A Theorem on the Integral of Stieltjes.

By Dr J. Hyslop.

(Received 4th August 1926. Read 5th November 1926)

§ 1. Introduction.

In a recent paper * Mr J. M. Whittaker has given the following Theorem:-

If $\psi(x)$ be the indefinite Riemann integral of a bounded positive function $g(x)$, and if $f(x)$ be any bounded function, then the equation

$$
\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d \psi(x)
$$

is true whenever either side exists.
It was suggested to me by Mr E. T. Copson that a similar result would probably hold if $\psi(x)$ is the Stieltjes integral with respect to a monotone function of a positive bounded function. The Theorem here proved includes Whittaker's Theorem as a special case, and is much more general than that suggested by Copson, viz.:-
Theorem: Data: (i) The function $\psi(x)=\int_{a}^{x} g(x) d \phi(x)$
(ii) $f(x)$ is bounded in (a, b), and $-F \leq f(x) \leq F$.

$$
\begin{aligned}
\text { Result: } & \int_{a}^{b} f(x) d \psi(x)=\int_{a}^{b} f(x) g(x) d \phi(x) \\
& \text { whenever either integral exists. }
\end{aligned}
$$

[^0]Simple cases of the Theorem are already known: thus when $f(x), g(x)$ are continuous, and $\phi(x)$ is of bounded variation, no trouble arises as to the existence of the integrals concerned, and their equality is readily proved.*

§ 2. The Stieltjes Integral.

T'wo definitions of the Stieltjes integral are recognised. That adopted in the present paper was given by Stieltjes, \dagger and may be stated as follows:

Let $g(x), \phi(x)$ be any two real functions defined in the interval (a, b); and let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ be a finite set of intervals which together make up $(a, b) . \quad \Delta_{r} \phi$ denotes the "increment" of $\phi(x)$ in Δ_{r}. Let ξ_{r} be any point of Δ_{r}.

Form the sum $S \equiv{\underset{r=1}{r=n} g\left(\xi_{r}\right) \Delta_{r} \phi . ~ . ~ . ~}_{\text {. }}$
Suppose that, given any ϵ, we can assign an η, such that every sum like S differs from a fixed constant L by less than ϵ, provided only that, for all values of r concerned, $\Delta_{r}<\eta$. Then L is defined to be the value of the Stieltjes integral $\int_{a}^{b} g(x) d \phi(x)$.

The second definition is similar to that of Darboux for the Riemann integral. It is applicable only if $\phi(x)$ is monotone, though capable of extensions. With certain restrictions, this definition is equivalent-wherever applicable-to the one given above. Such an equivalent definition is used in Whittaker's paper. \ddagger

Pollard § has discussed a more general form of the "Darboux" definition, but we do not use his work here.

[^1]
§3. The Theorem Proved (Case I),

We now prove the Theorem for the case when $\phi(x)$ is mono-tone-say non-decreasing-in (a, b) and $g(x)$ is bounded.

Since $\psi(x)$ is well defined in (a, b), given any ϵ, we can assign an η, such that

$$
\begin{equation*}
\left|\int_{a}^{b} g(x) d \phi(x)-\Sigma_{r} g\left(\hat{\xi}_{r}\right) \Delta_{r} \phi\right| \leqq \epsilon \text { if only } \Delta_{r}<\eta \tag{1}
\end{equation*}
$$

Suppose, then, any sum like S chosen in accordance with (1). In the sum we may clearly replace $g\left(\xi_{r}\right)$ by G_{r}, the upper bound, or by g_{r}, the lower bound of $g(x)$ in Δ_{r}.

$$
\begin{equation*}
\text { Hence } \quad \sum_{r}\left(G_{r}-g_{r}\right) \Delta_{r} \phi \leqq 2 \mathrm{E} \tag{2}
\end{equation*}
$$

Now it is evident from definition that

$$
G_{r} \Delta_{r} \phi \geq\left\{\begin{array}{l}
\Delta_{r} \psi \tag{3}\\
g\left(\xi_{r}\right) \Delta_{r} \phi
\end{array}\right\} \geq g_{r} \Delta_{r} \phi
$$

