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Abstract. In this paper, certain natural and elementary polygonal objects in Euclidean space,the
stable polygons, are introduced, and the novel moduli spacesMr ,ε of stable polygons are constructed
as complex analytic spaces. Quite unexpectedly, these new moduli spaces are shown to be projective
and isomorphic to the moduli spaceM0,n of the Deligne–Mumford stable curves of genus 0. Further,
built into the structures of stable polygons are some natural data giving rise to a family of (classes
of) symplectic (Kähler) forms. This, via the link toM0,n, brings up a new tool to study the Kähler
topology ofM0,n. Some speculative discussion on the shape of the Kähler cone ofM0,n is given in
the end.
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1. Introduction

The moduli spaces of Riemann surfaces were introduced by Riemann in the nine-
teenth century and have been since great sources of interest and study. Most re-
cently, they have evolved as essential ingredients in symplectic topology and mirror
symmetry. In these theories, a guiding principle is that the geometry of an almost
complex manifold may be obtained by studying the space of all (pseudo-) holo-
morphic curves on the manifold. One instance is the Gromov–Witten invariants. A
key building block in that theory is the Deligne–Mumford compactificationMg,n

of the moduli spaceMg,n of pointed Riemann surfaces of genusg. Symplectic
topology and mirror symmetry are, of course, not the only places whereMg,n

is important. These moduli spaces are also rich subjects of study in Thurston’s
hyperbolic geometry and Teichmüller theory (and so on). On yet another import-
ant aspect of geometry, the genus zero caseM0,n was recently effectively used
by Kawamata to prove a higher codimensional adjunction formula in algebraic
geometry.

? Research partially supported by NSF grant and an AMS Centennial Fellowship.
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Figure 1.

The basic questions we will address in this paper are:how do we construct these
compactified moduli spaces and furthermore what geometric information can we
derive from the construction?

Our answers to these questions are very simple and rather unexpected.
We will only look at the special case of genus zero, namely, the moduli space

M0,n of stablen-pointed Riemann spheres. Set-theoretically, a generic point in
M0,n is an equivalence class of Riemann spheres withn distinct ordered points.
All other points on the boundary ofM0,n are to be obtained by abiding to the
following principle: whenever some of marked points on a sphere come together,
we attach another sphere, called a bubble, at the coinciding position and let the
coinciding points get separated on the bubble sphere. This process should go on
until all points get separated (see Figure 1, above).

In this paper, we will (quite unexpectedly) buildM0,n using totally differently
materials. In short, we shall givesymplecticconstructions ofM0,n by using only
elementary geometric combinatorial objects in the Euclidean space which we will
name asstable polygons. This yields some quite unexpected results which among
other things include a family of naturally and automatically built-in (classes of)
symplectic Kähler forms onM0,n. We believe that this will eventually allow us to
quantitatively determine (see a forthcoming paper [11]) the Kähler cone and dually
the Mori cone of effective curves onM0,n (cf. Section 8 and 9).

Our approach is based upon a beautiful connection between symplectic and
algebraic geometry, discovered in late 70’s and early 80’s. Briefly, let(X,ω) be a
symplectic manifold that underlies a polarized projective manifold(X,L), where
ω is a symplectic form onX andL is a positive line bundle such thatc1(L) =
[ω] ∈ H 2(X,Z). Suppose a compact Lie groupK acts symplectically onX with
its complexificationG = KC acting holomorphically. Then in a canonical way,
we have a correspondence between quotients in symplectic category and quotients
in projective algebraic category. More precisely, assume thatK acts onX in a
Hamiltonian fashion, that is, there is an equivariant moment map (depending onω)
8ω:X → k∗, wherek is the Lie algebra ofK. Then the orbit space8−1

ω (0)/K
carries a naturally induced symplectic structure away from singularities. This is a
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symplectic quotient. On the other hand, there is a dense open subsetXss(L) ⊂ X,
the set of all semistable points determined byL. By Mumford’s geometric invariant
theory,Xss(L) has a quotientXss(L)//G as a projective variety. The beautiful
correspondence mentioned above is that the symplectic quotient8−1

ω (0)/K is, in
a canonical way, homeomorphic to the projective quotientXss(L)//G (Mumford,
Atiyah, Guillemin–Sternberg, Kempf–Ness, Ness, Kirwan, and others).

We now describestable polygonsin R3, the building blocks of our construction
of M0,n. A polygon inR3 is a collection of ordered vectors (edges){e1, . . . , en}
that add up to zero,e1 + · · · + en = 0. Two polygons are equivalent if one can
be obtained from the other by a rigid Euclidean motion. Consider anyn-gon with
side lengths,r = (r1, . . . , rn), then the deformation space of thisn-gon modulo
equivalance is

Mr = {(e1, . . . , en)|e1+ · · · + en = 0, |ei | = ri,16 i 6 n}/ ∼ .

This is a symplectic space with a symplectic formωr away from some (possibly)
isolated singularities (for more aboutMr , see, e.g., [12]. For the ring structure on
H ∗(Mr ), see [7]).

To introduce stable polygons, we fix a term once and for all in this paper: edges
are said to beparallel if they point the same direction; edges pointing in opposite
directions are consideredanti-parallel, not parallel.

A generic polygon, that is, a polygon with no parallel edges, is stable in our
sense. All other stable polygons are to be obtained by abiding the following prin-
ciple: whenever a set of edges of a polygon becomes parallel, we introduce an
(independent) generic polygon, called a bubble, whose edges inherit the lengths of
the abovementioned parallel edges except the longest one. The longest length is
the sum of the lengths of the parallel edges minus a carefully chosen small positive
numberε. (Thisε has a precise quantity control and carries significant symplecto-
geometric meaning, consult Theorems 1.2 and 1.3 below.) This process should go
on until all sets of parallel edges are properly addressed.

In short, a stable polygon is a collection of labeled (but not ordered) polygons
that grows out of an ordinary polygon by introducing ‘bubble’ polygons. The
moduli space of all such stable polygons is denoted byMr ,ε. See the illustration
(Figure 2).

One should note that the moduli spaceMr ,ε of stable polygons (in a very inter-
esting manner) depends on two parameters: a fixed length vectorr and a collection
ε = {ε} of carefully chosen small positive numbers. These built-in data in stable
polygons encode significant symplecto-geometric information forM0,n.

Our main theorems are

THEOREM 1.1 (Sections 5 and 7).The moduli spaceMr ,ε has a natural structure
of a compact complex manifold and is biholomorphic to the complex manifold that
underlies the projective varietyM0,n.
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Figure 2.

THEOREM 1.2 (Section 6).By forgetting all the bubbles, we obtain a natural pro-
jectionπr ,ε:Mr ,ε → Mr that is holomorphic and bimeromorphic. It is the iterated
blowup ofMr along (the proper transforms of) some explicitly described smooth
subvarietiesYα whenMr is smooth. WhenMr is singular,πr ,ε:Mr ,ε → Mr is the
composite of a canonical resolution of singularities followed by explicit iterated
blowups.

In fact, more is true. With the aid of the so-called symplecticε-blowups (e.g.,
see [19]),Mr ,ε (henceM0,n) comes equipped with a symplectic form�r ,ε whose
cohomology class is uniquely defined so that the mapπr ,ε: (Mr ,ε, �r ,ε)→ (Mr , ωr )

can be interpreted as a symplectic blowup. The ambiguity of the so-called sym-
plectic blowups provides a natural and interesting viewpoint to see how natural it
is the choices ofε in the definition of stable polygons.

To close this introduction, some remarks are in order. Firstly,M0,n has a ca-
nonical Kähler class, the Weil–Peterson class. We believe that this form should be
realized by some choice of(r , ε). It has to come from regularn-gons. The choice of
ε is harder to guess (consult 4.6). Secondly, by above, the collection of all (legal?)
(r , ε) should shed a light on the Kähler cone ofM0,n (a conjecture is formulated in
Section 9). Finally, Thurston made remarks at author’s seminar talk at UC, Davis
that the same strategy can be applied to unorderedn-pointed Riemann spheres.
Then the role of polygons will be replaced by collections of unordered vectors
that add up to zero. He also pointed out to the author that polyhedra may also be
used to studyM0,n ([21]). Fried at author’s talk at UC, Irvine, also made similar
suggestions about unorderedn-pointed Riemann spheres.

