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Multi-attribute utility models as cognitive search engines
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Abstract

In optimal stopping problems, decision makers are assumed to search randomly to learn the utility of alternatives;
in contrast, in one-shot multi-attribute utility optimization, decision makers are assumed to have perfect knowledge of
utilities. We point out that these two contexts represent the boundaries of a continuum, of which the middle remains
uncharted: How should people search intelligently when they possess imperfect information about the alternatives? We
assume that decision makers first estimate the utility of each available alternative and then search the alternatives in order of
their estimated utility until expected benefits are outweighed by search costs. We considered three well-known models for
estimating utility: (i) a linear multi-attribute model, (ii) equal weighting of attributes, and (iii) a single-attribute heuristic.
We used 12 real-world decision problems, ranging from consumer choice to industrial experimentation, to measure the
performance of the three models. The full model (i) performed best on average but its simplifications (ii and iii) also had
regions of superior performance. We explain the results by analyzing the impact of the models’ utility order and estimation
error.
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1 Introduction

Do the following thought experiment: You are the human
resources manager of a company and you are assigned the
task of hiring a new employee. After advertising the po-
sition, you receive several dozen applications from candi-
dates listing their skills and credentials (e.g., grade point
average, work experience, programming skills). You can
determine each candidate’s potential only after inviting
him or her for an interview. Let us assume that you can
interview candidates sequentially and that you can decide
to stop interviewing and hire a candidate after each inter-
view. Crucially, making the effort to interview another
candidate is costly. What is the best way to organize the
interview process? First, you need to decide the order in
which you will be inviting candidates. Then, after each in-
terview you need to decide whether to make an offer to one
of the interviewed candidates, thus stopping your search.
The first problem is an ordering problem and the second a
stopping problem.

Clearly, if you could perfectly estimate the potential
of the candidates on the basis of their credentials you
could directly choose the best one by using decision an-
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alytic methods (e.g., Keeney & Raiffa, 1993). On the
other hand, if the credentials were not at all informa-
tive, you would have to invite people at random, and
your problem would reduce to an optimal stopping prob-
lem. Such models have been developed formally in statis-
tics (DeGroot, 1970) and economics (Stigler, 1961; Lipp-
man & McCall, 1976) and human behavior in them has
been tested empirically in psychology (Rapoport & Tver-
sky, 1966; Lee, 2006), economics (Schotter & Braun-
stein, 1981; Hey, 1987; Sonnemans, 1998) and market-
ing (Zwick, Rapoport, Lo & Muthukrishnan, 2003). In-
tuitively, most everyday decision-making problems lie be-
tween these two extreme cases; in reality, the attributes of
the alternatives can be used to predict their utility but only
imperfectly. There often remains some amount of uncer-
tainty that cannot be explained by the attributes.

There has been some work on ordered search: In a sem-
inal paper, Weitzman (1979) put forward a general model
for ordering alternatives and terminating search in search
problems with recall, where decision makers initially have
partial information about the alternatives but learn their
true utility after paying a search cost. Although Weitz-
man’s results readily generalize to scenarios with multi-
attribute alternatives, only a recent study by Dzyabura
(2013) considered explicitly how sequential search can be
guided by a multi-attribute utility model. Earlier, Roberts
and Lattin (1991) presented a model of consideration set
formation in which the decision makers include alterna-
tives in their consideration set guided by a compensatory
multi-attribute utility model. In essence, Roberts and Lat-
tin’s model can be seen as an ordered search model, in

403

https://doi.org/10.1017/S1930297500006781 Published online by Cambridge University Press

http://journal.sjdm.org/vol9.5.html
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1017/S1930297500006781


Judgment and Decision Making, Vol. 9, No. 5, September 2014 MAU models as cognitive search engines 404

which the number of alternatives that will be searched has
to be decided once and for all before any search is per-
formed.1 However, the authors did not connect their re-
sults to search theory. Further, Moorthy, Ratchford and
Talukdar (1997) employed Weitzman’s model to derive
predictions about the length of search in consumer choice.
They further specified the original model and assumed
that decision makers are uncertain about a brand’s util-
ity. The consumer beliefs in their model are probabilis-
tic, and more experienced consumers are better at differ-
entiating brands in terms of utility. Moorthy et al. tested
their predictions on data from the car market. Last, in eco-
nomics, several papers started from the assumption that
agents search the alternatives in an externally imposed
(Arbatskaya, 2007) or subjectively defined (Bagwell &
Ramey, 1994; Armstrong, Vickers & Zhou, 2009) order
and studied the aggregate market behavior.

In this paper we show that, when the decision mak-
ers’ preferences can be described by a linear utility model,
the problems introduced by Weitzman have an intuitive
and psychologically plausible solution. Returning to our
example, we will analytically show that the optimal pol-
icy is to follow the estimated utility order prescribed by
your subjective utility model; then stop when the expected
return from seeing one more candidate for the job turns
negative. In essence, the utility models play the role of
cognitive search engines, generating the order in which
alternatives are examined. We formally develop this ap-
proach and apply it to three models that have been stud-
ied extensively in the field of judgment and decision mak-
ing: (i) multi-attribute linear utility, (ii) equal weighting
of attributes and (iii) a single-attribute heuristic. The sim-
pler models (ii) and (iii) have been shown to perform well
under some conditions (e.g., scarce information available
for calibrating models) in one-shot choice problems (Bar-
ron, 1987; Gigerenzer, Todd & the ABC Research Group,
1999; Fasolo, McClelland & Todd, 2007; Katsikopoulos,
2011). We then compare the performance of the mod-
els in 12 real-world environments ranging from consumer
choice to industrial experimentation and examine how the
models’ expected utility order and estimation error influ-
ence their performance and length of search.

