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Abstract

We will prove the Theorem of Hartman-Grobman in a very general form. It states the topological
equivalence of the flow of a nonlinear non-autonomous differential or difference equation with critical
component to the flow of a partially linearized equation. The critical spectrum has not necessarily to
be contained in the imaginary axis or the unit circle respectively. Further on we will employ the so-
called calculus on measure chains within dynamical systems theory. Within this calculus the usual one
dimensional time scales can be replaced by measure chains which are essentially closed subsets of R.
The paper can be understood without knowledge of this calculus.

So our main theorem will be valid even for equations defined on very strange time scales such
as sequences of closed intervals. This is especially interesting for applications within the theory of
differential-difference equations or within numerical analysis of qualitative phenomena of dynamical
systems.

1991 Mathematics subject classification (Amer. Math. Soc): 39A12, 34C20.

1. Introduction

This paper pursues essentially two goals. Firstly we will prove the Theorem of
Hartman-Grobman in a very general form. It states the topological equivalence of the
flow of a nonlinear differential or difference equation with critical component and the
flow of a decoupled and partially linearized equation.

Secondly we want to demonstrate the possibilities of employing the so-called
calculus on measure chains, which was developed in [7, 8]. This calculus allows us
to generalize ordinary differential calculus and difference calculus for functions of
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one variable. The usual one dimensional time scales R (differential calculus) or Z
(difference calculus) can be replaced by measure chains. Each closed subset of R
bears the structure of a measure chain in a natural way. So, via calculus on measure
chains, one can perform differential calculus for functions defined on, say, arbitrary
discrete subsets of R or even a Cantor set.

For the reading and understanding of this paper it is not necessary to know calculus
on measure chains. In Section 2 we will give more information on that calculus.

Now we are going to give a more accurate description of the generalized Theorem
of Hartman-Grobman (cf. Theorem 4.5). Let an equation of the form

MA = A~(t)u + B~(t, u, v, w),

vA = A°(t)v +B°(t,u,v,w), (EB)

wA = A+(t)w + B+(t, u, v, w),

with time scale T (for instance T = R or hT) and state space X = U xV xWbe given.
The operation A means 'generalized differentiation' which is ordinary differentiation
(time scale R) or forward differences (time scale hi.). We assume that this equation
fulfills some conditions on the linear part of the right hand side (growth conditions, cf.
(I), Section 3.2) and on the nonlinear part (small Lipschitz constant, cf. (IIB), Section
3.2) and a certain kind of quasi-boundedness (cf. (IIIB), Section 4.2).

Then there are continuous functions

l , f : T x X ^ X with sup{|^(?, x) -x\] < oo, sup{|1#(r, x) -x\] < oo,
xeX xeX

for fixed time t inverse to each other, such that for any solution b : T —> X of (EB) the
transferred function & (•, b(-)) is a solution of the decoupled and partially linearized
equation:

uA = A-(t)u,

vA = A°(t)v + B°(t,Jf(t,0, v)), (Es)

wA = A+(t)w.

The middle component describes the flow on the so-called center integral manifold
(parametrized by Jff). So the essential statement of this theorem is that solutions of
(EB) can be uniquely characterized by solutions of the much simpler equation (Es).

In the first and third component of ly (•, &(•)) one saves the information about
the exponential behaviour of the given solution b(-) in terms of solutions of the
linearized equation. (This is the content of the classical Theorem of Hartman-Grobman
for the case V = {0}.) The middle component of ~W(-,b(-)) is related to b(-)
by a certain asymptotic relation, it is roughly called 'asymptotic phase'. We will
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[3] Generalized theorem of Hartman-Grobman on measure chains 159

describe this relation more accurately later (cf. Remark after Theorem 3.9). Our
proof of the generalized theorem of Hartman and Grobman essentially follows the
ideas presented by Kirchgraber and Palmer in [12]. The construction of invariant
manifolds and of solution transferring maps is based on the principle of asymptotic
equivalence. Whereas Kirchgraber and Palmer illustrate the geometric background of
their considerations, we give a more algebraically rigorous but nevertheless transparent
proof. In this compact presentation there are several generalizations of the results in
[12] which are listed here:

• As state spaces we admit arbitrary Banach spaces. This generalization does not
cause any additional effort in the proofs.

• We cover the general case of non-autonomous equations. One always observes
that the presentation of the non-autonomous case provides an adequate framework
for the development of the whole theory of topological equivalence.

• Palmer and Kirchgraber postulate that the eigenvalues of the center (critical)
component of the linear operator in (EB) lie on the imaginary axis or the unit
circle, respectively. In this paper this condition is replaced by condition (I) (cf.
Section 3.2.). In the autonomous case this is a condition on the seperation of the
spectrum of the linear operator in vertical strips (time scale T = U.) or in annuli
(time scale J = hi).

• As mentioned above we are going to prove the generalized Theorem of Hartman
and Grobman for arbitrary time scales. This is especially interesting for the
investigation of numerical methods with respect to qualitative features such as
invariant manifolds and topological equivalence. Due to the fact that calculus on
measure chains treats arbitrary time scales in a unified and systematic manner it is
comparatively easy to look at the effects of time scale changing on properties of
dynamical systems. In a future paper we will present results of this kind, which
will continue the work of Beyn, Kloeden and Lorenz (cf. [13, 3, 4]).

2. Some calculus on measure chains

Calculus on measure chains is a generalization of the usual differential calculus
of one variable. Essentially the basic range (R) of definition of the functions to be
differentiated can be replaced by any closed subset of R.

If one is interested in the cases T = R or T = hi, one only has to take into
account the notations listed in the table below. Using this table as a dictionary one
can read Sections 3 and 4 of this paper without problems. In the proof of Theorem 3.1
exclusively, we will apply a few more elementary notions and results from calculus
on measure chains.

The content of this theorem can be understood again without difficulty. For T = R
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or T = hi it is a standard result in ODE, respectively OAE theory. So one can
disregard its proof presented here in the general framework of calculus on measure
chains.

If one wants to understand the paper for more general measure chains, one has
additionally to become familiar with some notions and formulas presented after the
table. These additional notions and formulas are applied exclusively in the proof of
Theorem 3.1 which can be considered as a preparatory result. As was mentioned
before, all considerations in the main part of this paper will not make further explicit
use of calculus on measure chains.

Let X be a Banach space.

Measure chain

rd-continuous function / : T —> X

Differentiation /A(f) e X

Dynamical equation

Generalized real part axis 8%-p c R

Exponential function ea(r, s)

K

continuous function

/A(0-/'(0~f(0
Differential equation
ap_ — TO

e<*(r-s)

hi

arbitrary function

f^ft\ /('+*)-/(')

Difference equation

Mjz = ]-loo[
(l+ahf-s)/h

Definition of measure chains A measure chain (T, <, n) consists of the following
data:

• (T, <) is a chain, that is a linearly (totally) ordered set. T is then equipped with
the order topology generated by the open intervals.

• ("T, <) is a conditionally complete chain, that is each nonvoid subset which is
bounded above has a lowest upper bound (in T).

• There is a continuous function \x : T x T —> U. (the growth calibration) with the
properties

fi(r, s) > 0 <=>• r > s,

H(r, s) + n(s, t) = fi(r, t)

for all r,s,te J.

Each closed subset of R with the natural ordering < and ix{r, s) = r — s bears the
structure of a measure chain in a natural way. The most prominent examples are IR
andZ.

Jump operator and grainyness We define the following function:

(1) a :
|T - T .
1/ (->• inffs € T : s > t]
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is called the jump operator. If the set in (1) is void, then we set a{t) = t = maxT. A
point t e T is called right-dense or right-scattered, ifa(t) = t respectively o{t) > t.
The definitions of left-dense and left-scattered points are obvious. The width of jumps
can be measured by the grainyness function

[t H> fi(a(t),t).

For deriving the results in this paper we need the following additional axioms on
measure chains:

• The growth calibration //,(•, r), r fixed, is neither bounded above nor bounded
below.