Here is the structure of this paper. Sections 2 provides necessary backgrounds
on the symplectic geometry of the ordinaryn-gons. In Section 3,favorablemoduli
spaces of ordinaryn-gons are characterized in terms of their defining side length
vectors (chambers). They are useful throughout the paper. Section 4 introduces
? See 2.1 and 4.6 for the legal rangesr andε.
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our principal objects of study, stable polygons, mainly in set-theoretic terms. In
Section 5, we show how naturally stable polygons converge together to form a
smooth compact complex analytic variety. Relation with the moduli spaces of the
ordinary polygons follows readily: Section 6 decomposesMr ,ε as explicit iterated
blowups ofMr . Section 7 connects our new moduli spaces to the moduli space
M0,n of the Deligne–Mumford stablen-pointed curves of genus zero. This leads to
a new angle to look at the Kähler topology ofM0,n which is discussed in the end.

There are some previous works on the moduli spaces ofordinary polygons
([22], [17], [12], [6], among others) which may fall into the general framework
on relations between geometric invariant theory quotients and symplectic reduc-
tions ([20], [4], [16], [1], [8], [2], among others). The idea thatM0,n ought to
have a counterpart in terms of symplectic geometry was based on the observation
([13] and [8]) on a natural connection between GIT quotients and Chow (Hilbert)
quotient.

2. Geometry of Ordinary Polygons

Many of the results on ordinary polygons that we shall collect below follow dir-
ectly from some well-known general theory. See [12], for example, for a nice
self-contained treatment.

2.1. A (spatial) polygon withn sides in Euclidean space is determined by its
labeledn vertices{v1, . . . , vn} and these vertices are joined in cyclic order by the
directed edges{e1, . . . , en}, whereei starts fromvi and ends atvi+1 (here we set
vn+1 = v1). Since then-gon is closed,{e1, . . . , en}, regarded as vectors, add up to
to zero,e1+ · · · + en = 0.

We consider the following equivalence relation among polygons. Twon-gons
are equivalent if one can be obtained from the other by the action of an orientation
preserving Euclidean isometry.

Figure 3 illustrates three 12-gons. (The last two will be used later for other
illustrations.)

Throughout this paper,Mr will stand for the moduli space? of n-gons with the
side length vectorr = (r1, . . . , rn). The normalized side length vector ofr , denoted

Figure 3.

? The topology of this space is rather easy to see. We will review some of its finer structures soon.
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by r̄ , is defined to be(2/L(r))r whereL(r) = r1+ · · · + rn is the perimeter of the
polygons ofMr . As is well known,r̄ lies in the hypersimplex

Dn2 :=
{
(x1, . . . , xn) ∈ Rn:06 xi 6 1, i = 1, . . . , n,

∑
i

xi = 2

}
.

To see that fine structures onMr , we will appeal to the theory of symplectic re-
ductions and Kähler geometric invariant theory (GIT), from which one will see
thatMr andMr̄ are biholomorphic as complex analytic spaces and their symplectic
(Kähler) forms (away from singularities) are proportional by the scalar 2/L.

2.2. Consider the diagonal action of the group PGL (2,C) of projective transform-
ations on(P1)n and identify its maximal compact group with SO(3). IdentifyP1

with the unit sphereS2 in R3, SO(3)-equivariantly. Let Vol(S2) be the volume form
onS2. Given anyr with r1, . . . , rn > 0,Lr = r1p∗1 Vol(S2)+· · ·+ rnp∗n Vol(S2) is
a Kähler symplectic form on(P1)n with respect to which the group SO(3) acts on
(P1)n in a Hamiltonian fashion. Herepi (1 6 i 6 n) is the projection form(P1)n

onto theith factor. The moment map8r : (P1)n→ so(3)∗ ∼= R3 determined by this
Hamiltonian action is given as:8r (x1, . . . , xn) = r1x1+ · · · + rnxn.

The correspondence between symplectic reductions and Kähler (GIT, in the
case thatr is rational) quotients asserts that8−1

r (0)/SO(3) ∼= (P1)nss(r)//PGL(2,C)
which is induced by the inclusion8−1

r (0) ⊂ (P1)nss(r), where(P1)nss(r) denotes
the set of PGL (2,C)-semistable points with respect to the Kähler formLr . We
point out that8−1

r (0) 6= ∅ (or, equivalently,(P1)nss(r) 6= ∅) if and only if r̄ ∈ Dn2.
In this case, the quotient space8−1

r (0)/SO(3) ∼= (P1)nss(r)//PGL(2,C) has
the expected dimensionn − 3 if and only if r̄ ∈ int Dn2 (see [8]). For this reason,
we make the assumption thatr̄ ∈ int Dn2 throughout the rest of the paper.

For any polygon with edges(e1, . . . , en) of the prescribed side lengthsr =
(r1, . . . , rn) such that̄r ∈ intDn2, setui = ei/ri for 16 i 6 n. Then(u1, . . . , un) ∈
(S2)n ∼= (P1)n and satisfiesr1ui + · · · + rnun = e1+ · · · + en = 0.

That is,(u1, . . . , un) ∈ 8−1
r (0). Conversely, making the above arguments back-

ward, any point in8−1
r (0) determines a polygon with the prescribed side lengths

r = (r1, . . . , rn). Thus we obtain the natural identificationMr
∼= 8−1

r (0)/SO(3)
which, via the identification8−1

r (0)/SO(3) ∼= (P1)nss(r)//PGL(2,C), providesMr

a holomorphic structure and a Kähler symplectic formωr away from singularities.

2.3. Alternatively, the moduli spaceMr can also be constructed as a symplectic
quotient of the GrassmannianG(2,Cn) by the maximal torus(C∗)n. A simple way
to see this is to look at the natural action of the group(C∗)n × GL(2,C) on the
space of full-rank matrices of size 2×n and then take quotients by stage. Using this
approach toMr , the results of [3] and [5] (among others) can be applied directly.

2.4. The hypersimplex is divided into chambers (maximal or otherwise, making a
polytopal chamber complex) by the walls defined as follows
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WJ =
{
(x1, . . . , xn) ∈ Dn2:

∑
i∈J

xi = 1

}
,

whereJ runs over all the proper subsets of[n] = {1,2, . . . , n}. J and its comple-
mentJ c define the same wallWJ = WJc . When|J | = 1 or n − 1,WJ is a facet
of Dn2 which is asimplex. Other facets ofDn2 are of the formFi = {(x1, . . . , xn) ∈
Dn2: xi = 0}. Whenn > 4, Fi are again hypersimplexes. A proper subsetJ defines
an interior wall if and only if 26 |J | 6 n − 2 (i.e.,|J | > 1 and|J c| > 1). Each
interior wallWJ dividesDn2 into two parts{

(x1, . . . , xn) ∈ Dn2:
∑
J

xj 6 1

}

and {
(x1, . . . , xn) ∈ Dn2:

∑
J c

xj 6 1

}
.

Two pointsx and y are in the same chamber (maximal or otherwise) if the
following holds. For all proper subsetJ ,∑

J

xj 6 1⇐⇒
∑
J

yj 6 1.

When only strict inequalities occur, we get characterizations of maximal chambers.
Points in the same chamber define homeomorphic (actually biholomorphic) moduli
spaces of polygons. But their naturally equipped structures of symplectic Kähler
space are different, in general.

2.5. We should also consider the positive cone overDn2 to take into accountn-gons
with all possible side lengths

C(Dn2) :=
{
(x1, . . . , xn) ∈ Rn+:

∑
i

xi 6= 0,
2(x1, . . . , xn)∑

i xi
∈ Dn2

}
,

whereR+ is the set of all nonnegative real numbers. Equivalently,

C(Dn2) ∪ {0} =
(x1, . . . , xn) ∈ Rn:06 xi 6

∑
j 6=i

xj , i = 1, . . . , n

 .
For anyn-gonP ∈ Mr , the length vectorr belongs toC(Dn2), that is,r̄ ∈ Dn2. Walls
and chambers inDn2 induce obvious walls and chambers inC(Dn2). Cone walls and
cone chambers will generally be denoted byC(WJ ) andC(4) (etc.) ifWJ is a wall
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of Dn2 and4 is chamber ofDn2. All the above discussions extend to the coneC(Dn2)
directly. The dependence of the moduli spaces of polygons on the cone chambers
is the obvious one.

2.6. Let r and r ′ be in the same chamberC (maximal or otherwise).C is ra-
tional and thus contains a rational pointrC . Let MC denote the GIT quotient
(P1)nss(rC)//PGL(2). This is a projective variety and depends only on the chamber
C. Then we have the following isomorphismsMr → MC ← Mr ′ . The two iso-
morphisms arecanonicalbecause they are naturally induced from the inclusions
8−1

r (0) ⊂ (P1)nss(rC) ⊃ 8−1
r ′ (0), which, of course, depend on no auxiliary choices.