Hence by $(2),{\underset{r}{r}}_{\Sigma}\left|\Delta_{r} \psi-g\left(\xi_{r}\right) \Delta_{r} \phi\right| \leqq 2 \epsilon$

$$
\text { And so } \begin{align*}
& \left|\Sigma_{r} f\left(\xi_{r}\right) \Delta_{r} \psi-\sum_{r} f\left(\xi_{r}\right) g\left(\xi_{r}\right) \Delta_{r} \phi\right| \\
& \leq \Sigma_{r}\left|f\left(\xi_{r}\right)\right|\left|\Delta_{r} \psi-g\left(\xi_{r}\right) \Delta_{r} \phi\right| \leqq 2 \epsilon F \tag{4}
\end{align*}
$$

Suppose now that $\int_{a}^{b} f(x) g(x) d \phi(x)$ exists. Then we can choose η in inequality (1) so small that, in addition to the restriction already placed upon it,

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) g(x) d \phi(x)-{\underset{r}{r}} f\left(\dot{\xi}_{r}\right) g\left(\xi_{r}\right) \Delta_{r} \phi\right|<\epsilon F \tag{5}
\end{equation*}
$$

Thus, by (4), $\left|\int_{a}^{b} f(x) g(x) d \phi(x)-\underset{r}{\Sigma} f\left(\xi_{r}\right) \Delta_{r} \psi\right|<3 \epsilon F$
provided only $\Delta_{r}<\eta$.
Now ξ_{r} is any point in the interval Δ_{r}. Thus inequality (6) defines $\int_{a}^{b} f(x) d \psi(x)$ to have the value $\int_{a}^{b} f(x) g(x) d \phi(x)$.

Similarly if we postulate the existence of $\int_{a}^{b} f(x) d \psi(x)$, we can prove, from (4), that $\int_{a}^{b} f(x) g(x) d \phi(x)$ also exists and has the sume value.

The above case reduces to Whittaker's theorem if $\phi(x)=x$ and $g(x)$ is positive.

§4. The Theorem Proved (General Case).

We now remove the restriction that $\phi(x)$ be monotone. All the above reasoning remains valid in the general case, except the mode of deriving inequality (3) We therefore only require to prove the Lemma:-
Lemma: Data: $\psi(x)=\int_{a}^{x} g(x) d \phi(x), \quad[a \leq x \leq b]$.
Result: Given any ϵ, we can assign an η, such that, for every firite set of intervals Δ_{r} into which (a, b) is divided, and every value of ξ_{r} uithin Δ_{r}, $Q=こ\left|\lambda_{r} \psi-g\left(\xi_{r}\right) \Delta_{r} \phi\right|<\epsilon$ $i f$, for all values of r concerned, $\Delta_{r}<\eta$.
Suppose, if possible that the Lemma is false. Then there must exist a non-zero positive number α, and, corresponding to any given value of η, at least one sum Q^{*} like Q, such that $Q^{*}>\alpha$ but $\Delta_{r}<\eta$ (all r).

Suppose η chosen to satisfy inequality (1), with $\epsilon=\frac{\alpha}{6}$; and consider any sum Q^{*} which satisfies inequality (7). Let P be the sum of all terms of Q^{*} for which $\Delta_{r} \psi \geq g\left(\xi_{r}\right) \Delta_{r} \phi_{r}$ and N the sum of those terms of Q^{*} for which $\Delta_{r} \psi<g\left(\xi_{r}\right) \Delta_{r} \phi$. Let $\Sigma^{(1)}, \Sigma^{(2)}$ denote summations with respect to r over values corresponding to terms of P, N respectively.

$$
\begin{equation*}
\text { Suw } P+N=Q^{*}>\alpha . \quad \text { Hence either } P>\frac{\alpha}{2} \text { or } N>\frac{\alpha}{2} \tag{8}
\end{equation*}
$$

Suppose $P \equiv \underset{r}{\Sigma^{(1)}}\left\{\Delta_{r} \psi-g\left(\xi_{r}\right) \Delta_{r} \phi\right\}>\frac{\alpha}{2}>3 \epsilon$