Conceptually, our approach illustrates that optimal stop-
ping problems assuming random search and one-shot
choice problems are the boundary cases of an ordered
search problem with imperfect information. It provides
a formal framework within which the assumptions made
by ordered search models, such as those proposed by Bag-
well and Ramey (1994), Moorthy et al. (1997) and Arm-

1This was the case in the first search models that were introduced in
economics (e.g. Stigler, 1961). Those models were later called fixed-
sample-size models. Morgan and Manning (1985) discussed in detail the
points of divergence between fixed-sample-size models and sequential
sampling models, in which the decision maker can stop search at any
search step.

strong, Vickers and Zhou (2009), can be further clarified.
In practice, our approach extends discrete choice models
by specifying the exact search process. It is a plausible
alternative to Roberts and Lattin’s (1991) theory of con-
sideration set formation and it further advances our under-
standing of decision-making in environments with rank-
ordered alternatives.

In what follows, as in the model presented by Weitzman
(1979), we focus on a scenario in which decision makers
learn the exact utility of an alternative after sampling it and
can always choose alternatives that they have sampled in
the past. In Section 2 we develop a formal framework of
optimal ordering and stopping. In Section 3 we test three
models in 12 real-world environments ranging from con-
sumer choice to industrial experimentation and examine
the ordering and estimation error components of the mod-
els. In Section 4 we discuss the possibility of connecting
our findings to other work, assess the conceptual and ap-
plied implications of our approach, and finally discuss the
limitations and possible extensions of our framework.

2 The theoretical framework

2.1 The environment

There are n alternatives A1, ..., An. Each alternative Ai,
i ∈ {1, ..., n} is associated with a vector of attributes ai =
(ai1, ..., aik) and a utility ui of choosing it. The uis are
unknown but the ais are known to the decision maker. The
decision maker estimates ui by f(ai). We assume that
the estimation errors, ǫi, such that ui = f(ai) + ǫi, are
iid Gaussian with mean µ and standard deviation σ. We
call this equation the decision maker’s subjective model.
For each alternative, the decision maker can only learn the
utility ui by sampling the alternative and paying a cost
c. The decision maker can sample as many alternatives
as desired, and she can eventually choose only among the
sampled ones. If the decision maker searches for k items,
the cost to be paid is kc and the decision maker will choose
out of these k the alternative with the highest utility.

2.2 The optimal strategy

Let S denote the set of alternatives already searched and
S̄ denote the set of alternatives not searched yet. That is,

S ∪ S̄ = {A1, ..., An}, S ∩ S̄ = ∅

The decision maker’s problem is to determine the search
order and the stopping rule. Let the variable y denote the
maximum utility that the decision maker can obtain from
the alternatives in S, y = maxAk∈Suk, where Ak belongs
to S. If the decision maker sampled just one more item Ak

before stopping search then the subjective expected gain
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(i.e. the increase in utility minus cost) is (probabilities and
expectations below are based on the decision maker’s sub-
jective model):

R(Ak) = P (uk > y)× E(uk − y − c|uk > y)

−P (uk ≤ y)× c

= P (uk > y)× E(uk − y|uk > y)− c. (1)

It is intuitive that the decision maker should keep on
sampling as long as there exists an alternative Ak ∈ S̄
such that its subjective expected gain R(Ak) > 0. (If
all R(Ak) < 0, search should be stopped.) Given this,
the decision maker should sample the alternative Ak that
achieves the maximum subjective gain R(Ak). It turns out
that to maximize R(Ak), it suffices to select the alternative
with the highest f(ai) (for a proof, see Appendix 1):

Result 1. If for two alternatives Ai, Aj ∈ S̄, f(ai) >
f(aj) then R(Ai) > R(Aj).

This result says that if the decision maker decides to
sample one more item before terminating the search,
then the choice should be the one that has maximum
unconditional expectation E(ui) = f(ai). This suggests
the following policy:

Selection rule: Order the alternatives based on their
unconditional expectation. Select the items for sampling
in this order.

Stopping rule: If at any stage subjective expected
gain is negative, terminate the search.

Note that the stopping rule can be applied only if
the standard deviation of the estimation error σ is es-
timated. On the other hand, for the selection rule to
be applied, only the parameters of the multi-attribute
function f(ai) need to be estimated. For σ = 0 the
decision-making problem reduces to a single choice. For
c = 0 the decision maker searches all the alternatives.
Note that for c = 0 and when there are only two alterna-
tives the model reduces to the probit model.2 If σ = ∞,
P (ui > y) is equal to 0.5.

2.3 Subjective models

In our framework, the order of the alternatives Ai is
based on their subjective utility f(ai). Thus, the decision
maker’s eventual success depends upon the multi-attribute
utility function he or she uses to estimate utilities and gen-
erate an order of the alternatives. We present three psycho-
logically plausible and widely used multi-attribute utility
functions:

2Then, for two alternatives Ai and Aj the probability that the alter-

native Ai will be chosen can be written as Φ(
f(ai)−f(aj)√

(2)σ
).

1. Multi-attribute linear utility (MLU):

f((ai1 , ..., aim)) =
∑

j βjaij .
MLU is one of the cornerstone models in research on

multi-attribute decision making (Keeney & Raiffa, 1993).
It is also the model used to derive consumer preferences
in conjoint analysis surveys in marketing. MLU is the
equivalent of multiple linear regression, which has been
widely studied as a model of inductive inference in multi-
cue learning (Hammond, Hursch & Todd, 1964).

2. Equal-weighted linear utility (EW):

f((ai1 , ..., aim)) =
∑

j aij ,
where all the attributes ai1 , ..., aim are normalized and
brought to the same scale.

EW is a special case of MLU where all decision weights
βjs are equal. It was originally proposed as an alternative
to multi-linear regression by Dawes and Corrigan (1974).

3. Single-attribute utility (SA):

f((ai1 , ..., aim)) = aij ,
where aij has the highest ecological validity among
{ai1 , ..., aim} as expressed by Kendall’s tau non-
parametric correlation.

Versions of the SA model have been studied by Hogarth
and Karelaia (2005). The SA model is akin to the lexico-
graphic heuristic (Payne, Bettman & Johnson, 1993; Kohli
& Jedidi, 2007) and the take-the-best heuristic (Gigerenzer
& Goldstein, 1996; Katsikopoulos, Schooler & Hertwig,
2010). However, SA resolves ties between alternatives by
choosing at random, whereas the lexicographic heuristic
and take-the-best examine additional attributes.