Hence, we obtain an inducedcanonicalisomorphismfrr ′ :Mr → Mr ′ .

DEFINITION 2.7. A polygon is called a line gon if it lies entirely on a straight
line.

A line gon occurs if and only if there is a proper subsetJ with

∑
J

ri =
∑
J c

ri .

Whenn > 5, they are singular points of the moduli space and are isolated.

2.8. Let C be a chamber that lies on the boundary of another chamberC ′. By [8]
(also [2] among others), there exists a canonical projective morphismβC ′C :MC ′ →
MC which, by 2.6, induces a canonical complex analytic mapβr ′r :Mr ′ → Mr,

wherer ′ ∈ C ′ andr ∈ C. WhenC ′ is a maximal chamber, the above maps are
resolutions of singularities ifn > 4.

3. Favorable Chambers

3.1. For chambers adjacent to the boundary of the hypersimplex, the corresponding
moduli spaces take simple forms.

Let4i be the (unique) maximal chamber inDn2 that contains the simplex facet
W{i}(1 6 i 6 n). Numerically, this chamber can be characterized as follows.x ∈
4i if and only if

∑
J xj < 1 for all properJ with i 6∈ J and |J | < n − 1. Or

equivalently (taking the complementJ c),
∑

J xj + xi > 1 for all properJ with
i 6∈ J if and only if xj + xi > 1 for all j 6= i.

DEFINITION 3.2. These chambers4i (i = 1, . . . , n) and their corresponding
conesC(4i) will play spacial rôles in this paper. We will refer them asfavorable
chambers.

PROPOSITION 3.3 (Theorem 2.1, [8] and Theorem 6.14, [9]).Let r be an element
in the interior of the favorable chamberC(4i ). ThenMr is isomorphic toPn−3.
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PROPOSITION 3.4.Assume thatn > 3. Let r ∈ C(4i ). Then theith edgeei is
the longest edge, that is,ri > rj for all j 6= i.

Proof.Dividing by 2/L(r), we may assume thatr ∈ 4i . Assume otherwise that
rj > ri for somej . Then 1>

∑
h6=i rh =

∑
h6=i,j rh + rj >

∑
h6=i,j rh + ri > 1, a

contradiction. 2
Recall from the introduction that for simplicity, edges are said to be parallel if

they point the same direction. Edges pointing in opposite directions are considered
to be anti-parallel, not parallel.

DEFINITION 3.5. A polygon is said to degenerate at a set of edgeseI := {ei}i∈I
with |I | > 1 if {ei}i∈I are all parallel and no other edges are parallel to them. An
edge is said to be degenerate if it belongs to a set of degenerate edges,eI with
|I | > 1.

PROPOSITION 3.6.Let r be an element in the interior of the favorable chamber
C(4i) andP ∈ Mr . Then theith edge ofP never degenerates along with others.

Proof.Dividing by 2
L(r) , we may assume thatr ∈ 4i . Assume otherwise. Then

ri+rj 6∑k 6=i,j rk for somej 6= i which implies thatri+rj 6 1, a contradiction.2
Remark3.7. Likewise, there is also a maximal chamber∇i in Dn2 containing

a (relatively) maximal chamber in the hypersimplex facetF{i}(1 6 i 6 n) such
that for anyr in the interior of the chamber4i ,Mr is isomorphic to(P1)n−3. More
precisely, a pointx of Dn2 belongs to the chamber∇i if and only if

∑
J xj > 1 for

all properJ with i 6∈ J if and only if xj + xk > 1 for all j, k 6= i. Or equivalently
(taking the complementJ c),

∑
J xj + xi < 1 for all properJ with i 6∈ J . For

more information about∇i, consult Theorem 2.1 of [8] and Theorem 6.10 of [9].
We point out that these particular chambers will not play any special rôles in this
paper (although they may do if a different approach than the one in this paper is
taken).

4. Stable Degeneration of Polygons

To clarify the principal subject of our study, we shall give in this section a detailed
set-theoretic description of stable polygons, leaving out their finer structures to be
treated in the sequel.

DEFINITION 4.1. Ann-gon is called generic if it does not have parallel edges.
Given a side length vectorr , we useM0

r to denote the subspace of generic polygons.

LEMMA 4.2. The moduli spaceM0
r of all genericn-gons with the fixed side

lengthsr can be identified with the moduli space ofn distinct ordered points on
the projective line.
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Proof.This follows from the identificationMr
∼= (P1)nss(r)//PGL(2). 2

This is an open holomorphic space (in fact, quasi-projective) and we are looking
for nice and geometrically meaningful compactifications of it by addinglimiting
polygonal objectssuch that the added objects fit together to form a divisor with
normal crossings. The limiting polygonal objects that we choose to add will be
called stable polygons which we will describe now.

4.3. The idea is the usual one as in Deligne–Mumford’s construction of stable
pointed curves. The principal guiding principle is that whenever a set of edges
become parallel, we will resolve it by introducing a ‘bubble’ polygon in a coherent
way. Here goes some detailed descriptions of stablen-gons forn 6 5 to just gain
some concrete feelings about general stable polygons.

All triangles are generic and thus stable.
A generic quadrangle is stable. Given a degenerate quadrangleP0 with two

parallel edgesei and ej , to remedy the ‘coincidence’ problem, we introduce an
independent arbitrary (stable) triangleP1 with side lengths(ri, rj , ri + rj − εi,j ),
whereεi,j is a fixed suitably? small positive number. The collection(P0, P1) of
these two labeled (but not ordered) polygons is a (reducible) stable quadrangle.

For pentagons, one degeneration case is just like quadrangles: two edgesei and
ej are parallel. In this case, we introduce an independent arbitrary (stable) triangle
in exactly the same way as we did in the quadrangles cases.

When three edges,ei, ej , ek, are parallel, to get a moduli-stable pentagon, we
add an independent arbitrary moduli-stable quadrangle with prescribed side lengths
(ri, rj , rk, ri + rj + rk − εi,j,k), whereεi,j,k is a suitably small positive number.
The collection of these labeled (but not ordered) polygons is a (reducible) stable
pentagon.

4.4. In general, given any polygon, ifk edges are parallel, we add a generic(k+1)-
gon whose firstk sides inherit the lengths of the original edges but whose last
side has a new lengthri1 + · · · + rik − εi1,...,ik with a choice of a small positive
numberεi1,...,ik . In any of the polygons obtained, we allow more degeneration, and
whenever edges become parallel, we introduce (bubble) polygons as above. It is
important to point out that in the further degeneration, the edges with the new
lengths?? will not degenerate (point the direction of any other edge). This will be
automatic after choosingεi1,...,ik carefully (see Corollary 4.7 below).

To formally define an arbitrary stable polygon, some preparations are in order.

LEMMA 4.5. Let r be any point in the interior ofC(Dn2). Then
(
r ,
∑
ri − ε

)
is in

the chamber ofC(4n+1) ofC(Dn+1
2 ) if and only ifε < 2 min{r1, . . . , rn}.

? This will be made precise when stable polygons are formally defined.
?? Such edges correspond to double points of Deligne–Mumford stable curves, as we shall see

later.
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Proof.By 3.1, we need

2

2
∑
ri − ε

∑
J

rj < 1

for all proper subsetsJ of {1, . . . , n}, which is equivalent toε < 2
∑

J c ri
for all proper subsetsJ of {1, . . . , n}, which is, in turn, equivalent to
ε < 2 min{r1, . . . , rn}. 2
4.6. Fix a vectorr in the interior of the coneC(Dn2) over the hypersimplexDn2.
Sincer lies in theinterior of the coneC(Dn2), it is impossible to have(n−1)many
edges to point to the same direction. It does not make sense to treat the case that
‘there is one edge pointing to the same direction’. Less trivial and a bit tricky is the
case when exactly two edges point the same direction. According to the rule, we
will have to, in this case, introduce a triangle to make the polygon stable. However,
because a triangle is rigid, it affects neither the moduli space nor the symplectic
structure (Sections 5, 6 and 7). This last point will be important when we consider
the Kähler cone ofM0,n.

So for any proper subsetJ ⊂ {1, . . . , n} with cardinality 1< |J | < n − 1 we
fix a (suitably small) positive number

0< εJ < 2 min
J
{rj }.

