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A Theorem on the Integral of Stieltjes.

By Dr J. Hysror.
(Received fth August 1926. Read 5th November 192)

§ 1. Introduction.

In a recent paper * Mr J. M. Whittaker has given the following
Theorem :—

If y (x) be the indsfinite Riemann integral of a bounded positive

Sfunction g(x), and if f(x) be any bounded function, then the
equation

b b
(7@ o@ o= re wv
18 true whenever either side exists.

It was suggested to me by Mr E. T. Copson that a similar
result would probably hold if ¢ (x) is the Stieltjes integral with
respect to a monotone function of a positive bounded function.
The Theorem here proved includes Whittaker’s Theorem as a

special case, and is much more general than that suggested by
Copson, viz. :—

Tarorew: Data: (i) The function (z) = I: 9(z) d (z)
18 well-defined t in (a, b)
(ii) f(x) is bounded in (a, b),and - F=<f(x) = F.
Result: [ 7@ a4 @) = [ 7@ 9 () 48 ()

whenever either integral exists.

* Proc. Lond. Math. Soc., Ser. II, Vol. 25 (1926), p. 218.

b
t It is only necessary to postulate the existence of J. g (x) d¢ (), since that
a

x

of I g(x) d¢ () may then be deduced. [See PorrarD: Quart.rly Jo., Vol
a

49 (1923), p. 76 (I ].
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Simple cases of the Theorem are already known: thus when
f(x). g(x) are continuous, and ¢ (x) is of bounded variation, no
trouble arises as to the existence of the integrals concerned, and
their equality is readily proved.*

£ 2. The Stieltjes Integral.

Two definitions of the Stieltjes integral are recognised. That
adopted in the present paper was given by Stieltjes,{ and may be
stated as follows:

Let g (x), ¢ () be any two real functions defined in the interval
(a, b); and let A, A,, ..., A, be a finite set of intervals which
together make up (a, b). A, ¢ denotes the ‘““increment” of ¢ (x)
in A,. Let & be any point of A,.

r=n
Form thesum S = Z g(§) A, ¢
r=1

Suppose that, given any ¢, we can assign an 7, such that every
sum like § differs from a fixed constant L by less than ¢, provided
only that, for all values of r concerned, A, < . Then L is defined

b
to be the value of the Stieltjes integralj g (x) d¢ (x).
a

The second definition is similar to that of Darboux for the
Riemann integral. It is applicable ,only if ¢ (x) is monotone,
though capable of extensions. With certain restrictions, this
definition is equivalent—wherever applicable—to the one given
above. Such an equivalent definition is used in Whittaker's

paper.}

Pollard § has discussed a more general form of the © Darboux”
definition, but we do not use his work here.

* Cf. CARLEMANN: Kquations Intégrales Singuliéres ¢ Noyau Réel et
Symétrigue (Uppsala 1923), p. 11.

+ Ann. Fac. Sc. Toulouse, VIII (1894).

T See HoBsoN: Functions of a Real Variable (Second Ed.), Vol. I, p. 506,
8qq., along with 4dddendwm to p. 508 in Vol. II, p. 774.

§ Quarterly Jo., Vol, 49 (1923), p. 73.
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§38. The Theorem Proved (Case I).

We now prove the Theorem for the case when ¢ () is mono-
tone—say non-decreasing—in (a, b) and g (x) is boundcd.

Since y (x) is well defined in (a, b), given any ¢, we can assign
an 7, such that

b
Lg(a‘) do (x) - ?g(gr)A,qb Seifonly A, <yl (1

Suppose, then, any sum like S chosen in accordance with (1).
In the sum we may clearly replace g (§,) by @,, the upper bound,
or by g,, the lower bound of g (x) in A,.

Hence S, ~ gD T 2e i (2)

»

Now it is evident from definition that

6,3 ¢={ (S)M} 9.5, ¢
Hence by (2), S| 4,¥ - g(6)8,¢ | T2 s (3)
Andso | SF(8) 0,4 - SFE)9(E)8, ¢ |
= ? !f(gr) { | Arl‘b - g(Er) Avd’ I §2€F """""" (4)

b
Suppose now that j S(x) g(x) do(x) exists. Then we can

choose 7 in inequality (1) so small that, in addition to the restric-
tion already placed upon it,

[ s@o@ase - sreroeras| <o . (%)

b
Thus, by (4), H‘ f(x) g(x)do(x) ~ ZF(E)A ¢ l < 3eF
providedonly A, <. (6)
Now ¢, is any point in the interval A,. Thus inequality (6)

defines jb (@) di () to have the value Sb I (@) g (x) do ().
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b
Similarly if we postulate the existence ofJ. S(x) dy (x), we
a

b
can prove, from (4), that J. S(z) g (x) dé (x) also exists and has
the sume value.