Note that the three presented models can also be seen as
cardinal estimation models, where the criterion value cor-
responds to the utility. Davis-Stober, Dana and Budescu
(2010b) have pointed out that the notation of utility and
estimation models can be used interchangeably.

2.4 An example

We illustrate how the different components of equation 1
play out with a concrete example (see Figure 1). Con-
sider a scenario where a decision maker is searching in an
online store to buy a single album of an up-and-coming
music band she just heard about on the radio. The band
has produced three albums so far. The decision maker can
learn the exact utility of an album by listening to its songs.
Her subjective beliefs are described by the SA model. As
represented by the straight line in Figure 1, the decision
maker believes that the expected utility of an alternative
can be estimated by ui = 0.3 ∗ ai, where ai is the av-
erage rating of the album by other users of the site. As
represented by the bell-shaped curves, she believes that
the estimation error ǫi of her model is iid Gaussian with
mean µ = 0 and standard deviation σ = 0.5. The de-
cision maker first samples album K, which has the high-
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Figure 1: An example of the decision-making process.
There are three alternatives available in the market repre-
sented by the points K, L and M on the plot. The average
rating ai (x axis) maps to the subjective utility (y axis) of
the alternatives for the decision maker but with some er-
ror. As represented by the straight line, the decision maker
believes that the expected utility of the alternatives can be
estimated by ui = 0.3 ∗ ai where ai is the average rat-
ing. As represented by the bell-shaped curves, the decision
maker believes that the estimation error ǫi of her model
is iid Gaussian with mean µ = 0 and standard deviation
σ = 0.5. The inset table shows the expected utility (EU)
and realized utility (RU) of the alternatives. The decision
maker will first sample the alternative with the highest at-
tribute value and then at each step decide whether to sam-
ple the next alternative. For c = 0.05, for example, the
decision maker will sample the alternatives K and L and
choose the alternative L.
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est expected utility. She finds out that the utility of al-
bum K is 1.87, which is slightly less than its expected
utility. Then she has to decide whether it is worthwhile
to examine the album L. Following equation 1 the ex-
pected returns from sampling album L can be written as
P (uL > uK) × E(uL − uK |uL > uK) − c. P (uL >
uK) = 0.33, E(uL − uK |uL > uK) = 0.329 and their
the product equals 0.109.3 Thus, the decision maker will
examine the second album if the cost of search is lower
than 0.109; otherwise she will stop search, choose album
K, and never learn the actual utility of album L. Let us

3Note that σ = 0.5 appears in both of these two terms. If the decision
maker believed σ = 1 the P (uL > uK) would increase to 0.413 and
E(uL − uK |uL > uK) to 0.723 and the total benefits would be 0.299,
almost three times higher than in the case where σ = 0.5.

assume that the cost is 0.05. Then, the decision maker
samples album L. She finds out that the utility of L for
her is 2.27, which is higher than her expectation and the
utility of album K. Thus, L replaces K as the sampled al-
bum with the highest utility (y in equation 1). Now the
returns from sampling album M can be written P (uM >
uL)×E(uM −uL|uM > uL)−c. P (uM > uL) = 0.003
and E(uM−uL|uM > uL) = 0.152. The product of these
two parts equals 0.0005. Thus the overall return is nega-
tive and the decision maker will stop search after sampling
album L and choose it. She will never learn the realized
utility of album M.

3 Results

We applied the three models to study guided search in
real-world problems. We examined the performance of
the models in 12 data sets ranging from consumer choice
to industrial experimentation. All the datasets included a
variable with positive and more-is-better valence, which
we treated as the utility. All the attribute values were nor-
malized to a 0–1 scale to implement the EW model. When
a correlation between an attribute and the criterion value
in the test data set was positive, we converted the lowest
attribute value to 0 and the highest to 1. When a corre-
lation was found to be negative we converted the highest
attribute value to 0 and the lowest to 1. We used ordinary
least squares to calibrate the parameters βj of the three
models. For each of the models, we estimated the stan-
dard deviation of the error component σ using the stan-
dard error of the corresponding linear regression model

σ̂ =

√∑
T
t=0

(y−ŷ)2

T
where T is the number of alternatives

in the training set and ŷ the estimate of the linear regres-
sion model with parameters βj .

3.1 The environments

The 12 datasets analyzed are freely available from online
databanks. We provide an additional reference list of the
publications in which the datasets were originally reported
in the supplementary material. As reported in Table 1,
the datasets are characterized by a diverse number of at-
tributes, alternatives, and intercorrelations between the at-
tributes. We normalized the utility variable, setting the
utility of the alternative with the lowest value equal to 0
and that with the highest value equal to 1. This transfor-
mation was necessary in order to achieve comparability
across the datasets. The remaining variables are the at-
tributes that were used to predict the alternatives’ utility.
In a few cases we excluded variables that were not suit-
able as attributes in a choice problem. In the white wine
quality and the red wine quality environments we reduced
the number of alternatives to 200 by choosing once at ran-
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Table 1: The environment names refer to the variable that was assumed to be the utility in that environment. Asterisks
indicate that the source data set was composed of several alternatives that were available in the market at the point of
data collection. All the remaining data sets represent the results of controlled experiments. No. A refers to the number of
alternatives and No. a to the number of attributes. The notation |max(ρuai

)| indicates the strongest Pearson correlation
between the utility variable and the attributes, |ρuai

| the mean Pearson correlation between the utility and the attributes,
and |ρaiaj | the mean intercorrelation between the attributes. CPU stands for central processing unit and f. lamp for
fluorescent lamp.

