⊥ = √

2Lx/4. This choice keeps the ratio λ⊥/λ‖ ≈ 10−4/3 while allowing
a wider spatial evolution in the perpendicular direction.

The theoretical critical-balance scaling k‖ ∼ k2/3
⊥ applies to Alfvén waves in the inertial

range. The initial fluctuations in our simulation have k⊥di ∼ 1 which is at the transition
scale from the inertial to the dissipation range. Natural fluctuations at this scale have an
anisotropy consistent with the critical-balance scaling based on the size of the inertial
range (Wicks et al. 2010). The scale dependence of the anisotropy in the inertial range also
varies when considering dynamic alignment and intermittency (Cho & Lazarian 2004;
Boldyrev et al. 2011; Chandran, Schekochihin & Mallet 2015; Chen 2016). We assume
a critical-balance scaling over an inertial range of four decades to capture the relative
amplitude of the anisotropy without simulating the true evolution of the inertial-range
turbulence. Therefore, we initialise with fluctuations at k⊥di ∼ 1 that have such an
anisotropy. The wavevector anisotropy in the dissipation range is less well understood and,
at kinetic scales, it is not clear whether the turbulence is mostly carried by KAWs, whistler
waves, or a combination of compressive and non-compressive modes (Schekochihin et al.
2009; Chen et al. 2010b; Boldyrev & Perez 2012). Moreover, pressured-balanced structures
also contribute to the turbulent cascade (Verscharen et al. 2012; Narita & Marsch 2015;
Verscharen, Chen & Wicks 2017). Nevertheless, our anisotropic initialisation is supported
by solar-wind measurements (Horbury, Forman & Oughton 2008; Alexandrova et al. 2009;
Wicks et al. 2010, 2011) and allows a kinetic cascade to develop self-consistently as the
simulation evolves.
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(a) (b)

(c) (d)

FIGURE 11. Second-order structure function of the magnetic fluctuation b in the r⊥, r‖-plane.
Here log2 F2b at t = 0 (a), t = 12/ωpi (b), t = tR (c) and t = 240/ωpi (d). At t = 0, while the
magnetic energy is distributed across multiple perpendicular scales, it is mainly stored at large
parallel scales. At t = tR, the magnetic energy is distributed across multiple parallel scales.

Appendix B. Second-order structure function

Following Cho & Vishniac (2000), we define the local magnetic field between two
points r1 and r2 as

Bl = B(r2)+ B(r1)

2
. (B 1)

We define the coordinate parallel to the local magnetic field Bl as r‖ = ẑ · (r2 − r1)
and the coordinate perpendicular as r⊥ = |ẑ × (r2 − r1)|, where ẑ = Bl/|Bl|. With these
definitions, we calculate the second-order structure function of the magnetic fluctuations
b(r1) = Bl − B(r1) as

Fb2(r⊥, r‖) = 〈|b(r2)− b(r1)|2〉, (B 2)

where 〈 〉 represents the average over the spatial domain. In order to discretise the
r⊥r‖-plane, we calculate the values of r⊥, r‖, and Fb2 for each pair of points r1, r2. Then,
for each pixel, we calculate the mean value as the sum of all Fb2 divided by the number
of combinations (r1,r2) in each pixel. We apply a filter to remove the pixels with less than√

N combinations, where N is the total number of combinations in the r⊥, r‖ space.
Figure 11 shows log(Fb2) in the r⊥, r‖-plane for the time steps t = 0, t = 12/ωpi, t =

tR = 120/ωpi and t = 240/ωpi. At t = 12/ωpi, the structure function indicates a
perpendicular cascade of the magnetic energy. On the other hand, the structure function
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does not give evidence of a strong parallel cascade and is, instead, still consistent with
our initial conditions in terms of the parallel extent of the magnetic-field fluctuations.
At t = tR = 120/ωpi, the green horizontal structure suggests that the magnetic energy has
been redistributed and cascaded to smaller parallel scales. The analysis of the structure
functions is consistent with our analysis of the Fourier spectra in figure 5.
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