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Abstract. In this paper, certain natural and elementary polygonal objects in Euclidean #pace,
stable polygonsare introduced, and the novel moduli spa®s, of stable polygons are constructed

as complex analytic spaces. Quite unexpectedly, these new moduli spaces are shown to be projective
and isomorphic to the moduli spam_eo,n of the Deligne—-Mumford stable curves of genus 0. Further,

built into the structures of stable polygons are some natural data giving rise to a family of (classes
of) symplectic (Kahler) forms. This, via the link t6(q ,,, brings up a new tool to study the Kahler
topology ofﬂo,n. Some speculative discussion on the shape of the Kahler coﬁ@gfis given in

the end.
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1. Introduction

The moduli spaces of Riemann surfaces were introduced by Riemann in the nine-
teenth century and have been since great sources of interest and study. Most re-
cently, they have evolved as essential ingredients in symplectic topology and mirror
symmetry. In these theories, a guiding principle is that the geometry of an almost
complex manifold may be obtained by studying the space of all (pseudo-) holo-
morphic curves on the manifold. One instance is the Gromov—Witten invariants. A
key building block in that theory is the Deligne—-Mumford compactificatip ,

of the moduli spaceM, , of pointed Riemann surfaces of gengisSymplectic
topology and mirror symmetry are, of course, not the only places wiérg

is important. These moduli spaces are also rich subjects of study in Thurston’s
hyperbolic geometry and Teichmdller theory (and so on). On yet another import-
ant aspect of geometry, the genus zero c#&g, was recently effectively used

by Kawamata to prove a higher codimensional adjunction formula in algebraic
geometry.
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Figure 1.

The basic questions we will address in this paperfase: do we construct these
compactified moduli spaces and furthermore what geometric information can we
derive from the construction?

Our answers to these questions are very simple and rather unexpected.

We will only look at the special case of genus zero, namely, the moduli space
Mo, of stablen-pointed Riemann spheres. Set-theoretically, a generic point in
Mo, is an equivalence class of Riemann spheres witlistinct ordered points.

All other points on the boundary of(y, are to be obtained by abiding to the
following principle: whenever some of marked points on a sphere come together,
we attach another sphere, called a bubble, at the coinciding position and let the
coinciding points get separated on the bubble sphere. This process should go on
until all points get separated (see Figure 1, above).

In this paper, we will (quite unexpectedly) builelo,, using totally differently
materials. In short, we shall giveymplecticconstructions ofMo,, by using only
elementary geometric combinatorial objects in the Euclidean space which we will
name asstable polygonsThis yields some quite unexpected results which among
other things include a family of naturally and automatically built-in (classes of)
symplectic Kahler forms oo ,. We believe that this will eventually allow us to
guantitatively determine (see a forthcoming paper [11]) the K&hler cone and dually
the Mori cone of effective curves oM, (cf. Section 8 and 9).

Our approach is based upon a beautiful connection between symplectic and
algebraic geometry, discovered in late 70’s and early 80’s. BrieflyXeto) be a
symplectic manifold that underlies a polarized projective manitaid.L), where
w is a symplectic form orX and £ is a positive line bundle such that(L£) =
[w] € H?(X,Z). Suppose a compact Lie group acts symplectically orX with
its complexificationG = K¢ acting holomorphically. Then in a canonical way,
we have a correspondence between quotients in symplectic category and quotients
in projective algebraic category. More precisely, assume khatcts onX in a
Hamiltonian fashion, that is, there is an equivariant moment map (depending on
®,: X — k*, wherek is the Lie algebra oK. Then the orbit spacé_*(0)/K
carries a naturally induced symplectic structure away from singularities. This is a
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symplectic quotient. On the other hand, there is a dense open sSUB&£E) C X,
the set of all semistable points determinedfyBy Mumford’s geometric invariant
theory, X**(L£) has a quotienX**(L£)//G as a projective variety. The beautiful
correspondence mentioned above is that the symplectic qudiiehid) /K is, in
a canonical way, homeomorphic to the projective quotietit.L)//G (Mumford,
Atiyah, Guillemin—Sternberg, Kempf—Ness, Ness, Kirwan, and others).