Environment No. A No. a R2 |max(ρuai
)| |ρuai

| |ρaiaj |

Beer aroma* 23 7 0.39 0.35 0.23 0.43

Cheese taste 30 3 0.65 0.76 0.67 0.65

CPU efficiency* 209 6 0.87 0.86 0.64 0.51

F. lamp lifetime* 14 3 0.57 0.33 0.24 0.41

Machine productivity 40 5 0.56 0.71 0.21 0.07

Octane quality 82 4 0.91 0.87 0.63 0.51

Olive oil quality 16 4 0.65 0.51 0.36 0.15

Potato taste 32 4 0.35 0.35 0.28 0.11

Red wine quality* 1599 11 0.36 0.48 0.19 0.2

Seed yield 30 3 0.70 0.81 0.36 0.18

Tea quality 64 5 0.39 0.43 0.21 0.21

White wine quality* 4898 11 0.28 0.44 0.15 0.17

dom from the initial dataset. This transformation was im-
plemented to generate a plausible decision-making ecol-
ogy. The ecological characteristics of the resulting envi-
ronments were very similar to those of the complete envi-
ronments reported in Table 1.4 We used the same subset
of 200 alternatives consistently in all the analyses reported
in this paper.

3.2 Performance

The performance of a model depends (1) on the order it
generates, which determines how quickly it discovers high
quality alternatives, and (2) on the estimated standard de-
viation of the error component σ̂, which influences the
subjective probability that the utility of the next alterna-
tive to be sampled will be higher than the utility of the
best alternative discovered up to that point. Clearly, when
σ̂ increases, the subjective probability and consequently
the expected returns from further search also increase. Fi-
nally, the model performance depends (3) on the cost of
search in the environment. Factor 3 is an environmental
factor, while factors 1 and 2 reflect how well a model cap-
tures the properties of the environment.

At first, we manipulated the cost of search and pitted
the models against each other in eight different cost con-

4For red wine quality: R2 = 0.3, |max(ρuai
)| = 0.43,

|ρuai
| = 0.16, |ρaiaj | = 0.20; for white wine quality: R2 = 0.35,

|max(ρuai
)| = 0.48, |ρuai

| = 0.16, |ρaiaj | = 0.19.

ditions. For the purposes of our simulation we adapted
the technique of cross-validation to a search problem.
We fixed the parameters βj and σ corresponding to each
model in half of the data set (training set) and evaluated
the performance of the models in the remaining half (test
set). This process was repeated 10,000 times in total. For
each repetition the alternatives that were part of the train-
ing and test sets were drawn at random from the entire
data set. As a result, the maximum utility, which could
be achieved by all models in each of the repetitions, dif-
fered slightly depending on the utilities of the alternatives
that were part of the training and test sets. The models
first sampled the alternative that they estimated to have
the highest expected utility. Then each model decided ac-
cording to equation 1 whether to proceed to search the al-
ternative with the second highest expected utility, then the
third, and so forth. When a model stopped search, the
alternative with the highest utility among the alternatives
searched up to that point was chosen. The measure of per-
formance was the average utility achieved by a model in
10,000 repetitions. In real life, this corresponds to the av-
erage performance of 10,000 decision makers, with ran-
domly sampled experiences, who all followed the optimal
policy. This measure can also be seen as an approximation
of the expected payoff for a single decision maker.

Average results from the 12 environments for all eight
cost conditions are presented in Table 2 and the results
from each of the 12 environments individually are pre-
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Table 2: The average performance of the models across the
12 environments in 8 cost conditions. Multi-attribute lin-
ear utility (MLU) performed best but as the cost decreased
performance differences with equal-weighted linear utility
(EW) and single-attribute utility (SA) attenuated.

Average performance

Cost MLU EW SA

1/23 0.606 0.594 0.561

1/24 0.715 0.696 0.681

1/25 0.783 0.775 0.761

1/26 0.824 0.822 0.816

1/27 0.857 0.851 0.856

1/28 0.885 0.878 0.881

1/29 0.902 0.899 0.901

1/210 0.912 0.912 0.911

sented in Figure 2. The best performing model was MLU.
The performance differences were largest for high search
costs and they gradually attenuated as the costs decreased.
Clearly, a high cost implies that the models are likely to
search only a few alternatives at the beginning of the or-
der, and the models may have different orders. As the costs
decrease, all the models search further down the expected
utility line and are more likely to discover the high-quality
alternatives in the environment. As a result, the perfor-
mance differences diminish.

There is much variability in performance in individual
environments, where in several cases the simpler models
outperformed MLU for the entire cost range. For example,
EW performed best for most of the cost conditions in the
beer aroma, cheese taste, CPU efficiency, olive oil quality,
and potato taste environments, while SA performed best
in the red wine quality, tea quality, and octane quality en-
vironments. Thus, although MLU performed better on av-
erage, it clearly outperformed the simpler models only in
the remaining four environments. The better performance
of MLU at the aggregate level was mainly driven by its su-
perior performance in the white wine quality environment.
As stressed earlier, the model-specific factors that may in-
fluence the models’ performance are on the one hand the
order generated by each model and on the other hand the
estimated standard deviation. In the rest of the Results
section we decouple the roles of these two factors.

3.3 Impact of search order on performance

and search length

To disentangle the impact of the search order from that
of the estimated standard deviation of the error compo-

nent σ̂, we first examined the average return to search (as
measured by the average utility of the best searched alter-
native), achieved by each multi-attribute utility model, for
all possible search lengths k, without implementing any
search cost. Moreover, we compared these results to ran-
dom search, which corresponds to the assumption made in
most optimal-stopping studies. As we did for the full task,
we cross-validated the models on half of the data points
and we repeated our simulations 10,000 times.

As shown in Figure 3, the largest difference between
the subjective models and random search is found in envi-
ronments with high R2 of the best fitting linear regression.
In the environments with the highest R2, such as CPU ef-
ficiency and octane quality, the best solution was almost
always located in one of the first search trials by all the
multi-attribute models. In contrast, in environments with
low R2 such as beer aroma, potato taste, and fluorescent
lamp lifetime, the margin is smaller and in some cases ran-
dom search performed almost as well as the multi-attribute
models.

In all environments there is a close correspondence be-
tween the average return to search as a function of the
search length and the performance of the model in the full
task, as depicted in Figure 2. For most costs, the model
with the highest average return to search is also the best
performing model in the full task. In four of the five en-
vironments in which EW performed best in the full task
(beer aroma, cheese taste, CPU efficiency, potato taste) it
also performed best for most of the search lengths. Simi-
larly, in the three environments where SA performed best
in the full task (red wine quality, tea quality and octane
quality) it also performed as well as or better than the
other two models for most search lengths in the search
task. Overall, there are a few cases, such as the tea quality
environment, where different models lead to best perfor-
mance for different search lengths k.

