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A Theorem on the Integral of Stieltjes.

By Dr J. HYSLOP.

(Received 4th August 19S6. Read bth November 192G)

§ 1. Introduction.

In a recent paper * Mr J. M. Whittaker has given the following
Theorem:—

If ip (x) be the indefinite Riemann integral of a bounded positive
function g (x), and if f(x) be any bounded function, then the
equation

fb Cb

»)f f{x) g(x) dx = \"f{x) dt(x
Ja Ja

is true whenever either side exists.
It was suggested to me by Mr E. T. Copson that a similar

result would probably hold if ^ (a;) is the Stieltjes integral with
respect to a monotone function of a positive bounded function.
The Theorem here proved includes Whittaker's Theorem as a
special case, and is much more general than that suggested by
Copson, viz. : —

THEOREM: Data: (i) The function \js(x) = J g (x) d<j>(x)

is well defined f in (a, b)

(ii) f(x) is bounded in (a, b), and - Fsf(x) s F.

Result: f */(*) <¥ (*) = [ / (*) 9 (*) d<f> (x)
J a J a

whenever either integral exists.

* Proc. Lond. Math. Soc., Ser. II, Vol. 28 (1926), p. 218.
(b

t It is only necessary to postulate the existence of I g(x) d<p(x), since that
J a

ex
of I g(x)d<t>(x) may then be deduced. [See POLLARD: Quarterly Jo., Vol

Ja
49 (1923), p. 76 (II)].

https://doi.org/10.1017/S0013091500034398 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034398


80

Simple cases of the Theorem are already known: thus when
f(x), g(x) are continuous, and <j>{x) is °f bounded variation, no
trouble arises as to the existence of the integrals concerned, and
their equality is readily proved.*

S 2. The Stieltjes Integral.

Two definitions of the Stieltjes integral are recognised. That
adopted in the present paper was given by Stieltjes, f and may be
stated as follows:

Let g (x), <j> (x) be any two real functions defined in the interval
(a, b); and let A,, A2 A, be a finite set of intervals which
together make up (a, b). Ar<j> denotes the " increment" of <j>(x)
in Ar . Let £r be any point of Ar.

v — n

Form the sum S = S j (£,) Ar <f>.
r= 1

Suppose that, given any t, we can assign an r), such that every
sum like S differs from a fixed constant L by less than «, provided
only that, for all values of r concerned, Ar < r,. Then L is defined

to be the value of the Stieltjes integral I g (x) d<f> (x).
Ja

The second definition is similar to that of Darboux for the
Biemann integral. I t is applicable .only if <f> (x) is monotone,
though capable of extensions. With certain restrictions, this
definition is equivalent—wherever applicable—to the one given
above. Such an equivalent definition is used in Whittaker's
paper. J

Pollard § has discussed a more general form of the " Darboux"
definition, but we do not use his work here.

* Cf. CABLEMANV : Equations Integrates Singulierts a Noyau RM tt
Symitrique (Uppsala 1923), p. 11.

t Ann. Fac. Sc. Toulouse, VIII (1894).

JSee HOBSOS: Functions of a Heal Variable (Second Ed.), Vol. I, p. 506,
sqq., along with Addendum to p. 508 in Vol. II, p. 774.

§ Quarterly Jo., Vol. 49 (1923), p. 73.
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§ 3. The Theorem Proved (Case I),

We now prove the Theorem for the nase when <f> (x) is mono-
tone—say non-decreasing—in (a, b) and g (x) is bounded.

Since ^(x) is well defined in (a, b), given any e, we can assign
an 77, such that

9{x)d4>(x) - ^ e if only \r < •0)

Suppose, then, any sum like S chosen in accordance with (1).
In the sum we may clearly replace g (£r) by Gr, the upper bound,
or by gr, the lower bound of g (x) in A,..

Hence 2((?,. - gr) A,<£ 5 2c.
r

Now it is evident from definition that

•(2)

Hence by (2), 2 | X^ - g($r)X<t> \ ? 2«

And so I 2 / ( f r )A r ^ - 2 / (

.(3)

f6Suppose now that I f(x) g (x) d<j> (x) exists. Then
Ja

we can

choose r] in inequality (1) so small that, in addition to the restric-
tion already placed upon it,

f
J«

(5)

< ZtF

f(x)g(x) d<f>(x) - 2/(£,)?(&) X
r

Thus, by (4), I P f{x) g (x) d<f> (x) - 2 / ( £ ) A,.
I Ja r

provided only Ar < 17.