• The grainyness /x* is bounded on T: ix*(t) <Jl, t e T.

The generalized real part axis ^ is then defined by M^ : = {r e IR : 1 + rjl > 0}.
We are going to define the natural properties of functions defined on T.

Rd-continuous functions A function / : T —> X is called rd-continuous, if it
is continuous in right-dense points and has a left-sided limit in all left-dense-right-
scattered (ldrs-)points. The grainyness is rd-continuous but not continuous in general
(consider T = [0,l]UN c | ) . For T = K or T = Z rd-continuity coincides with
continuity.

Differentiation A function / : T -»• X is called differentiable at t e T, if the
derivative

exists; / is differentiable, if it is differentiable at each t e 1. A differentiable function
is continuous and therefore rd-continuous. Differentiation is linear and fulfills the
generalized product rule (for simplicity: / and g are real valued)

(2) ( / • g)A(t) = / ( a ( 0 ) • sA(0 + / A ( 0 • g(t).

Existence of antiderivatives If b: J —> X is rd-continuous, then there is an
antiderivative

(3) B{t) = I b(s) As

with the properties

(4) BA(t) = b(t), t eT, B(x) = 0,

by which it is uniquely determined.
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For T = R this integral coincides with the ordinary integral for Banach valued
functions, defined by Riemann sums. For T = 1 we have

max{f,r}— I

bis) As = sgn(/ - r) • ^ £(/).
/=min{/,T)

Exponential function Forard-continuousfunctiona:T —> R, ait)/x*it) + l>0,
one can define the (generalized) exponential function «„(•, r), r 6 T, as a solution of
the IVP in t :

(5) xA = a(t)x,

If ea(-, r) and ep(-, x) are two exponential functions then

ea(t, x) • ep(t, r ) = ea(S)l)(t, x), t e T,

where the group operation © is defined by

(6) (a © P)it) = ait) + Pit) + ait)pit)n*it),

(7) ( a r " " 1 " ( r )

In the proof of Theorem 3.1 we will need some further properties of the exponential
function. The corresponding results (from Hilger [8]) are quoted there.

3. Solution transferring mappings

We first introduce some abbreviating notations. For a measure chain T and r e T
we define the infinite intervals

T T : = { ( e T : / < T } , Jt := {t el: t >x}.

For functions x : T —>• X, X Banach space, we define seminorms, using exponential
functions as weight functions:

a\\x\\T : = s u p | * ( f ) e a ( T , 0 1 , p\\x\\T
 : = S U P \ x i t ) e p ( r , t ) \ .

tel' reT,

It is always assumed that a, P e ^ (cf. Table in Section 2) as soon as these seminorms
are used. If for two functions x, y : T ^ - X w e have a \\x - y ||r < oo, then we say that
x is a-asymptotic to y on Tr. With respect to a given nonlinear dynamical equation

-B(t,x), (EB)

https://doi.org/10.1017/S1446788700037587 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037587


[7] Generalized theorem of Hartman-Grobman on measure chains 163

we define the so-called solution defect operator J£$>B acting on rd-continuously
differentiable functions x(-) by:

(8) &®Bx(-) : = A{-)x{-) + B(-, or(•)) - xA(-).

The index B emphasizes the dependence on the nonlinear function B in (EB). It is
worth stating the following equivalence

(9) b(-) is solution of (EB) if and only if S?@Bb(-) = 0.

3.1. Bounded solutions of inhomogeneous equations

THEOREM 3.1 (Bounded solutions of inhomogeneous equations). We consider the
inhomogeneous dynamical equation on JT:

xA = A{t)x + B(t),

where A : Tr —> J£{X) and B : Tr —>• X are rd-continuous functions. By <t>A{r, s)
we denote the corresponding transition operator. Furthermore let d : Tr —> X be an
rd-continuously differentiable function. For ft e Si^ let the following condition hold:

\\r <oo.

Let y > 0 be a constant such that /3 — y e ^ .

(i) (The l-Problem) If \<i>A(r,s)\ < K • eP-Y(r, s) for z < s < r then for each
solution x(-) O / ( E B ) we have

B\\x(-) - d(-)\\T < - • e\\&9Bd(-)\\T + K • \x(x) - d ( r ) | .

(ii) {The ^-Problem) If \®A(r,s)\ < K • ep+y{r, s) for r < r < s then there is
exactly one solution x(-) of(EB) with p ||x(-) — d(-) ||r < oo. It satisfies

B\\x(-)-d(-)\\T<--B\\Sf@Bd(-)\\T.

Let P be a metric {parameter) space, B : JT x X x P —> X and d : Tr x P —»• X
depend on p e P, such that££QiBd :JrxP->Xis rd-continuous {which essentially
means that J£3>Bd{-, •) is jointly rd-continuous in Tr and continuous in P). Then the
following statements hold:

(iii) The solution function (t; x, rj, p) \-> x{t; r, rj, p)for the l-problem

xA = A{t)x + B(t,p), x{x) = r)

is continuous.
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(iv) The solution function (t, p) \-* x(t, p)for the ^-problem

xA = A(t)x + B(t, p), 0\\x{-) - d(-, p)\\T < oo

is continuous.

REMARKS. 1. As is outlined in Section 1, we will use some calculus on measure
chains exclusively in the proof of this theorem. For the cases T = R and T = hi one
can read the proof easily by replacing the integrals, exponential functions and 8 and
0-signs according to the definitions in Section 2.

2. There is also a version of this theorem for nonlinear equations *A = A{t)x +
B(t,x) with B(t, x) being small in a certain sense. We will not need this generalization
subsequently.

3. An accurate analysis of the proof can reveal the fact that the constant B can be
replaced by an rd-continuous function ft : J -> R, subject to the condition

1 + (B(t) - y)/x*(t) > const. > 0.

The corresponding exponential function e^(t,x) is defined in (5). hi this case one
can drop the postulate of boundedness of the grainyness. One only has to replace the
condition fi — y e St-^ by the condition that 1 + (B — y)/z*(?) is bounded away from
zero.

PROOF, (a) We first consider the case d(-) = 0; the condition on d(-) then reads as

Q: = fi\\&9Bd(-)\\T=fi\\B(-)\\t<oo.

( b ) I n o r d e r t o p r o v e ( i ) w e d e f i n e t h e f u n c t i o n f : T r ^ > - K b y £ : = / ? © ( / S - y )

a n d c a l c u l a t e ( c f . ( 7 ) ) :

8 -(8 - y) y
HO = [P 0 {fi y)](0 P ^

1 + (jS -

1 + (fi - y)n'(t) l + (fi- y)n*(t)

= const. > 0

for all t e ¥,. Hence § is positively bounded away from zero and thus (by Hilger
[8, Theorem 7.4(i)]) e^(x, t) < 1 for t e Tr. By the variation of constants formula
(Hilger [8, Theorem 6.4(ii)]) we have

[ t,a(s))B(s)As.
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Using the estimates given in the theorem we obtain

I*(OI < I*A(*, r)\\x(r)\ + I \<t>A(t, a(s))\\B(s)\ As

< K • ep-y(f, x)\x(x)\ + ep_y{t, x) • K • ep_r(x, a(s)) • Qe0(s, r ) As

= K-e,,-y(t, r)\x(r)\
K O

+ ep-y{t, T) • • [ep-y(x, t) • ep(t, x) - ^_y(r , r) • ep(r, r)].

hi the last equation we used a formula given in Hilger [8, Theorem 6.2(vi)]. (This is
integration of the exponential function in case T = R and geometric summation in
case T = hi.) Multiplication of both sides with ep{x, t) yields

KQ r -, KQ
\x(t)\eP(r, t)<K- e^x, t)\x{x)\ + — * . [l - e^x, t)] < K • \x(x)\ + — .