Note that the factors that influence the performance of a
model directly influence the length of search, as observed
in Figure 4. According to the theory presented in section
2, the utility of the best alternative secured so far, y, and
the probability P (uk > y), that the utility uk of the next
alternative down the expected utility line Ak will be higher
than y should be inversely related. This suggests that mod-
els that place high-utility alternatives earlier in the search
order will be characterized by lower returns to search and
should, ceteris paribus, search less. Indeed, this is what
we observe in Figures 3 and 4. However, to fully under-
stand the performance and search length of the models we
also need to come to grips with the role played by the stan-
dard deviation of the error component σ. The next section
delves into that exactly.
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Figure 2: The average utility achieved by the subjective utility models as a function of search cost. Overall, multi-
attribute linear utility (MLU) performed best, but equal-weighted linear utility (EW) and single-attribute utility (SA) also
had regions of superior performance. The difference between the models gets smaller as the cost of search decreases.
CPU stands for central processing unit and f. lamp for fluorescent lamp.
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Figure 3: The average utility of the best explored alternative after a search of length k. In environments with a high
R2, such as central processing unit (CPU) efficiency and octane quality, the best alternatives are located early in the
search and the differences between these strategies and random search are the largest. In most cases there is a close
correspondence between model performance in the full task and model performance in mere search; contrast with
Figure 2. MLU stands for multi-attribute linear utility, EW for equal-weighted linear utility, and SA for single-attribute
utility.
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Figure 4: On the upper left side we present the average standard deviation of the error component of each of the models in
that environment. The length of search is moderated by the best alternative discovered so far and the estimated deviation
of the error component of the models. On average, multi-attribute linear utility (MLU) searches less than the equal-
weighted linear utility (EW) and single-attribute utility (SA) models but there is some variability across environments.
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Table 3: The average length of search (number of alterna-
tives sampled k) across environments for the three mod-
els for different costs of search. The equal-weighted lin-
ear utility (EW) and single-attribute utility (SA) models
search more alternatives, on average, than multi-attribute
linear utility (MLU). The differences in the length of
search are more pronounced for low costs.

Average search length

Cost MLU EW SA

1/23 1.74 1.58 1.74

1/24 2.23 2.28 2.45

1/25 2.81 2.83 3.21

1/26 3.70 3.62 4.47

1/27 4.88 5.39 5.58

1/28 6.11 7.24 6.72

1/29 7.34 8.85 8.08

1/210 8.66 10.45 9.54

3.4 The role of the standard deviation σ

The second factor that has an impact on the performance
of the model and the length of search is the standard de-
viation of the error component σ. To assure good perfor-
mance the models’ error component should correspond to
the unexplained uncertainty in the environment. For esti-
mated σ̂ = 0 the model would deem that the first alter-
native is also the best one. For σ̂ = ∞ the model would
calculate P (uk > y) = 0.5 (following equation 1). How-
ever, both these models would be unadaptive in environ-
ments in which the uncertainty that cannot be explained by
f(ai) is moderate. A lower standard deviation of the error
component σ̂ implies a decrease in the subjective proba-
bility P (uk > y) and a decrease in the expected returns
from finding a better alternative E(uk − y|uk > y). Thus,
ceteris paribus, it should lead to a shorter search.

Within models, the estimated standard deviation of the
error component σ̂ in our simulations is inversely related
to the accuracy of the estimates of the model in the training
set in which the model was fitted. Consequently, in most
cases a good ordering should be accompanied by a rela-
tively low error component and in tandem they lead to a
reduced length of search. Note, however, that there could
be a discrepancy between the accuracy of the estimates of
a model and the average returns to search. Remember that
only the best alternative discovered so far counts for the
decision maker in the search task.

Between models, the MLU tends to capture a larger pro-
portion of the uncertainty in ai (¯̂σmlu = 0.166) and usu-
ally has a slightly lower estimated standard deviation σ̂

than EW and SA (¯̂σew = 0.191 and ¯̂σsa = 0.191). As re-
ported in Figure 4, only in the olive oil quality and potato
taste environments was a heuristic model (EW) found to
have an estimated standard deviation of the error compo-
nent lower than the full model (MLU).

As seen in Figures 2-4, the models that achieve higher
average returns to search (Figure 3), search less (Figure 4,
Table 3 for average results) and score better on the full
task (Figure 2). The differences in the estimated stan-
dard deviation of the models σ̂ are in most environments
marginal. In half of the environments they correspond to
performance differences in the average returns to search.
This suggests that the error components of the models are
sufficiently well calibrated to the unexplained uncertainty
in the environment. There are a few cases where a differ-
ent estimated standard deviation σ̂ might lead the models
to markedly different performance. For example, in the
CPU efficiency environment the EW and MLU have sim-
ilar returns to search. MLU has a much lower estimated
standard deviation σ̂, searches less than EW, and performs
worse in the full task. This indicates that MLU may occa-
sionally miss a very good alternative and it could benefit
from searching more.

3.5 Paired-comparison results

So far, we have discussed how different properties of the
search models influence their performance and we have
looked at specific environments to understand how these
factors play out in practice. We have illustrated that the
most crucial factor is the search order in which the mod-
els sample the alternatives, although this has to be accom-
panied by a well-calibrated estimated standard deviation
of the error component σ̂. But is there a way to predict
which strategy is most likely to be successful in a given
environment? The conditions under which different lin-
ear or heuristic models perform well in choice and infer-
ence contexts have been thoroughly investigated (for a re-
view see Katsikopoulos, 2011). Few studies generalize be-
yond binary choice to choice between several alternatives
or among the entire data set; however, most of the exist-
ing literature has focused on binary choices. To answer
our question we attempt to shed light on the connections
between the novel task we presented and the well-studied
paired-comparison task.

Thus, we examined whether there is a correspondence
in performance between the binary choice and the search
task. We compared the performance of the three models
in the binary choice task. As before, we fixed the parame-
ters corresponding to each model in half of the dataset and
evaluated their performance in all possible binary choice
tasks in the remaining half. The process was repeated in
total 10,000 times.