Now £r is any point in the interval Ar. Thus inequality (6)
rb rb

defines I / ( * ) d\p (x) to have the value I f(x)g(x)d<j>(x).
J a Ja

(6)
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f6

Similar!}* if we postulate the existence of I fix) dip(x),
Jo

rb
can prove, from (4), that I f(x) g (x) d<f> (x) also exists and has

J«
the same value.

The above case reduces to Whittaker's theorem if <$>(x) = x and
g (x) is positive.

§ 4. The Theorem Proved (General Case).

We now remove the restriction that <l>(x) be monotone.
All the above reasoning remains valid in the general case, except
the mode of deriving inequality (3) We therefore only require to
prove the Lemma :—

ex
LEMMA: Data: tp (x) = I g(x)d<f>(x), [asx^b].

Jo

Result: Given any e, u-e can assign an 17, such that, for
every finite set of intervals X into which (a, b) is
divided, and every value of £r within X>

0 = 2 | Xt - ff(tr)X<l> j <<
if, for all values of r concerned, X < V-

Suppose, if possible that the Lemma is false. Then there must
exist a non-zero positive number <x, and, corresponding to any given
value of tj, at least one sum Q * like Q, such that Q * > a. but
A r < i , ( a l l r ) . (7)

Suppose t) chosen to satisfy inequality (1), with t =~TTJ a n d

consider any sum Q * which satisfies inequality (7). Let P be the
sum of all terms of Q* for which Ar \p a g (£P) Ar <f>r and N the sum of
those terms of Q* for which X t < 9 (£•) X <t>- Let 2(1), 2(2» denote

r r
summations with respect to r over values corresponding to terms
of P, N respectively.

Xow P + N = Q* > a.. Hence either P > ^- or iV > - ^ .

±- > 3, (8)

https://doi.org/10.1017/S0013091500034398 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034398


83

Since A r ^ = I g(x)d$>(x) exists as a Stieltjes integral,! we

may form for each A, a sum Sr like S, [§ 2], such that

where m is the number of terms in the summation 2'1.
Then | 2"»Af^ - 2(1)Sr | < e.

Hence, by (8), 2">£, - ^mg (£.) Ar <f> > 2e
r i"

And so, by (1), I P g (x)d<f>(x) - {2'"5,. + I
J a r r

But the bracket contains a sum like S, for which every subinterval
concerned is of length less than TJ ; and so we have a contradiction
to inequality (1).

Similarly we obtain a contradiction if N > —.

Thus the Lemma must be true, and the Theorem is proved.
It may be noted that we have not postulated the boundedness

of g (x) in the proof of the Lemma. We therefore dispense with
•this restriction in the statement of the Theorem, though the
generality gained thereby is not great. The boundedness of / (*)
is essential to the truth of the Theorem.

§ 5. An Application.

The theorem proved has many applications. As an example
we discuss very rapidly the Variation of ^ (a;), in the case when
<f> (x) is of Bounded Variation.

I t is clear from definition of the integral that, for any sub-
interval A of (a, b),

| Ai/< | < [Upper Bound of | g (x) | in A] [Var. <j> (x) in A].

Applying this to each of any set of sub-intervals into which (a, b)
is divided, we have easily :

Var. 4> (x) 1 < ["Upper Bd. of j g (x) | in (a, b) "I

x Var. <f,(x)~] (9)
Jo

t See footnote t p. 79,
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We now show further that:

Var. y\> (x)l > [~Lower Bd. of | g (x) | in (a, 6)1

x Var. <£(*)] (10)

In fact, if the Lower Boand of | g (x) | is zero, the inequality is
obvious. If not, we may use the above Theorem, giving:

r
Hence, by inequality (9)

Var. <f>(x)\ < ["Upper Bd. of —\-r in (a, 6)] x Var. \f,(x)\
J a L g {%) J Jo

and inequality (10) follows.
The argument may be carried a step further :

rb
It may be shown that the existence of I g (x) d<j> (x) involves

J a
f6

that of I \ g (x) | dQ (x), where $ (a;) is the variation of <f> (x)
J a

in (a. x). If, using this fact, we apply inequalities (9), (10) to
each of a set of sub-intervals into which (a, b) is divided, we
readily prove : Var. f(x)]b = P , g(x)

Jo Ja

https://doi.org/10.1017/S0013091500034398 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034398