SetrJ,εJ = (rJ ,
∑

J rj − εJ ).
We frequently writerJ,εJ asrJ when no confusion may occur.

COROLLARY 4.7. The vectorrJ,εJ lies in a favorable chamber. Consequently,
MrJ is isomorphic to some projective space and hence is independent of the choice
of εJ . Furthermore, no polygon inMrJ ever degenerates at the last edge (i.e., the
longest edge).

Remark4.8. Note that for any 0< ε < 2 min {r1, . . . , rn}, we can setεJ = ε
for all proper subsetsJ ⊂ [n]. This will satisfy part of our purposes (cf. Corollary
4.7) and may save some notational mess. In particular, there exists acanonical
choiceεJ = min{r1, . . . , rn} for all proper subsetsJ ⊂ [n]. To keep generality,
however, we will work with an arbitrary choice ofεJ in the legal range.

Remark4.9. We will useCJ to denote the favorable chamber thatrJ belongs to.
In particular,MCJ stands for the common projective model for allMx with x ∈ CJ .
Note that this chamber does not depend on the choice ofεJ .

DEFINITION 4.10. Letr be a point in the interior ofC(Dn2). Given any proper
subsetJ of {1, . . . , n} with |J | > 2, a pair(P, P ′) ∈ Mr × MrJ is said to be a
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Figure 4.

bubble pair ifP degenerates at the edgeseJ (i.e., the edges{ej }J of P point to
the same direction and no other edges point to the direction of these edges). In this
case,P ′ is called a bubble ofP .

By Corollary 4.7,P ′ never degenerates at the last edge (i.e., the longest edge
whose length is

∑
J rj −εJ ). We point out that(P, P ′) ∈ Mr ×MrJ being a bubble

pair implies that
∑

J rj 6
∑

J c rj .

DEFINITION 4.11. For this reason, we shall call such a proper subsetrelevant.
Thus onlyrelevantproper subsetJ will occur as the index sets for bubble pairs.

Thus the relevancy is a relative concept. This point will be useful in the defini-
tion of stable polygons. For simplicity, the set of all relevant subsetsJ ⊂ {1, . . . , n}
with respect tor is denoted byR(r).

4.12. Now let r be any point in the interior ofC(Dn2) andε = {εJ |J ∈ R(r)} with
εJ chosen as in 4.6. Fix them once and for all. (We point out again that by Remark
4.8, we may choose allεJ equal to a fixed numberε. And there is even an canonical
choice of suchε, namely, min{r1, . . . , rn}.)

For a notational clarification, we make a remark that in this paper, a plain Greek
letterε is always to mean a suitably small positive number, whileε is to stand for
a collection of suchε.

DEFINITION 4.13. A stablen-gon with respect to the side length vectorr and
ε = {εJ |J ∈ R(r)} is a collection of labeled (butnot ordered) polygons

P := (P0, P1, . . . , Pm) ∈ Mr ×MrJ1
× · · · ×MrJm

satisfy the following properties:

(1) wheneverJt ⊂ Js, thenPt is a bubble ofPs .
(2) if Ph does not have a bubble, then it is generic (i.e.,Ph ∈ M0

rJh
).
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Figure 5.

In particular, in Definition 4.13 (1), we must have thatJt ⊂ Js is relevant with
respect torJs .

One thing worths a word now. WhenJ ∈ R(r) and |J | = 2,MrJ consists of
a single triangle. Although it is convenient to include it to define a stable polygon,
in effect, it will not do anything to the moduli space. In particular, when we later
formulate the Kähler cone ofM0,n, these ‘small’J ’s will have to be dropped out
from computations. For later use, we setR>2(r) = {J ∈ R(r) | |J | > 2}.

Remark4.14. Using a permutation among edges, we can always arrange the
edges pointing to the same direction to be adjacent. The inverse of the permutation
will allow us to get back what we start with.

This observation will simplify our exposition at points
Figure 5 illustrates two polygons that are related by the permutation

(1 2 3 4 5 6 7 8 9 10 11 12) −→ (1 7 2 10 3 11 4 12 5 8 6 9).

The edges of the first polygon are numbered starting from the left most edge with
the direction→. The edges of the second polygon are numbered in the same way.

DEFINITION 4.15. We useMr ,ε to denote the set of all stable polygons. For
simplicity, one may abbreviateMr ,ε asMr .

It is rather easy to see that the setMr ,ε of all stable polygons with the prescribed
side vectorr and a choice ofε carries a natural compact Hausdorff topology. This
topology will be the underlying topology of the complex structure onMr ,ε which
we will construct in the next section.

5. Moduli SpacesMr ,ε of Stable Polygons

Throughout, unless stated otherwise,r denotes a fixed length vector away from
the boundary ofC(Dn2) andC denotes the chamber (not necessarily maximal) that
containsr .

5.1. Consider the space ofn-polygons with one free side:

Z[n] :=
{
n-gons with the nonzero fixed side lengthsr1, . . . , rn−1

but the last side is free

}
.
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For any polygonP in Z[n], definel(P ) to be the length of the free side (i.e., the last
side). Then this length functionl:Z[n] → R assumes the maximal valuer1+ · · · +
rn−1. For convenience, we may allow the length of the free side to be zero. Thenl

also assumes the minimal value 0.
Every level set ofl provides a moduli space of polygons with the obvious pre-

scribed side lengths. At the extremal,f −1(0) is the moduli space of(n − 1)-gons
with the prescribed side lengths(r1, . . . , rn−1); while f −1(r1+· · ·+ rn−1) consists
of a single line polygon.

We are interested inMr = l−1(rn) where the length of the last sidern is close
to the maximumr1 + · · · + rn−1.

By Lemma 4.5, if

r1+ · · · + rn−1 − 2 min{r1, . . . , rn−1} < a < b < r1+ · · · + rn−1,

thenl−1(a) andl−1(b) are both isomorphic to the same projective space. We may
usefab to denote thecanonicalisomorphism froml−1(a) to l−1(b): fab: l−1(a)→
l−1(b).

Whenb = r1 + · · · + rn−1, l−1(b) is a single point. In this case, we understand
fab as the total collapsing mapl−1(a)→ l−1(b).

5.2. LetP0 ∈ Mr be ann-gon andJ = {j1 < · · · < js} a subset of{1, . . . , n} such
thatP0 degenerates ateJ (see Definition 3.5). For anyP ∈ Mr , via a permutation
if necessary, we can assume that the edgesej1, . . . , ejs are adjacent in that order.
Now letdJ = −(ej1+· · ·+ejs ) be the vector starting from the end ofejs and ending
at the initial ofej1. dJ will be referred as theJ -diagonal and can be zero in general.
Thenej (j ∈ J ) anddJ form a polygonQJ , while via a similar arrangement,−dJ
andej (j ∈ J c) form a polygonQc

J . Informally, we may say that theJ -diagonaldJ
divides the (permuted)n-gonP into the union of two sub-polygonsQJ andQc

J :
P := QJ ∪Qc

J . For our purpose, we assume thatl(QJ ) (= the length|dJ | of the
J -diagonal= the length of the last side ofQJ ) is close to the maximal value ofl
in the sense that

rj1 + · · · + rjs − 2 min{rj1, . . . , rjs } < l(QJ ) 6 rj1 + · · · + rjs .
Then(rj1, . . . , rjs , l(QJ )) is in the favorable chamberCJ unlessl(QJ ) = rj1 +· · · + rjs in which case the normalization of(rj1, . . . , rjs , l(QJ )) belongs to a
boundary simplexC ′J .

Remark5.3. Applying the inverse of the permutation (if necessary), we can
remove the assumption that edgeseJ are adjacent. For simplicity, rather than de-
claring this at every place where we use it, we will simply say that ‘the permutation
scheme is applied’ or ‘apply the permutation scheme’.

DEFINITION 5.4. LetP0 ∈ Mr be ann-gon andJ = {j1 < · · · < js} a subset of
{1, . . . , n} such thatP0 degenerates ateJ . LetP ∈ Mr andQ ∈ MrJ . Let alsoQJ
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Figure 6.

andQc
J be as in 5.2. Here the permutation scheme is applied when necessary. We

say thatP andQ are incident, denoted by

ι(P,Q),

if

rj1 + · · · + rjs − 2 min{rj1, . . . , rjs } < l(QJ ) = |dJ | 6 rj1 + · · · + rjs
andQ is mapped toQJ by the morphismfl(Q)l(QJ). The mapfl(Q)l(QJ) is an iso-
morphism unlessl(QJ ) is maximal (i.e.,QJ is a line gon) in which casefl(Q)l(QJ)
is a total collapsing map to a point variety.