As seen in Table 4, on average, MLU performed best,
followed by SA and then EW. In the individual environ-
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Table 4: Accuracy of the three models on binary choices.
Fifty percent of the dataset was used as a training set and
all the possible pairs of the test set were used to evalu-
ate the models. Multi-attribute linear utility (MLU) per-
formed best, on average, followed by single-attribute util-
ity (SA) and equal-weighted linear utility (EW). MLU per-
formed best in seven environments EW in four and SA in
one.

Subjective models

Environment MLU EW SA

Beer aroma 0.48 0.49 0.47

Cheese taste 0.79 0.79 0.76

CPU efficiency 0.83 0.85 0.80

F. lamp lifetime 0.67 0.54 0.55

Machine productivity 0.64 0.55 0.63

Octane quality 0.86 0.72 0.79

Olive oil quality 0.72 0.71 0.58

Potato taste 0.63 0.64 0.57

Red wine quality 0.63 0.60 0.63

Seed yield 0.78 0.64 0.77

Tea quality 0.69 0.62 0.63

White wine quality 0.65 0.60 0.66

Mean performance 0.70 0.65 0.65

ments, the performance of the models varied significantly.
There were four environments in which EW performed
best and one in which SA did. In general, the performance
in the binary choice task is a good proxy of performance in
the full search task. The model that performed best in the
paired-comparison task also performed best in 7 of the 12
environments in the search task for cost equal to 1/23. The
discrepancies observed can be attributed to the fact that in
the full search task, the alternatives that are searched early
on contribute disproportionally to the success of a model.
In contrast, in binary choices all possible single choices in
the data set contribute equally to the performance of the
model. Hence, it is possible that the model that performs
best in the search task does not maintain that superior per-
formance in the binary choice task, and vice versa.

4 Discussion

4.1 Conceptual implications of our frame-

work

4.1.1 Deterministic optimization and search models:

A possible compromise

In optimization problems, widely studied in economics,
decision makers can determine the alternative that maxi-
mizes their utility. This vision of decision making con-

trasts with search models in which the decision makers
sample alternatives at random and stop search after en-
countering a good enough alterative (e.g., Simon, 1955;
Chow, Robbins & Siegmund, 1971; Caplin, Dean & Mar-
tin, 2011). Random sampling may lead to violations of
the revealed preference principle and unpredictability in
regard to the choices of individual decision makers. Or-
dered search models provide a possible compromise be-
tween these two approaches. Decision makers have a
well-defined utility function before the search starts. How-
ever, as long as there is some uncertainty about the exact
utility of the alternatives, it may pay to sample some of
them to learn their utility. In our model, the initial pref-
erences guide the search process but are also subject to
revision when the true utility of the sampled alternatives
is revealed. For an external observer, such as a firm or a
market analyst, ordered search is more predictable, at the
level of an individual decision maker, than random search.
In ordered search, if the model of the decision maker and
the actual utility of the alternatives are known, the exter-
nal observer could also predict the final decisions made,
as well as the preference reversals that would occur along
the way.

4.1.2 Evaluating the hypotheses of ordered search

models

Employing our framework, we can examine the conditions
under which the assumptions postulated in previous or-
dered search models hold true. Bagwell and Ramey (1994)
suggested that decision makers may use a simple rule of
thumb and first consider buying products from firms that
advertise more.5 This corresponds to an SA model where
the amount of advertising is the most informative cue.
This, indeed, is plausible in some cases. However, the
SA model implies that when more informative attributes
are available, the amount of advertisement may be com-
pletely ignored as an attribute. Armstrong et al. (2009) as-
sumed that consumers search products according to an ab-
stract attribute called prominence and suggested that firms
might be willing to invest to achieve prominence and im-
prove their search order. Our framework allows us to es-
timate the exact impact of an intervention in the attributes
of a product in terms of the firm’s prominence in the mar-
ket. Finally, Moorthy et al. (1997) suggested that the ex-
pectation of the utility of a brand’s products is normally
distributed. In addition, they suggested that more experi-
enced consumers are better able to differentiate between
products. These assumptions are both in line with our
framework.

5A similar argument for the role of advertisement in the domain of
choice has been made by Goldstein and Gigerenzer (2002).
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4.2 Applied implications of our framework

4.2.1 Sequential search and consideration set forma-

tion

Our modeling approach suggests that only the alternatives
that have been sampled by the decision makers stand a
chance of being selected. Similarly, several marketing
scientists have advanced choice models in which the de-
cision makers first restrict their attention to a subset of
the alternative set — commonly called the consideration
set. The decision makers then examine the alternatives of
this subset more closely and finally choose one of the al-
ternatives in it (e.g., Wright & Barbour, 1977; Shocker,
Ben-Akiva, Boccara & Nedungadi, 1991; Gilbride & Al-
lenby, 2004; Moe, 2006). Such models have often been
found to outperform, in fitting and prediction, discrete
choice models in which the decision makers are assumed
to consider all the alternatives (e.g., Gilbride & Allenby,
2004). Our approach shares some of its assumptions with
a popular model of consideration set formation put for-
ward by Roberts and Lattin (1991). In their model, de-
cision makers, whose pay-off function is described by a
compensatory multi-attribute utility model with an addi-
tional error term, decide which alternatives to include in
their consideration set. Similar to our approach, the de-
cision makers examine the alternatives in the order of de-
creasing expected utilities predicted by their utility model,
paying a fixed cost for every new alternative they place in
their consideration set. In contrast to our model, the deci-
sion makers do not learn the exact utility of the alternatives
immediately after paying the cost. Instead, they learn all
the utilities of the alternatives in the consideration set right
before they choose among them. Our model can be seen
as the sequential search counterpart to Roberts and Lattin
theory of consideration set formation. Inversely, Roberts
and Lattin’s model can also be understood as an ordered
search model in which the search length has to be decided
at the outset. The exact domain of application of sequen-
tial search and fixed-sample-size models of consideration-
set formation may depend on the exact characteristics of
the decision making context and it should be the subject
of further empirical investigation in the future.