This is the desired estimate for (i) in the case that d = 0.
(c) We now prove (ii). Here we define the function § by £ : = /3 © QS + y) and

calculate (as above)

— y —y

{0 + Y)fi*(t)

for all t e JT. So £ is negatively bounded away from zero and thus (by Hilger [7,
Theorem 9.1]) 1 > e${t, x) -+ 0, as t ->• oo.

We show the uniqueness: The difference y = xx — x2 of two different solutions of
the B-problem is a solution of the corresponding homogeneous B-problem

xA = A(t)x,fi\\x(-)\\r<oo.

So we have:

, t)y(t)\ < Ke0+y(x, t)\y{t)\ < Kefi+Y(x, t) • p\\y(-)\\x • ep(t, x)

and y(x) and hence y(-) vanishes identically.

We define the solution x(-) formally as a solution of the IVP

(EB), jt(oo) = 0

by the variation of constants formula of Hilger [8, Theorem 6.4(ii)]:

(10) ** ( / )= [ <i>A(t,cr(s))B(s)As= lim f QA(t, <r(s))B(s) As .
Joe "^A

https://doi.org/10.1017/S1446788700037587 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037587


166 Stefan Hilger [10]

Here (tn)neN is an arbitrary increasing sequence in Tr with lim,,.^ tn = oo. By means
of preassumptions in the theorem and by the formula of Hilger [8, Theorem 6.2(vi)]
we estimate for p,q,r e Tr with p < q < r:

p <S>A(p, a(s))B(s)eli(T, p) As\ < J \<i>A(p, CT(s))||fl(s)Mr, 5)^(5, p) As

< I Kes(p,a(s))-Qep(s,p)As
Jq

K O
= [e^(q,p)-e((r, p)].

We use the last inequality in order to estimate for m < n and fixed i e T t :

xn(t) ~ xm(t) = I / <DA(f, a(s))B(s) As

KQ
< \<t>A(t, r)\ep(t, r) [e^tm, r) - e^(tn, r)].

The bracket tends to zero for n, m ->• 00. Therefore (xn(t))neN is a Cauchy sequence
in X and thus convergent. It is obvious that this limit does not depend on the sequence
(rB)B6N chosen in (10).

For t, tn e l , with t < f,we have by (c):

\xn(t)e,,(.T, 01 = 1 / *A(t, a{s))B(s)ep(r, t) As

The limit process n —»• 00 yields the estimate of the theorem.
To see x is a solution of the dynamical equation: From the representation

x(t) = <t>A(t, T) • [ I *A(r, o{s))B(s) As + f *A(T, a(s))B(s) As]
^ Joe Jr ^

one can see the differentiability. By the help of the product rule (2) one easily
calculates:

Joo
t, cr(s))B(s) As = B(t) + A(t)x(t).

(d) Finally we consider the case d ^ 0 and discuss the parameter dependence. By
a transformation & in the space of rd-continuous functions Tr —> X, defined by
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[11] Generalized theorem of Hartman-Grobman on measure chains 167

the inhomogeneous dynamical equation (EB) becomes

yA = A(t)y + B(t, p) + A(t)d(t, p) - dA(t, p),

S£9>Bd(i,p)

where the inhomogeneous part is replaced by the solution defect of d(-, p). The
postulate p ||x(-) — d(-, p) ||r < oo has to be replaced by the postulate p \\y(•) ||T < oo.
So one can reduce this more general problem to the one already treated.

The parameter p e P is now contained in the new inhomogeneous part J£*2lBd{-, p).
Thus one has to reconsider the proof of (ii) with respect to an inhomogeneous part
depending continuously on a parameter p. It will turn out that the continuous depend-
ence goes through to the unique solution x{-; t, r), p) of the I-problem, respectively
to the solution x(-, p) of the B-problem. One has to apply elementary lemmas on
continuous parameter dependence of integrals and limits, which are valid for measure
chains as well as for K- and toZ-calculus. An important fact hereby is that intervals of
measure chains are compact if they are closed and bounded (cf. Hilger [8, Theorem
1.4]).

3.2. The BIB-Problem Now let the state space X have a decomposition

X = U x V x W = X~ x X° x X+, X° :=X~ xX°, X° :=X° x X+.

From now on we consider the dynamical equation:

xA = A(t)x + B(t,x), (EB)

with components:

uA =

vA = A°(t)v + B°(t,u,v,w), (EB)

wA = A+(t)w + B+(t, u, v, w).

For the nonlinearity we define the optimal Lipschitz constant LB by

L B : = I l f l ( ' ^ > * ( ' . * > ! : Xu X2 e Xt Xi ^ X2, t e l \ e [0 , o o ] .
I |X! - X2\ J

We assume that each IVP associated with (EB) has exactly one solution on the whole
time axis T. This solution depends continuously on a parameter p € P, if the right
hand side of the equation is rd-continuous (see Theorem 3.1(iii)) on T x X x P. In
case T = R this postulate is met if one requires LB < oo (as is done in (IIB) below).
For T = hi one has to pay attention to the fact that there might be none or infinitely
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many solutions in backward time direction. One can exclude this pathology by the
postulate

x i->- x + h • [A(t)x + B(t, x)] is an invertible mapping X —>• X.

Using constants K > 1, y > 0 and a, yS e 8%-ji, such that a < fi and a — y e $-$• we
are going to formulate the following conditions for (EB):

(I) |<t_(r, *)l < A: • ea-y(r, s) for s < r,

\^>%(r, s)\ < K • ea+Y(r, s) for r < s,

\^(r,s)\<K-eP-y(r,s) for s < r,

\0>+(r, s)\ < K • ep+y(r, s) for r < s,

where the function <!>_(•, s) (etc. ) is the evolution operator for the corresponding
linear equation, that is the solution of the IVP

uA = A~(t)u, u(s) = idu

with state space _£?{U, U). The second condition is

REMARK. Because of (IIB) the matrix

(11) ^B: = -r

MXM2

K I M(M2 + ,
MM2

MXM2

KM2 KMM

KM2

KMMX KM2 MM2

which we will need in the theorem below, with

'>0,

M(M2

MXM2

M, : = 1 - M > 0,

M2 : = (1 - M)2 - M2 = 1 - 2M > 0,

M3 : = [(1 - M)2 - M2]2 - K2M2 = (1 - 2M + KM)(\ - (K + 2)M) > 0,

is not negative and has positive diagonal elements.

THEOREM 3.2 (The BIB-Problem). For (EB) let the conditions (I) and (IIB) be
fulfilled. Let r e T be arbitrary and fixed.
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(i) If one has given r\ € V and functions c, d : T —> X with

169

oo, B\\jf&Bd(-)\\z < oo,

then the boundedness-initial value-boundedness-problem (BlB-problem)

(EB) , a | |M(0 -C'(-)\\T < oo, v(x) = r), 8\\w(•)-d+(-)\\x < oo

has exactly one solution b(-) = b(-; x, r)\c, d). It satisfies:

0

< OO.

V

(ii) Let Px, P2 be metric (parameter) spaces and c :J x Pt —> X,d :J x P2 ^ X

depend on p i € P\ respectively p2 e P2, such that the functions J£ 3>Bc : T x Px —> X

and J£@Bd : J x P2 ^- X are rd-continuous (cf. Theorem 3.1(iii),(iv)). Then the

mapping (t; x, r\, pu p2) (->• b(t\ x, r)\c(-, p\), d(-, p2)) is continuous.

In particular it is globally Lipschitz with respect to r\ e V :

fi\\b
+{-,T,rt\c,d)-b+{-tx,ri\c,d)\\T)

PROOF. In steps (a) to (e) we show item (i) of the theorem.
(a) We define the spaces

51 : = {u : TT -*• X , continuous: a\\u - c \\x < oo},

52 : = {z : T r - • X°\ continuous: a\\z - c"+\\T < oo},

53 :={y: T r -> X°, continuous: B\\y - d° \\T < 00},

5 4 : = {w : T r -> X+, continuous: B\\w — d + | | r < 00}.