Figure 6 depicts an example whereQ andQJ are assumed to be isomorphic by
the morphismfl(Q)l(QJ).

Note that we automatically have for anyQ ∈ MrJ that

rj1 + · · · + rjs − 2 min{rj1, . . . , rjs } < l(Q) < rj1 + · · · + rjs
becausel(Q) =∑J rj − εJ , by definition. Thus, the above definition makes sense
because of the discussion in 5.2.

LEMMA 5.5. The incidence relation is complex analytic. That is, the subset of
Mr ×MrJ defined by incidence relation is complex analytic.

Proof. It basically follows from the fact that all mapsfl(Q′)l(Q) in the definition
of incidence relation are complex analytic. 2
5.6. LetP0 ∈ Mr be a polygon that degenerates at the edgeseJ . Here, if necessary,
we may apply the permutation scheme. SetUr (P0)J ⊂ Mr to be the subset ofMr

consisting of polygonsP such that

rj1 + · · · + rjs − 2 min{rj1, . . . , rjs } < |dJ | 6 rj1 + · · · + rjs .
This is an open neighborhood ofP0 in Mr .
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LEMMA 5.7. We have

(1) If P0 is not a line gon,Ur (P0)J does not contain a line gon. In particular,
Ur (P0)J is smooth.

(2) If P0 is a line gon,P0 is the only line gon inUr (P0)J . In particular,Ur (P0)J
is smooth away fromP0.

Proof. We apply the permutation scheme and assume that the edgeseJ are
adjacent. LetP ′0 be a line gon inUr (P0)J that degenerates at edgeseI for some
I 6= J . (Here, whether the edgeseI are adjacent is irrelevant to our proof.) In
particular, we have

∑
I ri =

∑
I c ri . Let dJ be theJ -diagonal forP ′0. Without loss

of generality, assume that
∑

I∩J rj >
∑

I c∩J rj . Then

|dJ | = |
∑
I∩J

rj −
∑
I c∩J

rj | =
∑
J

rj − 2
∑
I c∩J

rj 6
∑
J

rj − 2 min
J
{rj }.

This contradicts thatP ′0 ∈ Ur(P0)J . 2
We will need a general lemma:

LEMMA 5.8 (Removable Singularity Theorem).Let f :X → Y be a continuous
map between two holomorphic complex varieties. Assume that the restrictionf0 of
f to a dense open subset ofX is holomorphic. Thenf is itself holomorphic.

Proof. It follows from the consideration of the following diagram

f :X −→ Graph(f ) = Graph(f0) −→ X × Y −→ Y. 2
WhenP0 is a line gon that degenerate ateJ andeJ c , theneJ andeJ c are the only
sets of degenerating edges forP0. SetU0

r (P0) = Ur (P0)J ∩Ur (P0)J c . This is again
an open (singular) neighborhood ofP0 in Mr . Define a correspondence set

Û1
r (P0) ⊂ U0

r (P0)×MrJ ×MrJ c

as follows

Û1
r (P0) = {(P, P1, P2) ∈ Mr ×MrJ ×MrJ c : ι(P, P1), ι(P, P2).}

Û1
r (P0) projects ontoU0

r by forgetting the last two factors.

LEMMA 5.9. Let P0 be a line gon. Then the projection̂U1
r (P0) → U0

r (P0) is a
(canonical) resolution of singularities? ofU0

r (P0).

? This lemma is a special case of a more general result from the Geometric Invariant Theory or
the theory of symplectic reductions. Our proof is independent and uses only polygons.
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Proof.We will apply the permutation scheme in this proof.Û1
r (P0) is the subset

of U0
r (P0)×MrJ ×MrJ c defined by the incidence relation. It projects surjectively

onto the subsetUr (J
c) of U0

r (P0) ×MrJ c by forgetting the middle factor.Ur(J
c)

is nothing butUr(J
c) = {(P, P1) ∈ U0

r (P0)×MrJ c : ι(P, P1)}.
We will first argue that the subsetUr (J

c) is smooth by identifying it with a
smooth open subset ofMr ′ wherer ′ is a perturbation ofr . For this purpose, assume
that

rJ =
(
rj1, . . . , rjs ,

∑
J

rj − εJ
)
, and rJ c =

(
rJ c ,

∑
J c

rj − εJ c
)
.

Note that∑
J

rj =
∑
J c

rj .

Let r ′J = (r ′j1, . . . , r ′js ,
∑

J rj − ε) ∈ CJ be a small generic perturbation ofr j =
(rj1, . . . , rjs ,

∑
J rj − εJ ) in CJ such that

r ′j1 + · · · + r ′js =
∑
J c

rj − εJ c.

Let r ′ be obtained fromr by replacingrj1, . . . , rjs by r ′j1, . . . , r
′
js

correspondingly.
Sincer ′ is in more general position, and can be taken to be close tor , we get a
canonical surjectionβ:Mr ′ → Mr by 2.8.

LetUr ′ = β−1(U0
r (P0)). Thenβ restricts to an isomorphism betweenUr ′\β−1(P0)

andU0
r (P0)\{P0}. Note thatβ−1(P0) consists of the polygons ofUr ′ that degenerate

at the edgeseJ .
Defineg:Ur (J

c)→ Ur ′ as

g: (P, P1) −→ β−1(P ), if P 6= P0;
g: (P0, P1) −→ P ′, if P = P0,

whereP ′ is obtained fromP1 ∈ MrJ c by breaking the longest edge (whose length is∑
J c rj−εJ c) into the consecutive edges according to the lengthsr ′j1, . . . , r

′
js

(which
add up to

∑
J c rj − εJ c , by assumption). The inverse ofg can be checked to be

g−1:P ′ → (β(P ′), P1), if β(P ′) 6= P0, whereP1 ∈ MrJ c is uniquely determined
by β(P ′). g−1:P ′ → (β(P ′), P1), if β(P ) = P0, whereP1 is obtained fromP ′
(which degenerates ateJ ) by taking the degenerating edges as a single edge whose
length is, by assumption,

∑
J r
′
j =

∑
J c rj − εJ c . The functiong andg−1 are easily

seen to be continuous and holomorphic on some dense open subsets. Thus by the
Removable Singularity Theorem (Lemma 5.8),g andg−1 are both holomorphic.

By the same proof as in Lemma 5.7,Ur ′ contains no line gons (it also more or
less obviously follows from the fact thatUr ′ = β−1(U0

r (P0)) and Lemma 5.7). This
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shows thatUr (J
c) ∼= Ur ′ is smooth. Consider the projection̂U1

r (P0) → Ur(J
c).

It is easy to see that all fibers of the projection are projective spaces (mostlyP0)
and the projection is bimeromorphic. Thus the uniqueness of blowup implies that
Û1

r (P0) → Ur (J
c) is a blowup ofUr(J

c) along smooth centers. ThuŝU1
r (P0) is

smooth, and this completes the proof. 2
Remark5.10. Likewise, one obtainsUr(J ) by forgetting the last factor of

Û1
r (P0) ⊂ U0

r (P0)×MrJ ×MrJ c .

By the same arguments as in the above proof,Ur (J ) can be identified with a smooth
open subset ofMr ′′ for some otherr ′′. It follows then thatUr (J

c) → U0
r (P0) and

Ur(J )→ U0
r (P0) are also resolution of singularities, although neither is canonical

due to a choice betweenJ andJ c. As a consequence of the above, we have shown
thatÛ1

r (P0) is a common blowup ofUr(J
c) andUr (J ).

If we setZJ (compare withZ[n]) to be the moduli space of(|J | + 1)-gons with
first |J | sides having fixed lengthrj1, . . . , rjs but the last side being free, then all
the above discussions aboutZ[n] apply toZJ in an obvious way.

5.11. This allows us to define the following correspondence (variety). For any
stable polygon

P= (P0, P1, . . . , Pm) ∈ Mr ×MrJ1
× · · · ×MrJm ,

define

Ur (P) =
{
(P ′0, P

′
1, . . . , P

′
m) ∈ Mr ×MrJ1

× · · · ×MrJm :
ι(P ′s , P ′t ) wheneverJt ⊂ Js

}
.

If P = P0, we simply setUr (P) = M0
r . Note that the components of a stable

polygon are labeled but not ordered. Consequently, we need to point out that the
incident correspondenceUr (P) is, up to isomorphisms (induced by permutations
among the components), uniquely determined by the stable polygonP.