4.2.2 Parallels to online ranking schemes

There are clear-cut parallels between the search approach
we present here and the methods used by commercial
search engines and recommendation systems to pre-rank
the alternatives for Internet users. Such ranking schemes
implement a valence function that maps the attributes of
the alternatives to the relevance or utility for the user
(Burges, Shaked, Renshaw, Lazier, Ari and Deeds, Matt,
Hamilton & Hullender, 2005; Hüllermeier, Fürnkranz &
Cheng, Weiwei and Brinker, Klaus, 2008; Yaman, Walsh,

Littman & Desjardins, 2011). The valence functions un-
derlying the ranking schemes are trained with clickstream
decision data or other information that can reveal the pref-
erences of the user (Sarwar, Karypis, Konstan & Riedl,
2000). Then, similar to what our theory suggests, the rank-
ing schemes present the alternatives in decreasing order of
relevance or utility. This approach is implemented with-
out invoking a formal decision-making theory that pre-
dicts how decision makers will choose on the basis of the
presented rank order. If the goal of the ranking-scheme
engineers is to increase the utility derived by the users,
a formal decision-making theory, such as search theory,
might further inform the development of ranking-schemes
as well as the techniques used to train their valence func-
tions. Indeed, there have been recent papers in machine
learning about why the design of ranking techniques can
benefit from taking into account how people actually de-
cide in rank-ordered environments (Agichtein, Brill & Du-
mais, 2006; Chapelle, Metlzer, Zhang & Grinspan, 2009).
We take a step in that direction and illustrate the role of
cost of search and the uncertainty in the environment in
the search process.

4.3 Connections to prescriptive and descrip-

tive decision making

4.3.1 From choice to search

For the paired-comparison problem, where the task is to
choose one of two alternatives, the accuracy of heuristics
such as EW and SA has been analyzed and compared to
that of the full linear model in numerous studies. Until
now, a thread of the existing literature in judgment and
decision making has examined binary choices in environ-
ments with binary or continuous attributes without making
any assumptions about the mapping from an alternative’s
attributes to its utility (e.g., Katsikopoulos et al., 2010)
or when the mapping is characterized by noise (Hogarth
& Karelaia, 2005; Hogarth & Karelaia, 2006; Rieskamp
& Otto, 2006; Davis-Stober, Dana & Budescu, 2010a;
Davis-Stober et al., 2010b). A second thread of the lit-
erature has focused on environments with binary or con-
tinuous attributes, where a mapping between the attributes
and the utility exists but decision makers have imprecise
knowledge about the attribute weights (Johnson & Payne,
1985; Martignon & Hoffrage, 2002; Hogarth & Karelaia,
2005; Baucells, Carrasco & Hogarth, 2008; Katsikopou-
los, 2013).

Given the observed correspondence in choice task and
search task results, the findings of the first thread of stud-
ies in binary choice tasks may also generalize to the search
task. Overall, these studies have found no large per-
formance differences between the heuristics and the full
model and that heuristics can outperform the full model
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under the appropriate conditions. Both EW and SA fare
especially well in out-of-sample prediction (Einhorn &
Hogarth, 1975; Hogarth & Karelaia, 2005; Katsikopoulos
et al., 2010). The SA model tends to perform well when
a simply or cumulatively dominating alternative is present
(Baucells, Carrasco & Hogarth, 2008; Şimşek, 2013; Kat-
sikopoulos, Egozcue & Garcia, 2014), or when there ex-
ist high correlations between the single attribute and all
other attributes (Hogarth & Karelaia, 2005; Davis-Stober
et al., 2010a,2010b). EW tends to perform well when
the variability in cue validities is small or when there are
high intercorrelations between all the attributes (Einhorn
& Hogarth, 1975; Wainer, 1976). In the environments that
we studied we also found support for some of these find-
ings. For example in the four environments, in which EW
performed best in binary choice the difference between
|max(ρuai

)| and |ρuai
| was small.

Although our first results suggest a relation between the
search task and the choice task, additional research is re-
quired in the future to establish this relation and to identify
the conditions under which differences in the relative per-
formance of models in the two tasks are to be expected. A
further follow-up to our study would be to examine when
decision makers choose a certain strategy (Bröder, 2003)
and how the decision makers learn to act adaptively and to
select a strategy that performs well in a given environment
(e.g., Rieskamp & Otto, 2006).

4.3.2 Psychological plausibility of the stopping rule

So far we have shown that the proposed stopping policy
is optimal. But is it psychologically plausible? When
sampling from a known distribution with or without re-
call an optimally acting decision maker should always
stop right after encountering an alternative with a value
higher than the optimal threshold. Several variations of
such optimal threshold problems have been studied ex-
tensively in psychology and economics. We have identi-
fied five studies reporting results on experiments in which
subjects sampled from a known distribution with recall
(Rapoport & Tversky, 1970; Schotter & Braunstein, 1981;
Hey, 1987; Kogut, 1990; Sonnemans, 1998). In sum, a
moderate proportion of the participants in these studies
behaved in a manner consistent with the optimal stopping
rule. Common discrepancies from the optimal strategy in-
cluded stopping too early and exercising recall. Nonethe-
less, the researchers found that the average performance
of the participants was near optimal. Hey (1982) and Son-
nemans (1998) reported that many subjects used heuristic
strategies that appeared consistent with the optimal rule
and led to near optimal performance. In the stopping pol-
icy we have presented, the decision maker should at every
search step reevaluate the returns from sampling the next
alternative in line. This task may appear demanding in

relation to the optimal threshold rule. However, it has the
same structure as a simplified version of a signal-detection
problem (e.g., Green & Swets, 1966) — in which humans
are known to perform fairly well. Thus, we believe that
the stopping policy could be psychologically plausible as
such, or it could be well approximated by clever heuristic
algorithms. Clearly, human behavior in the task has to be
investigated experimentally in the near future.