The above case reduces to Whittaker’s theorem if ¢ (x) = « and
g (x) is positive.

$4. The Theorem Proved (General Case).

We now remove the restriction that ¢ (zx) be monotone.
All the above reasoning remains valid in the general case, except
the mode of deriving inequality (3) We therefore only require to
prove the l.emma :—

Lemma: Data: ¢ (x) = I: g (z) do (), [a=x=b].

Result: Gven any ¢, we can assign an 7, such that, for
every Jfinite set of intervals A, into which (a, b) is
divided, and every value of £, within 4,
Q=X|Ay¢-g)Ad | <e
if, for all values of r concerned, A, < 1.

Suppose, if possible that the Lemma is false. Then there must
exist a non-zero positive number o, and, corresponding to any given
value of 7, at least one sum Q* like @, such that @* > o« but
A <qp(allr). (7N

Suppose 7 chosen to satisfy inequality (1), with e =%’; and

consider any sum @ * which satisfies inequality (7). Let P be the
sum of all terms of @* for which A, Y=g (§,) A, ¢, and & the sum of
those terms of @* for which &, ¢ < g(£,)A, ¢. Let 2%, = denote

r
summations with respect to » over values corresponding to terms
of P, N respectively.

Now P+ N =¢* >0 Hence either P>% or N>%.

Suppose P = X0 (A, ¢ — g(£)A, ¢} > = > 3¢ ocvrrrirnnenn. (8)
T v
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Since A, ¢ = I g (x)de (x) exists as a Stieltjes integral,i we
Ar

may form for each A, a sum §, like S, [§ 2], such that
€
189-85 <=

where m is the number of terms in the summation Z.
Then | SMA, ¢ - 208, | <«
” r

Hence, by (8), M8, - SWg(£,)A, ¢ > 2¢
r r

Andso, by (), | g @dp@ - (295 + 9 8)a.8) | >«

But the bracket contains a sum like S, for which every subinterval
concerned is of length less than % ; and so we have a contradiction
to inequality (1).

Similarly we obtain a contradiction if ¥ > —:—.

&

Thus the Lemma must be true, and the Theorem is proved.

It may be noted that we have not postulated the boundedness
of g (x) in the proof of the Lemma. We therefore dispense with
this restriction in the statement of the Theorem, though the
generality gained thereby is not great. The boundedness of f(x)
is essential to the truth of the Theorem.

§5. An Application.

The theorem proved has many applications. As an example
we discuss very rapidly the Variation of ¢ (x), in the case when
¢ () is of Bounded Variation.

It is clear from definition of the integral that, for any sub-
interval A of (a, b),

{ Ay | = [Upper Bound of | g () | in A][Var. ¢(x) in A).

Applying this to each of any set of sub-intervals into which (a, )
is divided, we have easily:

Var. \,b(x)]b = [Upper Bd. of | g(z) | in (a, b)]

x Var. ¢(x):|

b
a

t Sec footnote * p. 79,
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We now show further that:
b
Var. ¢(x)] = [Lower Bd. of | ¢(x) | in (a, b)]
-l .
x Var. ¢ (x)] ...... (10)

In fact, if the Lower Bound of | g(x) | is zero, the inequality is
obvious. If not, we may use the above Theorem, giving:
= ] L |
[ o - [ o o@we -6
Hence, by inequality (9)

Var. ¢(w)]: = [Upper Bd. of , g(—lw) :

in (a, b)} x Var. glx(’c)]

and inequality (10) follows.
The argument may be carried a step further:

b
It may be shown that the existence of .‘- g (x) do (x) involves
a

b
that of j | g(x) | dP(z), where () is the variation of ¢ (x)
a

in (a, ). If, using this fact, we apply inequalities (9), (10) to
each of a set of sub-intervals into which (e, b) is divided, we
readily prove:

Vo y@ | = | 9@ | ar@.
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