Since $\Delta_{r} \psi \equiv \int_{\Delta_{r}} g(x) d \phi(x)$ exists as a Stieltjes integral, \dagger we may form for each Δ_{r} a sum S_{r} like S, [$\$ 2$], such that

$$
\left|\Delta_{r} \psi-S_{r}\right|<\frac{\epsilon}{m}
$$

where m is the number of terms in the summation $\Sigma^{\prime \prime}$.
Then $\left|\underset{r}{\Sigma^{(1)}} \Delta_{r} \psi-\Sigma_{r}^{(1)} S_{r}\right|<\epsilon$.
Hence, by $(8), \sum_{r}^{(1)} S_{r}-\sum_{r}^{(1)} g\left(\xi_{r}\right) \Delta_{r} \phi>2 \epsilon$
And so, by (1), $\mid \int_{a}^{b} g(x) d \phi(x)-\left\{{\underset{r}{(1)}}_{\sum_{r}}+{\left.\underset{r}{(2)} g\left(\xi_{r}\right) \Delta_{r} \phi\right\} \mid>e . ~}_{\text {. }}\right.$
But the bracket contains a sum like S, for which every subinterval concerned is of length less than η; and so we have a contradiction to inequality (1).
Similarly we obtain a contradiction if $N>\frac{\alpha}{2}$.
Thus the Lemma must be true, and the Theorem is proved.
It may be noted that we have not postulated the boundedness of $g(x)$ in the proof of the Lemma. We therefore dispense with this restriction in the statement of the Theorem, though the generality gained thereby is not great. The boundedness of $f(x)$ is essential to the truth of the Theorem.

§5. An Application.

The theorem proved has many applications. As an example we discuss very rapidly the Variation of $\psi(x)$, in the case when $\phi(x)$ is of Bounded Variation.

It is clear from definition of the integral that, for any subinterval Δ of (a, b),

$$
|\Delta \psi| \leq[\text { Upper Bound of }|g(x)| \text { in } \Delta][\text { Var. } \phi(x) \text { in } \Delta] .
$$

Applying this to each of any set of sub-intervals into which (a, b) is divided, we have easily:
Var. $\psi(x)]_{\|}^{U} \leq[$ Upper Bd. of $|g(x)|$ in $(a, b)]$

$$
\begin{equation*}
\times \operatorname{Var} \phi(x)]_{a}^{b} \tag{}
\end{equation*}
$$

\dagger Sec footnote + p. 79,

We now show further that:
Var. $\psi(x)]_{a}^{b} \geq[$ Lower Bd. of $|g(x)|$ in $(a, b)]$

$$
\times \operatorname{Var} . \phi(x)]_{a}^{b} \ldots \ldots(10)
$$

In fact, if the Lower Bound of $|g(x)|$ is zero, the inequality is obvious. If not, we may use the above Theorem, giving:

$$
\int_{a}^{x} \frac{1}{g(x)} d \psi(x)=\int_{a}^{x} \frac{1}{g(x)} \cdot g(x) d \phi(x)=\phi(x)-\phi(a) .
$$

Hence, by inequality (9)
Var. $\phi(x)]_{a}^{b} \leq\left[\right.$ Upper Bd. of $\left|\frac{1}{g(x)}\right|$ in $\left.\left.(a, b)\right] \times \operatorname{Var} . \psi(x)\right]_{a}^{b}$ and inequality (10) follows.

The argument may be carried a step further:
It may be shown that the existence of $\int_{a}^{b} g(x) d \phi(x)$ involves that of $\int_{a}^{b}|g(x)| d \Phi(x)$, where $\Phi(x)$ is the variation of $\phi(x)$ in ($a . x$). If, using this fact, we apply inequalities (9), (10) to each of a set of sub-intervals into which (a, b) is divided, we readily prove:

$$
\text { Var. } \psi(x)]_{a}^{b}=\int_{a}^{b} g(x) \mid d \Phi(x) .
$$

[^0]: *Proc. Lond. Math. Soc., Ser. II, Vol. 25 (1926), p. 213.

 + It is only necessary to postulate the existence of $\int_{a}^{b} g(x) d \phi(x)$, since that of $\int_{a}^{x} g(x) d \phi(x)$ may then be deduced. [See PoLlaind: Quarterly Jo., Vol 49 (1923), p. 76 (II)].

[^1]: * Cf. Carlemann: Equations Intégrales Singulières à Noyau Réel et Symétrique (Uppsala 1923), p. 11.
 + Ann. Fac. Sc. Toulouse, VIII (1894).
 \ddagger See Hobson: Functions of a Real Variable (Second Ed.), Vol. I, p. 506, sqq., along with Addendum to p. 508 in Vol. II, p. 774.
 § Quarterly Jo., Vol. 49 (1923), p. 73.