4.3.3 Alternative search algorithms

We showed that, under the homoscedasticity assumption
embedded in many linear models and the subjective linear
utility models outlined in this paper, the intuitive policy
of searching the alternatives in the order of their subjec-
tive expected utility is optimal. In addition, in this spe-
cial case our policy coincides with another simple algo-
rithm called directed cognition, which has been proposed
by Gabaix, Laibson, Moloche and Weinberg (2006). This
algorithm searches myopically, as if the next step of the
search process was also the last one. When the assump-
tion of the homogeneously distributed error component
ǫ does not hold, the behavior suggested by our ordering
policy diverges from Weitzman’s (1979) optimal solution
and from Gabaix et al.’s (2006) directed cognition algo-
rithm. Gabaix et al. (2006) showed that, even in simple
cases of indexable problems like those discussed by Weitz-
man (1979) and Gittins, Glazebrook and Weber (1989),
the decision makers are unlikely to follow the optimal al-
gorithm and instead decide in line with the directed cog-
nition algorithm. In the future, as in Gabaix et al. (2006),
one could examine experimental scenarios in which the
behavior prescribed by the three discussed algorithms di-
verges to evaluate their psychological plausibility in dif-
ferent decision-making environments.

4.4 Extensions and limitations

The current model could be extended to scenarios with dif-
ferent search costs for different alternatives or when the
decision maker can choose an alternative directly with-
out paying the sampling cost. Further, the model could
be readily extended to cases when the decision maker can
choose more than one alternative. In addition, it is possi-
ble to account for contexts where new alternatives become
available at a later point in time. The decision maker can
construct a search order for the new alternatives and con-
sider if it is worthwhile to sample some of them, examin-
ing first the alternative with the highest expected utility.

In our model we have assumed that decision makers
have direct and free access to the attributes all at once.
We did not discuss cases where the decision makers have
to pay a search cost to learn additional attributes before
moving forward to examine further alternatives. A model
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of this kind with random sampling is presented by Lim,
Bearden and Smith (2006) and has been investigated em-
pirically by Bearden and Connolly (2007). Further, as
in search problems, we have assumed that the decision
maker learns the exact utility of an alternative after paying
a search cost and examining it. However, there are many
dynamic decision-making contexts where the cost is inter-
nally defined as an opportunity cost when consuming an
inferior alternative (Nelson, 1970). In these environments
information acquisition can be inherently noisy and deci-
sion makers may want to sample the alternatives repeat-
edly. Such decision-making contexts are commonly re-
ferred to as multi-armed bandits. In fact, when we change
the costly sampling assumption to repeated sampling, in
which the final pay-off is the sum of the experienced util-
ities, our framework turns into a multi-armed bandit with
contextual information. This type of bandit framework has
been receiving increasing attention in recent years in ma-
chine learning (Pavlidis, Tasoulis & Hand, 2008; Li, Chu,
Langford & Schapire, 2010).

So far we have postulated that decision makers have
stable preferences and an accurate error estimate of their
model throughout the entire search process. This strong
assumption may hold precisely or it may approximate
the truth in many decision-making environments, espe-
cially when decision makers have long experience test-
ing alternatives. However, in some environments deci-
sion makers may not know the utility weights but rather
learn them along the way as they examine new alter-
natives. This approach has been followed by Dzyabura
(2013), who assumed that decision makers update the es-
timates of the weights and the search order after each new
alternative they examine. Clearly, when decision mak-
ers learn their preferences the ordering and stopping rules
derived in our paper are not guaranteed to be optimal.
A fully rational policy would have to anticipate the fu-
ture evolution of decision makers’ preferences and then
build any beliefs about preference change into the search
and stopping rules. Even in simplified scenarios this ap-
proach is known to be computationally intractable. In
similar preference-learning problems encountered in ma-
chine learning, greedy heuristics are implemented instead
to balance preference learning and exploitation (Brochu,
De Freitas & Ghosh, 2007; Brochu, Cora & De Freitas,
2010). Another approach would be to compare, for any
given search length, the performance of alternative, opti-
mal in some respect, active learning algorithms (Fedorov,
1972; Sugiyama & Nakajima, 2009).

4.5 Conclusion

In two recent publications Luan, Schooler and Gigeren-
zer (2011, 2014) stressed the need to integrate decision-
making theories in psychology and illustrate how appar-

ently disparate models share common conceptual ground.
In the same vein, we argued that choice and search prob-
lems, which until now have been studied separately, are
the boundary cases of a broader decision-making prob-
lem. We showed how three choice models that have been
extensively studied in the field of judgment and decision
making can guide the search for good alternatives and
we formulated their corresponding optimal stopping rule.
Then, we compared the performance of the models in 12
real-world environments ranging from consumer choice to
industrial experimentation and illustrated how each mod-
els’ expected utility ordering and estimation error influ-
ence its’ performance and length of search. As in previ-
ous model comparisons, in one-shot choice problems we
found that heuristic linear models performed on average
close to a multi-attribute linear utility model. Moreover, in
individual environments the heuristic models often outper-
formed the full model. To further understand when such
results are to be expected we examined the relationship
between the search problem and the well-studied binary
choice problem. We found that in most cases the mod-
els that performed well on the binary choice task also did
so in the search task. This suggests that previous find-
ings on the ecological rationality of choice and inference
strategies are also relevant to the search task. Finally, we
discussed the connections of our model to the existing lit-
erature and suggested possible paths for future research.
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5 Appendix 1: Proof of result 1

First notice that for any alternative Ak

R(Ak) = P (uk > y)× E(uk − y|uk > y)− c

=

∫

∞

y

(u− y)dFK(u)− c =

∫

∞

0

udFK(u)− c

For alternative Ai and Aj let α = f(ai) − f(aj). As-
suming α > 0, we will show that R(Ai) > R(Aj). The
distribution of Ai is the same as the distribution of Aj+α;
that is, Fi(u) = Fj(u− α) ∀u ∈ ℜ.

R(Ai) + c =

∫

∞

0

udFi(u) =

∫

∞

0

udFj(u− α)

=

∫

∞

−α

(α+ v)dFj(v) (by change of variable v = u+ α)

=

∫ 0

−α

(α+ v)dFj(v) +

∫

∞

0

(α+ v)dFj(v)

>

∫

∞

0

(α+ v)dFj(v) >

∫

∞

0

vdFj(v) = R(Aj) + c

Q.E.D
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