LEMMA 5.12. Let (P ′0, P
′
1, . . . , P

′
m) ∈ Ur (P). For everyJt ⊂ Js, P ′t is uniquely

determined byP ′s unlessP ′t is a bubble ofP ′s .
Proof.This follows from the definition of incidence relation. 2

It then follows

COROLLARY 5.13. There is a canonical injectionγr (P):Ur (P)→Mr ,ε.

LEMMA 5.14. Given any stable polygonP, Ur(P) is a smooth complex analytic
subvariety ofMr ×MrJ1

× · · · ×MrJm .
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Proof.In this proof, the permutation scheme will be applied whenever the length
of a diagonal of a polygon is used. Given any stable polygon

P= (P0, P1, . . . , Pm) ∈ Mr ×MrJ1
× · · · ×MrJm ,

we shall describeUr (P) inductively. If P0 generic,Ur (P) = M0
r is obviously

complex analytic and smooth. So we assume thatm > 1. If J = Jk for some
1 6 k 6 m, we will call P ′J := P ′k to be theJ -component (or,k-component) of
P′ = (P ′0, P ′1, . . . , P ′m).

First, letU0
r (P) be the subset ofMr consisting of pointsP ′0 with the following

property: For anyJ such thatP0 degenerates atJ , we require that theJ -diagonal
of P ′0 satisfies

∑
J rj − 2 minJ {rj } < |dJ | 6 ∑

J rj . This is a complex analytic
open neighborhood ofP0 in Mr .

Define an incident correspondencêU1
r (P) ⊂ U0

r (P)×5JMrJ as follows. Here,
the product is over allJ ’s such thatP0 degenerates at the edgeseJ . SuchJ ’s will
be referred as the subsets of the first kind. We then require that for any point
P′ ∈ Û1

r (P) we have the incidence relationi(P ′0, P
′
J ) whereP ′0 is the (main) 0-

component ofP′ andP ′J is theJ -component ofP′. Since the incidence relation is
holomorphic,Û1

r (P) is holomorphic.
Then we takeU1

r (P) to be the subset of̂U1
r (P) consisting of points with the fol-

lowing additional requirements. Given any pointP′ in Û1
r (P), it belongs toU1

r (P)
if for any J -componentP ′J of the point (whereJ is of the first kind) and anyI ⊂ J
such thatP ′J degenerates at the edgeseI , we demand that

∑
I rj − 2 minI {ri} <

l(d ′J,I ) 6
∑

I rj , whered ′J,I is theI -diagonal ofP ′J . ThenU1
r (P) is a holomorphic

open subset of̂U1
r (P). We may refer to the aboveI ’s as the subsets of the second

kind.
Likewise, one can define the incident correspondence varietyÛ2

r (P) ⊂ U1
r (P)×

5IMr I where the product is over all subsets of the second kind and a complex
analytic open subsetU2

r (P) ⊂ Û2
r (P), . . ., and keep going until allJ1, . . . , Jm are

taken into account. We hence obtain inductively a sequence of projections

Û1
r (P) −→ U0

r (P),

Û2
r (P) −→ U1

r (P),

· · ·
Û h−1

r −→ Uh−2
r (P),

Û h
r −→ Uh−1

r (P),

One checks directly that the so-inductively definedÛ h
r (P) coincides with the in-

cident correspondence varietyUr(P) as defined in 5.11.
To see thatUr(P) is smooth, we will analyze the above sequence. We will have

to divide the proof into two cases.
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Case1. P0 is not a line gon. In this case,P0 is a smooth point ofMr and thus the
open neighborhoodU0

r (P) is smooth by Lemma 5.7. Every fiber of the projection
Û1

r (P) → U0
r (P) is easily seen to be projective spaces (mostlyP0). In addition,

the projection is bimeromorphic. Thus the uniqueness of blowup implies that the
above projection is a blowup ofU0

r (P) along smooth centers. Indeed, the centers
are the loci ofP ′0 ∈ U0

r (P0) that are degenerate at some edgeseJ . Each component
of the center can be identified, by taking the degenerate edgeseJ as a single edge,
with a smooth open subset ofMx (which must be a projective space because such
x must be in a favorable chamber). ThusÛ1

r (P ) is smooth. Likewise, step by step,
one can show that̂U2

r (P), . . ., andÛ h
r (P) are all smooth. In particular,Ur (P) is

smooth.

Case2. P0 is a line gon. In this case,P0 is a singular point ofMr and thus
the open neighborhoodU0

r (P) is singular. By Lemma 5.9, noting that̂U1
r (P) =

Û1
r (P0), the projection̂U1

r (P)→ U0
r (P) is a (canonical) resolution of singularities

of U0
r (P).

Now, follow the proof inCase1, build up fromÛ1
r (P), step by step, we conclude

thatÛ h
r (P) is smooth as desired. 2

As an immediate consequence of Lemma 5.14, we have

THEOREM 5.15.Mr ,ε carries a natural smooth, compact complex analytic struc-
ture induced by the injectionsγr(P):Ur (P)→Mr ,ε for all stable polygonsP.

Proof.The complex structures onγr (P)(Ur(P)) (induced by those onUr(P)) for
various stable polygonsP obviously agree with each other over the overlaps. The
theorem then follows. 2

6. Mr ,ε as Iterated Blowups ofMr

Globally, by forgetting all the bubbles of a stable polygon, or locally, by the pro-
jection fromUr (P) (see 5.11) to (the main factor)Mr , we obtain

COROLLARY 6.1. There is a canonical complex analytic mapπr ,ε:Mr ,ε → Mr

which restricts to the identity onM0
r .

Proof.The existence of the projectionπr as a set-theoretic map is obvious. That
πr is complex analytic follows from that locallyπr is equivalent to the projection
Ur(P)→ Mr . 2
6.2. WhenMr is smooth, that is, whenr is away from walls, the mapπr ,ε:Mr ,ε →
Mr ought to be an iterated blowup ofMr along some smooth subvarieties. The
details go as follows.

6.3. Let F [n] be the set of all partitions of[n] = {1, . . . , n}, partially ordered by
reverse refinement. That is, an element ofF [n] is of the formα = I1

∐ · · ·∐ Ik =
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Figure 7.

[n]. Let β = J1
∐ · · ·∐ Jm = [n] be another partition of[n]. We sayα 6 β if

for any 16 s 6 m, Js ⊂ It for some 16 t 6 k. The maximal element inF [n]
is {1}∐ · · ·∐{n}. The smallest element is[n] itself (but we will never use this
smallest element).

Given anyα in F [n], defineYα to be the set of all polygonsP in Mr such that
the edgeseIs (1 6 s 6 k) are parallel. This is a closed subvariety ofMr which is
isomorphic toMrα by an obvious natural map? fα:Yα → Mrα , where

rα =
∑
s∈I1
|es |, . . . ,

∑
s∈Ik
|es |
 .

Figure 7 illustrates the mapfα as the composition of a permutation followed by
an identification.

We must point out that the strataYα are empty for manyα ∈ F [n] (e.g., when
rα lies outside of the coneC(Dk2)).

Obviously, allYα are smooth ifMr is (having no line gons). In general, it always
contains a smooth dense open subsetY 0

α = f −1
α (M0

rα ). That is,Y 0
α is the set of all

polygonsP in Mr such that the edgeseIs (1 6 s 6 k) are all parallel to each other
but not to any other edges.

Then we obtain a canonical decompositionMr =⋃α∈F [n] Y
0
α .

This is a stratification ofMr by smooth strata.
One checks readily that

PROPOSITION 6.4.Yα ⊂ Yβ if and only ifα 6 β.

In fact, it can be shown that an intersection of the closed strataYα’s is again a
closed stratum unless it is empty.

Now we come to our main theorems in this section.

THEOREM 6.5. Assume thatMr is smooth. Thenπr ,ε:Mr ,ε → Mr is the iterated
blowup ofMr along (the proper transforms of) all the smooth closed strataYα in
the order dictated by the partial order (Yα ⊂ Yβ if and only ifα 6 β), starting
from the smallest ones.
? To see this, one may need to use permutations among edges. Consult Figure 7.
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Proof.This follow from the details of the proof presented for Lemma 5.14 and
the fact that the blowup construction is local and unique. 2

Remark6.6. For suitable smallε,Mr ,ε comes equipped with a symplectic form
�r ,ε whose cohomology class is uniquely defined so thatπr ,ε: (Mr ,ε, �r ,ε) →
(Mr , ωr ) can be interpreted as a symplectic blowup (see Lemma 6.44 and pp. 230–
231 of [19]). The ambiguity of the so-called symplectic blowups provides another
angle to see how natural it is the choices ofε in the definition of stable polygons.