On the product space S : = 5i x S2 x S3 x S4 we define the iteration mapping

T:lS ^S

as follows:
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• U is the unique solution of the inhomogeneous B-problem on ~F:

MA = A~(t)U + B~(t, 11(0, Z(O), all«O - C"O)Hr < 00.

• Z is the unique solution of the inhomogeneous I-problem on TT:

zA = A+{t)z + B°(t, u(t), z(0) , Z(T) = (ri, w(v)).

• Y is the unique solution of the inhomogeneous I-problem on Tr:

yA = A'(t)y + B*(t, y(t), w(t)), y(x) - («(r), IJ).

• VK is the unique solution of the inhomogeneous B-problem on Tr:

[14]

wA = A+(t)w + B+(t, y(t), oo.

(b) One easily proves that the conditions of Theorem 3.1 (i) and (ii) and its dual version
(for ~F ) are fulfilled and T is thus well defined. In particular, for the respective solution
defect operators we have:

< LB •

- B(-, y(-),

From Theorem 3.1 we conclude:

/«\\U(-)-c-(W
a\\Z{-)-C+{

(LB LB 0 0
LB LB 0 0

\e\\W(-)-d+(-)\\z

||r <oo,

- d(-)\\T

fi\\Jf@Bd(-)\\T < o o .

(a\\u{-)-c-{-)\V\

a\\z(-)-c°(-W

\fi\\w(-)-d+(.)\\J

0

\(u(T),ri)T-cs(r)\
0

(12)

\
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(c) One sees that («*, z*, y*, w*) G S is a fixed point of T, if and only if the mapping
b: T - • X defined by

b(t): =

<u*(t)
, ifreT,

, ifreTT,

is a solution of the BIB-problem. Observe that due to the initial values in the definition
of T the functions (u*, z*)T : ~P -+ X and (y*, w*)T : JT -+ X fit together a t t e l

(d) We are going to prove that T has exactly one fixed point in S. To this end for
/ = 1,2 choose (K,-, Z,, yh wt) € S and define (£/,-, Z,-, 7,, W,) : = r ( « , , z,, >>,, u;,-).
Then we can state:

• By Theorem 3.1(ii) {/, - U2 is the unique solution on TT of the B-problem:

uA = A~(t)u + B~(t, Ui(t), zi(f)) - B~(t, u2(t), z2(0), o | |«(-)ir < oo.

• Z\ — Z2 is the solution on ~F of the I-problem:

. o o o

• Yx-Y2 is the solution on Tr of the I-problem:

;yA = A°(t)y+B°(t, yi(t), Wi(t))-B°(t, y2(t), w2(t)), y(r) = (ud^-u^r), 0).

• By Theorem 3. l(ii) W\ — W2 is the unique solution on TT of the B-problem:

wA = A+(t)w + B+(t, j i ( r ) , wx(t)) - B+(t, y2(t), w2(t)), ^||io(-)llr < oo.

A repetition of the estimate in (b) for this similar situation yields:

(13)

« I | Z , - Z 2 | | T

MB MB 0 0 \
MB MB 0 K
K 0 MB MB

\fiWi-Wi\\J \0 0 MB MB) -wih)

It can be shown that JtB = K-(J?-JtrByl (cf. (11)). Thevector(91,^2 ,93,^4) r : =

B • I with I : = (1, 1, 1, l ) r is positive, so the matrix £ : — diag(<7i, <y2, <73, q*) is
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invertible. By the metric

(I • |oo: sup norm ) S becomes a complete metric space. Now from inequality (13) we
derive:

/U: /Ui\

• ds

The inequality \£? ' • JfB • £\x < 1 remains to be shown. This follows from the
estimate (to be read componentwise):

(0,0,0,0)r <

• I < I .

The line sums of B~X-XB -2 are all in the interval [0, 1[, hence \£~x - J ^ - ^ L < 1.
According to the Banach fixed point theorem the mapping T : S -> 5 has exactly one
fixed point. We have thus shown the existence and uniqueness of the solution of the
BIB-problem.

(e) On both sides of inequality (12) we insert the fixed point («*, z*, y*, w*) of
the mapping T. A resolution of this inequality with respect to the fixed point vector
— this essentially means a multiplication with (J — JtfB)~x = K~XJKB — yields
inequality in (i).

(f) In order to show the continuity of the fixed point we have to define the iteration
mapping T on a product space of functions which depend on parameters,

5, : = {u : T x />, x P2 X .continuous: supa\\u —
P1.P2

oo}, 5 2 : = .

Additionally one has to take into account that T : S -> S depends continuously on
parameters, such as r and r\. One can perform the whole proof given before for this
modified situation as well. An important fact here is that the image (U, Z, Y, W) =
T(u, z, y, w) is again contained in the space S of vectors of continuously parameter
dependent functions. This property is assured by the continuous dependence on the
parameter p = (pu p2) of the solutions of the I-problem and the B-problem (cf.
Theorem 3.1(iii),(iv)). A more thorough discussion of these technical details can be
found in Hilger [7].
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(g) We have to show the Lipschitz property. Abbreviating, we set b(-) : =
b(-; x, r)\c, d) and b(-) : = b(-; r, r]\c, d). First it is clear that b(-) — b(-) solves
the nonlinear BIB-problem

(14) xA = A(t)x + B(t, x + b(t)) - B(t, b

a| |«HT<oo, u(r) = /?-»?, p\\w\\r < oo,

with nonlinear part S(t, x). For the corresponding solution defect operators of the
zero function it can be seen that ^f *3ls 0 = 0. So for this BIB-problem the condition
in (i) of this theorem is fulfilled. The estimate given in (i) applied to this new situation
yields the estimate in (ii). Hence the theorem is proven.

REMARK. Without emphasizing this fact in step (d) we used the special case n = 4
of the following generalization of the Banach fixed point theorem:

Let T: S -> 5 (5 = Si x • • • x Sn, S, complete metric spaces) be a generalized
contraction, that is

'di((Tx)l,(Ty)l)'

\dn{{Tx)n,{Ty)n)j

with a matrix J(f, subject to the condition that all principal minors of the complement-
ary matrix J - J f are positive. Then T has exactly one fixed point. The proof can
be found in Hilger [7]. The positivity condition just ensures that (J* — X)~x • I is
strictly positive. As one can see in the above proof this is essential for the construction
of the equivalent metric on S. There the principal minors of J — XB are given by
the constants MUM2, M3 (cf. (11)).

3.3. Main theorem on solution transfer Besides the dynamical equation (EB) we
consider two further dynamical equations (Ec) and (ED).

xA = A(t)x + C(t,x), (Ec)

xA = A(t)x + D(t,x), (ED)

which have the same form as (EB). For reasons to become clear in Theorem 3.3 below
we call these two equations comparison equations.

We are going to relate the solutions of (EB) to the solutions of (Ec) and (Eo)
according to Theorem 3.2. To this end we first define a (trivial) fiber bundle over T

(15) $>Ji?BcD : = {(T, c0, d0) e T x X x X : a\\^%c(-; r, co)||r < oo,
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where c(-; x, c0) (e.g. ) is the solution of the IVP (Ec), x(x) = c0. The estimate
a\\^f&Bc(-; T, co)ir < oo (for example) also contains the fact that c(-; x, c0) exists
for all t < r. The fiber bundle over x € T exactly contains the pairs (c0, d0) of points
through which pass the solutions of (Ec), respectively (ED) with finite (EB)-solution
defect.

Now we define the mapping

(16)
X V X

l-BCD
I ( T , CO, b(x;x,r)\c(-;x,co),d(-;x,do)),

where b(-; x, r)\c(-; x,co),d(-\ x, d0)) is the solution of the BIB-problem (cf. Theorem
3.2)

(17) (EB), - c (-;r, co)||r < oo,

The importance of the mapping JfBcD becomes apparent in the following

THEOREM 3.3 (Main theorem on solution transfer),

(i) The mapping J^BCD satisfies the estimate

'\J4?BCD{x,co,do,r))-Co\\

T< CO<

K\JfB
+

CD(T,Co,dQ,r])-do
+\/ 0 T/J

Observe that we have =^°CD(t, c0, d0, r)) = r)for all (r, c0, d0) e
(ii) The mapping J#BCD is continuous and globally Lipschitz with respect tor) e V:

> CO> do, n)\\
, c0, d0, rf)\

> CO, do, rj)\
, c0, d0,

\J$?B
+

CD(x, c0, d0, t)) — ,

:, Co, do, r)) — ,

(iii) Let (r, c0, do, rf) e 3>JfBCD * V be fixed and c ( ) : = c(-; r, c0), d(-) : =
d{-\ x, d0) be solutions of(Ec) and (ED) with respect to the initial points (r, c0) and
(T, d0), respectively.

Then the following statements on the mapping b : T —*• X are equivalent:

(A) b(-) : = JfBCD{-, c(-), d(-), w(-)) and v(-) is a solution of the IVP

vA = A°(t)v + B°(t, J?BCD(t, c{t), d(t), u)), v(x) =
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(B) b(-) is a solution of the BIB-problem

(EB), a\\u(-)-c-(-W <oo, v(r) = r,, B\\w(-) - d+(-)\\r < oo.

(C) b(-) is a solution of the problem

(MB), a\\x(.)-c(-W < o o , W(T) = I?, e\\x(-) - d(-)\\T < oo.

(D) b(-) is a solution of the IVP

(EB), x(r)=JfBCD(T,c0,d0,r1).

(E) b(-) is a solution of the nonlinear IVP

xA = A(t)x + B(t, Jf?BCD(t, c(t), d(t), v)), x(r) = JfBCD(r, c(r), d(r), t]).

REMARK. The important property of JfBcD is given by the equivalence of (A)
and(B) in (iii). If c(-) and d(-) are solutions of (Ec) and (ED) respectively, then
the mapping JfBCD transforms these two functions into a solution of (EB) which is
a-asymptotic to c(-) on Tr and ^-asymptotic to d(-) on Tr. Due to the fact that b(-) is
not uniquely defined by these two properties one has additionally to insert the solution
of the IVP (A) into J^BCD- It contains information on the X°-component of b(-).

PROOF, (i) and (ii) directly follow from the corresponding items in Theorem 3.2.
One only has to observe the definition of J^BCD- An essential fact hereby is that for a
function x : T -> X the following estimates hold:

k ( r ) |< a | | x ( - ) | | r and |JC(T)| < fi\\x(-)\\t.

The continuity of J4?BCD is inherited from the continuity of the solution b(-; r, r)\
c{-\ T, c0), d{-\ z, do)) of the BIB-problem (17). One has to take notice of the fact that
the functions c(-; r, c0) and d(-\ r, a\,) are continuous with respect to inital data.

The equivalence of (B) and (C) in (iii) directly follows from the definition of JfBCD
and Theorem 3.3(i).

Let b(-) be the function described in (B). For arbitrary and fixed s e T w e have the
identity

because both these functions solve the BIB-problem

(MB), a\\u - c " | | T < oo , v(r) = r), B\\w - d+\\r < oo ,

the left one by definition, the right one by the fact that one can replace x by s in these
three conditions due to the compactness of [T, S], respectively [s, r ] . By Theorem 3.2
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this BIB-problem has a unique solution. From the definition of JfBcD we derive for
arbitrary and fixed s el:

(18)
V = b(s; s,V°(s)\c(-), d(-)) = b(s; s,V°(s)\c(-; s, c(s)), d(-; s,

further

(b°)A(s) = A°(t)b°(t)+B°(t,b(t))=: A°(t)b°(t)+B°(t,JfBCD(t,c(t),d(t),b°(t))).

Therefore b° solves the IVP given in (A). This observation and the identity (18) imply

the equivalence of (A) and (B). This equivalence contains the following properties of

&(•):

Ms a solution of (EB), $(•) = JfBCD(-,c(-),d(-),b°(-)), V°(r) = r).

So b(-) is the (unique) solution of the IVPs given in (D) and (E).

For each fixed (T, C0, d0) G !2>JFBCD by J^BCD is defined a so-called integral
manifold

^JfBCD(r, c0, d0): = {(t, Jf?BCD(t, c(t; x, c0), d(t\ r, 4,), v) : (r,i>) € Tx V} c T x X

with parametrization space T x V; ^JfBCD(x,co,do) is globally Lipschitz with
respect to v e V, because the defining map Jf?BcD is. This property is directly
connected to the fact that the nonlinearity B in (Ec) is globally Lipschitz (by condition
(IIB)). For the autonomous case and c0 = 0 and do = 0 it is known that the (classical)
center manifold ^(<ffi'BLL (0, 0) asymptotic to the zero function is ̂ k, if the nonlinearity
B : X —y X is ^k (L is the symbol for the linear equation). The proof of this property
requires sophisticated methods involving so-called scales of Banach spaces. This idea
was proposed in [15]. In [9] the author of this paper gave a proof of the ^-property
which covers the 'homogeneous' time scales T = K and T = hi.. Here calculus on
measure chains is also employed.

The following theorem gives some results on these manifolds.

THEOREM 3.4. Letc(-) = c(-; r, c0) andd(-) = d(-\ r, a\,) be fixed solutions of (Ec)
respectively (ED). Then the integral manifolds M3%>

BCD(S, C(S), d(s)) are identical
for all s e l ^3fBcD(*, c0, d0) is invariant under the flow of(EB) in the following
sense:

(t0, b0) G J?J?BCD(T, C0, do) => (t, b(t; t0, b0)) e ^JfBCD(r, c0, do) for all t e T.

This invariant manifold contains exactly all solutions of(EB) which are a-asymptotic
onTT to c(-) and ft-asymptotic onJr to d(-).
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PROOF, (a) We have :

, c(s), d(s)) = {(t, Jt?BCD(t, c(t; s , c(s)), d(t; s , d(s)), v) : ( ( , » ) 6 T x V]

= {(/, JKcDit, c(t), d(t), v) : ( / , t i ) 6 T x V).

This expression is independent of s.
(b) Let (t0, b0) e JUJ^BCD^, C0, do). Then b(-) : = b(-\ t0, b0) solves the IVP

(EB), x(t0) = bo = JfBCD(to, c(t0), d(to), b°).

Because of the equivalence of (D) and (A) in Theorem 3.3(iii) — replace x by t0

we then have for all t e T:

Therefore (t, b(t)) e ^J^BCD^, CO, d0) for all ( e l The last statement is a direct
consequence of Theorem 3.3.

3.4. Solution transfer at lacking critical component We are going to formulate
Theorem 3.3 for the special case that the middle component in the equations (EB),
(Ec) and (ED) is lacking (i.e. X° = V = {0}). To this end let the nonlinear equation

uA = A-(t)u + B-(t,u,w), (HB)

wA = A+(t)w + B+(t,u,w),

and two further nonlinear equations (Hc) and (HD) with nonlinearities C and D of
the same form be given.

For this situation and 8 : = a = fi the conditions (I) and (IIB) read as follows:

(I) |*-(r , 5)| < K • e^Y(r, s) for s < r,

*+('". s)\ < K • es+y(r, s) for r < s,

L K

We define 9 /BCD by

(19) 9/BCD : = {(r, c0, do) e T x X x X : ,||JS?0Bc(.; r, co)\\
v < oo,

* -

The relations

<20,

give the counterpart of J4fBCD for this situation. Theorem 3.3 reads for this special
case:

( T , C0, do) i->- Ji?BCD(r, c0, d0, 0)
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THEOREM 3.5 (Solution transfer at lacking critical component). We consider the
mapping ^BCD with respect to the situation described above. Let the conditions
(I) and (IIB) be fulfilled.

(i) The mapping ^BCD satisfies the estimate

,Cs,dz) ~C0\\

,c0,do)-d0\)\\JrBCD(r

K \ (S\\J?3>BC(-;T,C0)\\
T

)
< (
-yM3\ K M2

(ii) The mapping J?BCD is continuous.