The singular case is slightly complicated. Assume thatMr is singular. ThenMr

has isolated singularities defined by line gons. Each of these line gons forms one of
the smallest strata inMr = ⋃α∈F [n] Y

0
α . Recall by Lemma 5.9, these singularities

admit canonical resolutions.

THEOREM 6.7. Assume thatMr is singular. Thenπr ,ε:Mr ,ε → Mr is the com-
posite of the canonical resolutions as described in Lemma 5.9 followed by the
iterated blowups of the resulting resolution along (the proper transforms of) all
other smooth closed strataYα in the order dictated by the partial order(Yα ⊂ Yβ
if and only ifα 6 β), starting from the smallest ones.

Proof. After applying Lemma 5.9, all other arguments remain the same as for
the proof of Theorem 6.5. 2

Remark6.8. Whenr is on a wall,Mr carries a singular Kähler form. In this
case,Mr ,ε → Mr ought to be interpreted as a Kähler morphism in a suitable sense.

6.9. Among all the iterated blowupsπr ,ε: (Mr ,ε, �r ,ε) → (Mr , ωr ), two special
cases worth mentioning. For one kind of special choices ofr ,Mr is isomorphic to
(P1)n−3 (see 3.7). In this case, our presentation of the blowupMr ,ε → Mr , putting
asside symplectic structures and after showing in the next section the isomorphism
betweenMr ,ε andM0,n, specializes to the blowup representation ofM0,n,M0,n→
(P1)n−3, as utilized by Keel in his study on the Chow ring ofM0,n ([14]). For some
other special choices ofr ,Mr is isomorphic toPn−3 (see 3.3). In this case, our
blowupMr ,ε → Mr , again forgetting symplectic structure, amounts to the blowup
representation ofM0,n,M0,n → Pn−3, as studied by Kapranov in [13]. We give
below some details of the latter.

EXAMPLE 6.10. Chooser ∈ 4i for some fixed 16 i 6 n (see Section 3 for the
characterization of4i). Note that a polygonP ∈ Mr

∼= Pn−3 will never degenerate
at the edgeei . This fact together with the identificationfα:Yα → Mrα implies
that every stratumYα is isomorphic toPdimYα . Point strata correspond to polygons
P whose edges have exactly three different directions. There are(n − 1) such
strata. They are points inPn−3 in general position. Any other stratum, obviously
containing a subset of these points, is the projective subspace spanned by the points
in the subset. Applying Theorem 6.5 (together with the isomorphismMr ,ε

∼=M0,n
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to be proved in Section 7), we recover Kapranov’s blowup representation,M0,n→
Pn−3.

7. Mr ,ε and M0,n

7.1. Recall that an-pointed connected complex algebraic curve of genus 0 is stable
if

(1) then-marked points are smooth points;
(2) every singular point is an ordinary double point;
(3) for each irreducible connected component, the number of marked points

plus the number of singular points on the component is at least 3.

The setM0,n of equivalence classes of alln-pointed stable algebraic curve of genus
0 carries a natural structure of a smooth projective variety. LetM0,n be the moduli
space ofn-pointed smooth curves of genus zero. ThenM0,n\M0,n is a divisor with
normal crossings. Given anyn-pointed stable curveX, we can associate to it a
graph graph (X): the vertices of graph (X) correspond to the irreducible compon-
ents ofX, and two vertices are joined by an edge if their corresponding components
share a common singular point. Then that the curveX is of genus 0 is equivalent
to the graph graph (X) being a tree.

7.2. Likewise, we can also attach a graph, graph (P), to any given stablen-gonP=
(P0, P1, . . . , Pm): the vertices of graph(P) correspond to the polygons{P0, P1, . . .,
Pm}, and two vertices are joined by an edge if their corresponding polygons satisfy
the bubble relation (Definition 4.10). One checks easily that graph (P) is a tree.

THEOREM 7.3.Letr be a point in the interior ofC(Dn2) andε be chosen as before.
Then,Mr ,ε andM0,n are biholomorphic. Consequently, the complex structure on
Mr ,ε is independent? of r and the choice ofε. Moreover,Mr ,ε\M0

r is a divisor with
normal crossings.

Proof. Mr ,ε is easily seen to be bimeromorphic toM0,n. That is, we have a
biholomorphismγ 0:M0

r (⊂Mr ,ε)→M0,n(⊂M0,n).

This map can be extended continuously as follows. For any stable polygon

P= (P0, P1, . . . , Pm) ∈ Mr ×MrJ1
× · · · ×MrJm ,

we obtain a collectionX = (X1, . . . , Xm) of pointed curves of genus zero via the
identificationsMr

∼= (P1)nss(rC)//PGL(2).
Now regarding the coinciding points in eachXi as a single point, and if(Ps, Pt )

is a bubble pair, we jointXs andXt at the coinciding points (regarded as single

? The structure of Kähler space, however, depends on choices.
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point) ofXs (which corresponds to the same direction pointing edges of the poly-
gonPs) and the point ofXt that corresponds to the longest edge ofPt . This way,
we obtain a reducible algebraic curveX1∪ · · · ∪Xm which hasn-labeled (smooth)
points. It is of genus zero because its associated graph coincides with the graph
of the stable polygonP which is a tree by the construction. One checks that each
componentXi has at least three distinguished (marked plus singular) points. Hence
X1 ∪ · · · ∪Xm is a stablen-pointed curve of genus zero. The so-induced map

γ :Mr ,ε −→M0,n,

(P1, . . . , Pm) −→ X1 ∪ · · · ∪Xm
is (more or less) obviously continuous and injective. By Lemma 5.8,γ is holo-
morphic. Sinceγ is bimeromorphic, it is also surjective. This implies thatγ is
biholomorphic. The rest follows from some well-known properties ofM0,n. 2

Remark.7.4. Whenr is away from walls, being Kähler and Moishezon,Mr ,ε

is projective. SinceMr ,ε andM0,n are biholomorphic, the GAGA theorems imply
thatMr ,ε andM0,n are isomorphic as projective varieties as well.

8. The Kähler Cone ofMr

8.1. To pave a way to determining the Kähler cone ofM0,n we first study the
Kähler cone ofMr . We shall mainly focus our attention on the most important
special cases thatr lies in a chamber around the center ofC(Dn2). The others,
though less significant for the Kähler cone ofM0,n, can be treated similarly. There
will be some differences between the case whenn is odd and the case whenn is
even.

8.2. The odd case. This is the nicer case. There is a unique chamberC0 that
contains the half rayR+ · (1, . . . ,1) in C(Dn2). In terms of inequality,C0 is defined
by

2
∑
j∈J

rj <
∑

16j6n
rj if |J | < n

2
; 2

∑
j∈J

rj >
∑

16j6n
rj if |J | > n

2
.

Equivalently,C0 ∩ Dn2 is defined by∑
j∈J

rj < 1 if |J | < n

2
;

∑
j∈J

rj > 1 if |J | > n

2
.

Recall that allMr underly a common projective varietyMC0 when r lies in
the interior ofC0. It is well known that the second Betti number or the Picard
number of this projective variety is equal ton. Many people have made independent
calculations. The following provides one of them.
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THEOREM 8.3 ([10]).MC0 can be obtained fromPn−3 by the following sequence
of ‘blowups’ and ‘blowdowns’: we start with blowing up

(
n−1

1

)
points (in general

position) ofPn−3 to
(
n−1

1

)
Pn−4; then blowing down

(
n−1

2

)
P1 to

(
n−1

2

)
points fol-

lowed by blowing up
(
n−1

2

)
points to

(
n−1

2

)
Pn−5; then blowing down

(
n−1

3

)
P2 to(

n−1
3

)
points followed by blowing up

(
n−1

3

)
points to

(
n−1

3

)
Pn−6; . . . ; finally, blowing

down
(
n−1
n−3

2

)
P n−5

2 to
(
n−1
n−3

2

)
points followed by blowing up

(
n−1
n−3

2

)
points to

(
n−1
n−3

2

)
P n−3

2 .

Proof. (Outline.) Take a general point in a favorable chamber ofDn2. Consider
the line segment joining this point and the barycentre ofDn2. By Theorem 2.2 of
[8], one get a sequence of projective morphisms betweenPn−3 andMC0 such that
the dimensions of special fibers change according to the ruled+e = n−4, starting
with 0+ (n − 4), then 1+ (n− 5), and so on. . ., till we arrive at the center ofDn2
and end up with(n−5)/2+ (n−3)/2. Taking into account of the number of walls
that we have crossed, we obtain the assertion as in the theorem. 2
The theorem immediately implies that

Pt (MC0) = Pt (Pn−3)+
(
n− 1

1

)
[Pt (Pn−4)− 1] +

+
(
n− 1

2

)
[Pt (Pn−5)− Pt (P1)] +

+ · · · +
(
n− 1
n−3

2

)
[Pt (P n−3

2 )− Pt (P
n−5

2 )].

That is,

Pt (MC0) =
t2(n−2) − 1

t2 − 1
+
(
n− 1

1

)
t2
t2(n−4) − 1

t2− 1
+

+
(
n− 1

2

)
t4
t2(n−6) − 1

t2 − 1
+

+ · · · +
(
n− 1
n−3

2

)
tn−3.

Here Pt (X) denotes the Poincaré polynomial ofX. These Betti numbers were
probably first computed by Kirwan.

Now we turn to the Kähler coneK(MC0) of MC0. Define a mapθ0:C0 →
K(MC0) by r → [ωr ], where[ωr ] is the cohomology class ofωr . This is initially
defined in the interior ofC0 but can be extended easily to the boundary.

THEOREM 8.4.Assumen > 5. The Kähler coneK(MC0) ofMC0 can be naturally
identified with the coneC0 by the linear isomorphismθ :C0→ K(MC0).
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Proof. By Duistermaat–Hechman’s theorem?, θ is linear. Since dimC0 = dim
K(MC0) = n, to prove thatθ is a linear isomorphism, it suffices to argue that
θ0 is surjective onto the open Kähler cone. Because the Kähler cone is gener-
ated by the cone of ample divisors (in this case), it is enough to consider integ-
ral points. LetL be any ample line bundle overMC0

∼= (P1)nss(rC0)//GL(2,C)
whererC0 is any fixed integral point in the interior ofC0. Let π : (P1)nss(rC0) →
(P1)nss(rC0)//GL(2,C) be the quotient map. Thenπ∗L extends canonically to an
ample line bundleL over (P1)n because the complement(P1)n\(P1)nss(rC0) has
codimension greater than 1. Now the surjectivity follows from the fact that(P1)nss
(rC0) = (P1)nss(L) andL descends toL. It remains to show that the imageθ(∂C0)

lies on the boundary ofK(MC0). This basically follows from the fact that when
r approaches the boundary ofC0, one gets a non-trivial (symplectic) blow down
map, and in particular, for any curveS that is contracted to a point the pairing
〈[ωr ], [S]〉 approaches zero asr approaches the boundary ofC0. Here[S] is the
homology class ofS. 2

Remark8.5. A few remarks are in order. First,C0 is the unique chamber that
is invariant under permutations of coordinates. Second,MC0 is the only quotient
that admits an induced action of the permutation group6n (which acts on(P1)n by
permuting the coordinates). This is so because(P1)nss(rC0) is the only semi-stable
set that is invariant under6n.

The even cases are somewhat complicated due to the fact that the half rayE =
R+ · (1, . . . ,1) lies in the intersection of a number of chambers

First we record a result onME.

THEOREM 8.6 ([10]).ME can be obtained fromPn−3 by the following sequence of
‘blowups’ and ‘blowdowns’: we start with blowing up

(
n−1

1

)
points to

(
n−1

1

)
Pn−4;

then blowing down
(
n−1

2

)
P1 to

(
n−1

2

)
points followed by blowing up

(
n−1

2

)
points

to
(
n−1

2

)
Pn−5; then blowing down

(
n−1

3

)
P2 to

(
n−1

3

)
points followed by blowing

up
(
n−1

3

)
points to

(
n−1

3

)
Pn−6; . . . ; then blowing down

(
n−1
n−4

2

)
P n−6

2 to
(
n−1
n−4

2

)
points

followed by blowing up
(
n−1
n−4

2

)
points to

(
n−1
n−4

2

)
P n−2

2 ; finally, blowing down
(
n−1
n−2

2

)
P n−4

2

to
(
n−1
n−2

2

)
points.

Proof.The proof is similar to that of Theorem 8.3. 2
It follows that

IP t (ME) = Pt (Pn−3)+
(
n− 1

1

)
[Pt (Pn−4)− 1] +

? Strictly speaking, to apply Duistermaat–Heckman’s theorem in this case, one should use the
Grassmannian construction ofMr as mentioned in 2.3.
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+
(
n− 1

2

)
[Pt (Pn−5)− Pt (P1)] +

+ · · · +
(
n− 1
n−4

2

)
[Pt (P n−2

2 )− Pt (P
n−6

2 )].

That is,

IP t (ME) = t2(n−2) − 1

t2− 1
+
(
n− 1

1

)
t2
t2(n−4) − 1

t2 − 1
+

+
(
n− 1

2

)
t4
t2(n−6) − 1

t2− 1
+

+ · · · +
(
n− 1
n−4

2

)
tn−4 t

4− 1

t2− 1
.

HereIP t (X) denotes the intersection Poincaré polynomial ofX. These intersection
Betti numbers are first computed by Kirwan.

Now, take any maximal chamberC∗ that contains the half rayE (the symbol∗
stresses on the choice of a base point to single out a chamber). Again, the Picard
number ofMC∗ is equal ton, and we can define a mapθ :C∗ → K(MC∗), in the
way as before. A similar proof as in Theorem 8.4 will give

THEOREM 8.7.Assume n> 6. The Kähler coneK(MC∗) ofMC∗ can be naturally
identified with the coneC∗ by the linear isomorphismθ :C∗ → K(MC0).

9. The Kähler Cone ofM0,n

9.1. By the virtue of Remark 6.6,M0,n carries (classes of) symplectic forms that
are transported from (the classes of)�r ,ε by the isomorphismγ :Mr ,ε →M0,n. A
quick computation on the number of independent parameters for�r ,ε leads to

n+ 2n − 2− 2n− n(n− 1)

2
= 2n−1 − n

2− n+ 2

2

which coincides with the second Betti number or the Picard number ofM0,n. It is
well-known that the Kähler cone (or dually the Mori cone of effective curves) of
a projective variety is, in general, very hard to compute. Our theory, as providing
a large family of (classes of) Kähler forms�r ,ε, sheds a light on the shape of the
Kähler cone ofM0,n. We shall now give some heuristic arguments and formulate a
conjecture below.

9.2. To this end, letC∗ be C0 when n is odd or a choiceC∗ of the maximal
chambers that contains the rayR+ · (1, . . . ,1) whenn is even, and introduce a
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large cone built onr ∈ C∗ andε = (εJ )J∈R>2(r) ∈ R2n−1−1−n− n(n−1)
2+ in the legal

range as follows:

C = {(r , ε) ∈ C∗ × R2n−1−1−n− n(n−1)
2+ |0< εJ < 2 min{rj }j∈J , J ∈ R>2(r)}.

(One can check that this is indeed a positive convex one.) Then for any point(r , ε)
in the coneC, we have obtained a Kähler form�r ,ε, provided thatr is away from
wallls. This leads to a well-defined map20 from the interior ofC to the Kähler
coneK(M0,n) of M0,n by taking the cohomology classes of�r ,ε. One checks that
�r ,ε depends on(r , ε) continuously and20 extends to a continuous map2:C →
K(M0,n). To exclude triviality, we assume thatn > 5.

CONJECTURE 9.3.Assume thatn > 5. The map2 identifies a subcone of the
coneC with the Kähler coneK(M0,n) of M0,n.

Dually, we may also consider the Mori cone effective curves (see a conjec-
ture by Fulton as formulated in [15]). It should be instructive to study the two
approaches altogether.

We end our exposition by a digressive remark.

Remark9.4. By 3.3.21 of [2],C(Dn2) is theG-ample cone for both the PGL(2)-
action on(P1)n and the maximal torus action on the GrassmannianG(2,Cn). It is
known that the Chow quotients of these two actions can be identified withM0,n.
Thus the above conjecture would establish an interesting connection between the
G-ample cone of projectiveG-variety and the ample cone of its Chow quotient.
This and moreover the case for a general algebraic group action call for further
investigation.

In a forthcoming paper, we will return to these topics ([11]).
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