(iii) Let ( r , c0, d0) e ^^BCD and c(-) : = c(-; r, c0), d() : = d(-; x, do).

Then the following statements on the mappings b : T —> X are equivalent:

(A) H-):= /BCD{;c{-),d{-)).
(B) b(-) is a solution of the BB-problem

( H B ) , « « « ( • ) - c - ( - ) l | r < o o , s \ \ w ( - ) - d + ( - ) \ \ T < o o .

(One can also list the corresponding properties (C) - (E)from Theorem 3.3 (iii). We
omit these because they are not necessary for our further considerations.)

PROOF. We only have to show, how one can derive the estimate in (i) via linear
algebra. Directly from Theorem 3.3 we see that

In the two vectors we take the sup norm of the first and the second line and of the third
and the fourth line, respectively. Accordingly we have to take line-sup-norms of the
corresponding 2 x 2 submatrices of JtB (cf. (11)). This yields the estimate in (i).

4. Topological equivalence

We will now use the theorems of Section 3 in order to establish some theorems on
the topological equivalence of the given system

xA = A(f)x + B(f,x) (EB)
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to systems of simpler forms. Let (EB) satisfy conditions (I), (IIB) and let

xA = A(t)x ( E J

be the associated linear equation with the 'nonlinearity' L = 0.
The following theorems all follow directly from the very general Theorem 3.3 and

its special case, Theorem 3.5.

4.1. Center integral manifolds For the fixed equation (EB) we define:

9JP : = ((r, /o) € T x X : o||fi(., /(•; x, /0))||r < oo, fi\\B(; /(•; x, lo))\\T < oo j

(/(•; T, /„) is the solution of the IVP (EL), x(x) = /„). With (16) we define

(r, /„, n) M- JtBLdT, /o, /o, n) = b{x; r, »,|/(.; x, /„), /(•; T, / O ) ) .

So, instead of two arbitrary comparison equations (Ec) and (ED) we consider
here the linear equation (EL) alone. The following theorem is a direct translation of
Theorem 3.3 to this new situation.

THEOREM 4.1 (Center integral manifolds). For (Efi) let the conditions (I) and (IIB)
be fulfilled.

(i) The mapping Jif satisfies the following estimate:

\n-i°0\ \ I
\ri-lo\\ Y

1 matrix consisting of the first and the fourth line of MB. Observe

thatJf?°(x,lo,n) = n-
(ii) The mapping Jf? is continuous and continuous with respect to r\ e V:

\jf-(x, /„, n) - jr-(r, /o, ^ ) | \ <

l )[) - B U '

In particular J$? satisfies a Lipschitz condition with respect to rj.

(iii) Let (x, /0, n) e @Jf x V and /(•) : = /(•; T, / O ) . The following statements on

a mapping b : T ->• X are equivalent:
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(A) b(-) : = J^(-, /(•), «(•)) ««^ "(•) " « solution of the IVP

uA = A°(t)v + B°(t, Jf(t, l(t), v)), V(T) = r).

(B) b(-) is a solution of the BIB-problem

( E j , ) , J u ( - ) - / " ( O i l 1 < o o , W ( T ) = IJ , p\\w(-) - l+(-)\\T < o o .

(iv) 7Vie integral manifold defined for each (r, l0) € ^ J f fry

^ , /O) = {(r, Jf(t, l(t; T, /0), w) : (t, v) e Tx V} = JtJ?BLL(x, l0, l0) c TxX

(?/î  io called center integral manifold a-fi -asymptotic tol{-\ r, lo))is invariant under
the flow of(EB) in the following sense:

(t0, b0) € Jtitfix, /0) = > (t, b(f, t0, b0)) e Jt^(j, l0) for all t e J.

REMARKS. We consider some special cases of the above theorem:
1. Under the conditions

(21) a | |£ ( - ,0) | | r <oo, fi\\B(;0)\\T<oo

we have (T, 0) 6 StJf? and therefore get the center integral manifold a -^-asymptotic
to the zero solution (of (EB)). By the above theorem it contains all solutions b(-) of
(EB) which are subject to the condition

2. In the case that B(-, 0) = 0, condition (21) is fulfilled for all pairs (a, /?). One
finds for each (a, /J)-trichotomy of (EB) the corresponding center integral manifold
asymptotic to the zero solution. Ifai < o^and/?! > fi2, then the corresponding center
integral manifolds JUVxir, 0) and JtM1^, 0) fulfill the following inclusion:

This is the idea of the hierarchy of manifolds proposed in Aulbach [1].
3. If B(-, 0) is bounded (for example B(-, 0) constant or periodic), then (21) is

fulfilled for all pairs
a <0<p.

In autonomous or periodic systems under the conditions (IB) and (IIB) one gets the
classical center manifold.
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Now the question arises: For which (r, /0) is a given solution b(-) of (EB) located
on ^fjf(x, /0)? This can also be answered by the help of Theorem 3.3. We define:

: = ((r, W e l x X : JB(-, &(•; x, bo))\\
r < oo, P\\B(-, b{-; x, 60))||r < oo],

[(T, b0, r\) h> J#1BB(*, bo, b0, n) = /(*; r, r)\b(-\ x, b0), b{-\ x, b0)).

The mapping J4?LBB is defined in 16, one has to replace (EB) by (EL) and (Ec), (Efl)
by (EB). So here we study the linear equation (EL). The nonlinear equation (Efi)
plays the role of the comparison equations (Ec) and (ED).

/(•; r, r)\b{-\ x, b0), b(-\ x, b0)) is the solution of the BIB-problem

Ju(-)-b-(-)\\z
 <OO, U(T) = I7, P\\W(-) - b+(-)\\z < oo.

The following theorem holds.

THEOREM 4.2 (Linearization map). Let the conditions (I) and (IIB) for (EB) be
fulfilled.

(i) 77ze mapping Jr satisfies the following estimate:

x, b0, r,) - bo\\ < K_ L\\%®-Lb(-- r, fto)

T , 6 O , ^ ) - 6 O
+ | / ~ Y \p\\X®tb{-;TM)

Again observe Jr (r, fe0. ̂ ) = V-
(ii) T/ze mapping J& is continuous. //(E^) is again another equation of the same

form, then for the corresponding mapping Jr_ we have:

(\0~{x, b0, v) - 60~] £

\ | [ ^ + ( r , 60, >?) - ô+] " [2 + ( r , 60, ^) - 6J]

< K_ (a\\B~(; H-; x, bo)) - B-(; b(-\ r,

- Y [eWB+i-^i-x^oV-B+i-^i-x

(iii) Let (r, b0, rj) e <3~]fe x V and b(-) : = b{-\ x, b0).
Then the following statements on the mapping I : T —»• X are equivalent:

(A) /(•) : = j£(-, fe(-), v(-)) a«^ v(-) is a solution of the linear IVP

vA = A°(t)v, v(x) = r).
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(B) /(•) is a solution of the linear BIB-problem

( E J , a\\u(-)-b-(-)\\r <OO, v(T) = r}, fi\\w(-)-b+(-)\\T<OO.

(C) /(•) is a solution of the linear problem

(ML) a\\x(-) ~ H-W < OO, v(t) = ri, p\\x(-) - 6 (0 | | r < oo.

(D) /(•) is a solution of the linear IVP

(ML), x(x) = ^ ( T , 60, »?)•

(iv) For a// (r, 60, ID e ^ 5 ^ x V w

(22) (r, J £ ( T , OO, /O°))

For all (T, /O, O°) e ^ J ^ x V we

(23) (T, Jf(z, l0, 6°)) e S>^ and jfc(x, 3&(T, lQ, b%), 1°) - /0.

(In the absence of the critical component (V = {0}) this is the classical Theorem of
Hartman-Grobman.)

PROOF, (i) The estimates directly follow from the corresponding ones in Theorem
3.3, if one takes into account that the Lipschitz constant LL = 0 and therefore ML = 0

and then WL)u=(* ° ° ° W (11)).
hi order to prove (iv) it is sufficient to consider the first partial statement. To this

end let &(•) : = »(•; r, bo) and /(•) be a solution of (EL) with /°(r) = l°G. Then we
have

, b(-), /°(-))ir = a\\B(; jfc(; b(-), /°

< B||fl(., jfc(; 6(0, l°

<LB-a\\7fc(., 6(-), /
The last estimate follows from (i) of this theorem and the relation (r, 60) = (T, 6 (T) ) e
@J4?. So we have proven the left identity in (22). By Theorem 4.2 (iii) the mapping
6(-), by Theorem 4.1(iii) the mapping Jf{-, !&{•, 6(0, l°0{•)), b°(-)) is a solution of
the BIB-problem

(24) .ll«(-)-^"(-,6(-),/°(-))llT <oo,
(25) (MB), v(r) = 6°(T),

(26) ^||u)(0-^+(-,6(0,/°(0)llr <oo.

Therefore the two functions coincide. The evaluation at time t = z yields the right
relation in (22).
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4.2. Horizontal flbration In addition to (I) and (IIB) let the following condition
hold from now on

For all solutions x(-) of (EB) or (EJ : JB(-, x(-))\\r <oo, fi\\B(-, x(-))\\T<oo.

As a consequence we have for all solutions /(•) of (Et):

(27) J^$>Bl{-W < oo, p\\&9Bl(-)\\T < oo

and for all solutions b(-) of (EB):

(28) a\\^^Lb(-W < oo, fi\\&®Lb{-)\\x < oo.

This condition does not depend on r € T. For example, it is a consequence of another
condition

supJ|JB(-,x)||r < oo, sup/jllflO.jOlU < oo,
xeX xeX

which is somewhat more transparent, but stronger. From (Ills) we immediately get
for the mappings defined in the last section: @Jt? — @Jr = T x I . Now we have:

THEOREM 4.3 (Horizontal fibration). For (EB) let the conditions (I), (IIB) and
(IIIB) be fulfilled. For fixed r e T we get the following fibration

(29) T x X = | j JKje^x, l0)
/oet/x{O)xW

oflxX (disjoint union). It is known as a horizontal fibration.

PROOF, (a) Disjointness: Let /Oi, /02 £ U x {0} x W and assume there exists (t, x) e
jeje(.T,lm)nJtrjr(T,lm). Wese t / iO := / ( - ; r , / 0 , )and/ 2 ( - ) : = / ( • ; r , /0 2) . By
definition of MJV we have:

x = b{t; t, u|/,(.), /,(•)) = b{t; t, u|/2(-), /2(0).

We conclude (regarding the uniqueness of the solution of the IVP):

H-) : = b(-; t, u|/,(.), /i(0) = H-\ t, v\h(-), hi-)).

By definition of b{-\ t, u | / i ( ) , / i ( ) ) as a solution of the BIB-problem we have:

«n/ro - ii(-n' < .ii/ro) - &-(on'+«ii6"(o - ^ O I I ' < oo.

This is only possible for /^ = l^2. In the same way one derives IQX = /<£ and thus
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(b) The covering property: Let (t0, b0) e T x X and let £>(•) : = b(-; t0, b0) be the

solution of the IVP (EB), x(t0) = b0. Further on we define /(•) : = jfc(; b(-), 0) (cf.

Theorem 3.7) and l0 : = l(t). Then (by Theorem 3.7(iii), (A) <=> (B)) we conclude

a\\l-(-)-b-(-W <oo, /(r) = 0, fi\\l
+(-)-b+(-)\\T<oo,

and fe() is a solution of the BIB-problem:

So we have 6(0 = b{-\ t0, b°\l(-), /(•)), especially

b0 = b(t0) = M?o; t0,62i/(o, /(•))

This just means that (t0, b0) e ^fJif(r, /0).

4.3. Asymptotic phase (- vertical fibration) In this section we are going to con-
struct mappings, which transfer solutions from one integral center manifold of (EB) to
another. To this end we consider the dynamical equation (EB) in two different forms

B°+{t,u,z),

and

wA = A+(t)w + B+(t,y,w).

For these two equations we consider the mappings ^ introduced in Section 3.4 for
equations of the form (Hs). The role of the S-dichotomy (in Section 3.4) is here
played once by the a-dichotomy and once by the ft -dichotomy of (EB). Instead of
the comparison equations (Hc) and (HD) we will choose the linearized equation
and the equation (Efi) itself.

Looking at (19) and (20) we define:

BLB = ((T> lo,bo)elxXxX: a\\&9Bl(-, r , / 0 ) | | r < oo} = T x X x X,

L = {(*, bo, /o) e T x X x X : P\\&9BK-; x, / 0 ) | | r < oo} = T x X x X.

The identities * follow from (9) and (27) and

/BLB = JBLB : T X X X X - > - X = ( / X Z w.r.t. (Ea
B) and a-dichotomy,

JBBL = SBBL :TXXXX^X = YXW w.r.t. (E£) and ^-dichotomy.
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Now we combine these two mappings as follows:

^'\(x, /„, 6b) H* / L ( r , ^ ^ ( T , /0, 6o), /„),

<- J l x X x X -> X,

( (T, /o, 6o) ^ ^/8 \B(r , /0, flBL{x, b0, /„)).

The following theorem describes the properties of these mappings:

THEOREM 4.4 (Double asymptotic phase).

(i) The mappings J? and ^fulfill the following estimates:

, /o, 60) - /ol\ < K(M2 + K2M) (a\\&9Bl{-, x,

(-;T, j?£BL(T,bo,lo)W

(ii) r/ie mappings J* and J1 are continuous.
(iii) If l(-) and b(-) are solutions of (EL) resp. (EB),then

are solutions o/(Eg).
(iv) Furthermore for (r, I c W e l x X x X the following identities hold:

(30)

^ ( T , /0, 60) = 3^(r, /o, ^ ° ( T , /o, 6b)), i.e. ^ ( r , /0, fc0) J P

(31)

^ ( T , /o, 60) = ^ ( r , l0, y°(r, l0, b0)), i.e. ^ ( T , /O, 6b)

(32) lo = jfc(J

(33) /0 = l (

(34) fo0 = ^ ( r , ^ ( T , 60, 0), ^ ( r , /o, 60)),

(35) b0 = ~J(T, jfr{x, b0, 0), J ( r , /o, 60)).
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REMARKS. 1. If /(•) is a solution of (E^) and b(-) is a solution of (EB), then (iii)

and (iv) of the preceding theorem tell us that ^ (•,/(•), b()) is a solution of (EB) on

the center integral manifold ^ # J f (r, /0) which is a-fi-asymptotic to /(•; r, / O ) .
2. As we will see in the subsequent proof, there is a solution 62()=c7/gLB(-, /(•), b{-))

of (EB) with the following property:

a\\b\{-) - b\(-)\\x < oo, fi\\b°(-) - J°(-, /(•), b(-))\\r < oo.

b2(-) is called the positive asymptotic phase for b(-) and #?(•, I(•), b(-)) is called

the negative asymptotic phase for b2{-). Therefore one can call ^ (-,l{-),b{-))

the negative-positive asymptotic phase of b(-) on the center integral manifold a-fi-

asymptotic to /(•). Consequently one can call ^ {-,l{-),b(-)) the positive-negative

asymptotic phase of b(-) on the center integral manifold a-^-asymptotic to /(•). The

identity (34) just says that the effect of ^ on a solution b(-) of (EB) is reversed by J

in a certain sense. The argument J r (T, b0, 0) in J? contains the information about

the original center integral manifold a-/J-asymptotic to b(-) in terms of the linearizing

homeomorphism Jr.

PROOF, (ii) and (iii) are direct consequences of the definitions of ^ and J and
Theorem 3.5(ii), (iii).

(i) We only show the second lines in both inequalities, the others are dual.
First, using the estimates given in Theorem 3.5(i) and observing (9) we have

K (M2 + K2M K

yM3 V & M2 + K2M)\p\\J?2!Bb(.;x,bo)h

K

By duality we also have

K

Now, inserting the definition of Jf, we see that

- / U \ /nl = l ^ (T fla (T I b )

K(M2 + K2M)

- Wi
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and

?, /„, h), lo) - /a
BLB{T, h, bo)\ + \/a

BLB(T, /„, b0) - bo\

{.; r, J?a
BLB{x, l0, bo))\\T+a\\&@BH-, T, bo)\\

T).

(iv) We only show the identities (27), (29) and (31). The others are dual.
Let 6,(-) : = H-, r, b0) and /,(•) : = / ( • ; x, /0) , /2(-) : = ^ ( - , fei(-), 0).
For / = 2 , . . . , 5 we define the mappings b,:: T —>• X by

62:f ^ fBLB(t,h(t),bx{t)),

h:tM> f%BL{t, b2(t), h(t)) = J(t, h{t), 6,(0),

, hit), 64(/)) = ^ ( ? , /2(0,

From Theorem 3.5(iii) we know that all these functions are solutions of (E8). and
that there are the following estimates:

for 62(-): J M O - T O i r <oo,B| |6|(-)-6?(-)| |T <oo,

for 6 3 O : P\\b°i-) - bH-W < 00, eWbfi-)-If i-)\\T< 00,

for 64(-) : B\\bl(-) -b°i-)\\r < 00, B\\bti-) -/2
+(-)llt < 00,

for 6S(-) : a||65-(.) -/2"(-)ir < oo, a||6f(-) - b]i-)\\r < 00.

From the first two lines we see:

and

•) - 6f oir+ji62-o—/rcoir < oo.

Therefore 63(-) = a/ '(-,/i(0. ^i(O) lies on the a-^-center manifold around
Theorem 4.1 (iii) then implies:

J ; l0, b0) = J?i; k, J°i-, lo, b0)).

Inserting x yields (30).
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Application of the mapping 5 r into equation (27) yields, when observing Theorem
4.2 (iii) (A) <=> (B):

/iO = Jfr(; M-, /iO, ?°(-, /iO, 6(0), /, (0)) =

which is just identity (32).
For 62(0 w e have (when observing the definition of / 2 ( ) and Theorem 4.2 (iii))

- /2+0)llr < /»116+0) - 6+0)llr + /1II6+O) - /2
+(0llt

< .||6°+0) - 6f 0)||T + /> 116+0) - /2
+0)llr < oo.

Therefore 62( 0 and 64(«) are solutions of the following BB-problem which is uniquely
solvable (cf. Theorem 3.5):

(MB), / j | |y(0-6fO)ll r<°o, /.l |w(0-/2
+0)llT<oo,

hence they are identical.
Furthermore b\{-) and bs(-) are solutions of the BB-problem

(MB), . ll«0)-/2-(0ir<oo, a | |z(-)-4(0ll r<oo,

they are identical as well. If one here inserts the definitions of b\ (•) and b5(-) and then
evaluates these two functions at the point t = r, then one arrives at the identity (34).

4.4. Generalized Theorem of Hartman-Grobman In addition to the equation (EB)
and the corresponding linear homogeneneous equation (EL) we consider the so-called
reduced equation

uA = A~(t)u,

vA = A°(t)v + B°(t, Jf(t, 0, v)), (E«)

wA = A+(t)w.

Let again the conditions (I), (IIB) and (IIIB) be fulfilled.
We define the two mappings

[(T,6O) i- /

and

((r, r0) H^ ^/ ( r , r0, J T ( T , 0, r°)).

Then the following generalization of the Hartman-Grobman-Theorem holds:
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THEOREM 4.5 (Generalized Hartman-Grobman-Theorem).

(i) The mappings ~<s and Sf fulfill the following estimates:

189

Bl{-\ r,bo)\\
r)

(ii) sF and $ are continuous functions.
(iii) Ifb(-)isa solution of(EB), then r(-) := ~y (•, b(-)) a is solution of(ER) with

a||ii(-) - b~(-W < oo, fi\\w(-) - b+(-)\\x < c».

//>(•) is a solution of(ER), then b(-) := & (•, r(-)) is a solution of(EB) with

«««(•) - r-(-)\\r < oo, ^||wO> - ^+(-)llt < oo.

For (r, x) e T x X we have:

(36) and j , = x.

*$ and ~<$ are fiber homeomorphisms, that is for each fixed r e T
ly (T, •) are homeomorphisms inverse to each other.

(r, •) and

REMARK. AS already outlined in the introduction, the mapping w conveys a
certain information about the solution £>(•) of (EB). The function WT(-, &(•)) —
the first and third component of &(-, /?()) — is a solution of the linear equations
in (Es). These solutions characterize the center integral manifold for b(-) via its
a -fi -asymptotic behaviour. In the center component of <& (•, 6())we conserve the
information about the asymptotic phase of b(-) on the center integral manifold a-jS-
asymptotic to the zero function. So this center component solves the (middle) equation
of (ER), which is called the reduced equation (cf. Theorem 3.3). It describes the flow
on the center integral manifold of (EB) a-)6-asymptotic to the zero function. From the
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fact that v and ^ are inverse to each other (as described in (33)) we see that these
two features (manifold and asymptotic phase) are sufficient to uniquely characterize
solutions of (EB). For the transformation via Sf the asymptotic phase is needed to
single the original solution of (EB) out of its center integral manifold.

PROOF, (ii) is a consequence of the continuity of the mappings 5 r , Jif, ^ and ^ .

(i) directly follows from the corresponding estimates for the mappings 5r , ^f, fl

and J?. One has to observe the definitions of W respectively & .
(iii) We first consider the following diagram:

T x X <—> ^Jf?(t0, 0) xT (T x XT) <—> 1 x X

(r, bo) & (r, ^ ( T , 0, bo), J&(T, b0, 0)) = (T, x0, /o) & (r, /0", *0°, /0
+)

t MO,ro°),(ro-,O,/o
+)) t (r, r0)

is defined as the fiber bundle product of the two fiber bundles j^^C{to, 0) (a-/}-
integral center manifold asymptotic to the zero function, t0 is chosen fixed) and T x P
(trivial bundle of the 'hyperbolic part' over T). By definition we have ~W = &2 ° #i
and & =%o £f3. We have to show: #i and % are bundle homeomorphisms inverse
to each other. The same with &2 and %.

The identity (34) (with /0 = 0) yields for arbitrary (T, b0) el X X:

(% o %){x, b0) = (r, y(x, jfc(x, b0,0), J(t, 0, bo)) = (r, bo),

so we have %o^i = id|TxX. For arbitrary (r, x0, l0) G ^£?(T, 0) we have:

(0i o «,)(T, x0, /0) = (r, ^ ( r , 0, J ( T , /O, X0), j£(r, Jf (T, /O, X0), 0)) = (r, x0,

Thus it follows that: % o ̂ f4 = id|^^.. For the second and third component in * the
following considerations were necessary.

Because of (T, X0) e ^Jf?(t0, 0) (center manifold around the zero function) we
have Jr(r, x0, 0) = 0. Identity (35) just yields * for the second component. Because
of 1° = 0 we get the equality of the third components in * by (33).

Let (T, X0, /O) e JC&. Then we have:

o 92)(r, xo, lo) = (r, JP(r, 0, JCO°), (/O", 0, /+)) = (r, x0, l0)

because of x0 = J ^ ( T , 0, x°) <̂ => (r, x0) e ^Jt?(t0, 0) and l0 = (lo~, 0, #
(T, /O) G T x XT. We conclude%o<g2 = \
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We have

^ 2 o #3(r, /•„) = (r, ro~, J r (T, 0, ro°), r+) = (r, r0);

thus ^ 2 ° ^3
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