We now describatable polygonsn R?, the building blocks of our construction
of Mo,.. A polygon inR3 is a collection of ordered vectors (edgée), ..., e,}
that add up to zeraz; + --- + ¢, = 0. Two polygons are equivalent if one can
be obtained from the other by a rigid Euclidean motion. Considemaggn with
side lengthsy = (r4, ..., r,), then the deformation space of thisgon modulo
equivalance is

Mr:{(61,...,6,1)|€1+’”+€,1=O,|€,'|=I’i,l<i<I’l}/’\’.

This is a symplectic space with a symplectic foinaway from some (possibly)
isolated singularities (for more abodf;, see, e.g., [12]. For the ring structure on
H*(M,), see [7]).

To introduce stable polygons, we fix a term once and for all in this paper: edges
are said to bgarallel if they point the same direction; edges pointing in opposite
directions are considerehti-parallel, not parallel.

A generic polygon, that is, a polygon with no parallel edges, is stable in our
sense. All other stable polygons are to be obtained by abiding the following prin-
ciple: whenever a set of edges of a polygon becomes parallel, we introduce an
(independent) generic polygon, called a bubble, whose edges inherit the lengths of
the abovementioned parallel edges except the longest one. The longest length is
the sum of the lengths of the parallel edges minus a carefully chosen small positive
numbere. (Thise has a precise quantity control and carries significant symplecto-
geometric meaning, consult Theorems 1.2 and 1.3 below.) This process should go
on until all sets of parallel edges are properly addressed.

In short, a stable polygon is a collection of labeled (but not ordered) polygons
that grows out of an ordinary polygon by introducing ‘bubble’ polygons. The
moduli space of all such stable polygons is denote@by.. See the illustration
(Figure 2).

One should note that the moduli spagk . of stable polygons (in a very inter-
esting manner) depends on two parameters: a fixed length veatata collection
¢ = {e} of carefully chosen small positive numbers. These built-in data in stable
polygons encode significant symplecto-geometric informationpgy,.

Our main theorems are

THEOREM 1.1 (Sections 5 and 7).he moduli spac®n, . has a natural structure
of a compact complex manifold and is biholomorphic to the complex manifold that
underlies the projective variety(o .
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THEOREM 1.2 (Section 6)By forgetting all the bubbles, we obtain a natural pro-
jectionr, .: 9 . — M; that is holomorphic and bimeromorphic. It is the iterated
blowup of M; along (the proper transforms of) some explicitly described smooth
subvarietiesY,, whenM, is smooth. Whew, is singular,z, .: 9, . — M; is the
composite of a canonical resolution of singularities followed by explicit iterated
blowups.

In fact, more is true. With the aid of the so-called sympleetislowups (e.qg.,
see [19]) M, . (henceMo,) comes equipped with a symplectic foi . whose
cohomology class is uniquely defined so that the map (O, ., 2 ) — (M;, wr)
can be interpreted as a symplectic blowup. The ambiguity of the so-called sym-
plectic blowups provides a natural and interesting viewpoint to see how natural it
is the choices of in the definition of stable polygons.

To close this introduction, some remarks are in order. Firstly,, has a ca-
nonical Kahler class, the Weil-Peterson class. We believe that this form should be
realized by some choice @f, ¢). It has to come from regular-gons. The choice of
¢ is harder to guess (consult 4.6). Secondly, by above, the collection of alijlegal
(r, &) should shed a light on the Kahler conef,, (a conjecture is formulated in
Section 9). Finally, Thurston made remarks at author’'s seminar talk at UC, Davis
that the same strategy can be applied to unorderpdinted Riemann spheres.
Then the role of polygons will be replaced by collections of unordered vectors
that add up to zero. He also pointed out to the author that polyhedra may also be
used to studyMo, ([21]). Fried at author’s talk at UC, Irvine, also made similar
suggestions about unorderegbointed Riemann spheres.

Here is the structure of this paper. Sections 2 provides necessary backgrounds
on the symplectic geometry of the ordinargons. In Section ¥avorablemoduli
spaces of ordinaryg-gons are characterized in terms of their defining side length
vectors (chambers). They are useful throughout the paper. Section 4 introduces

* See 2.1 and 4.6 for the legal rangeands.
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our principal objects of study, stable polygons, mainly in set-theoretic terms. In
Section 5, we show how naturally stable polygons converge together to form a
smooth compact complex analytic variety. Relation with the moduli spaces of the
ordinary polygons follows readily: Section 6 decompo®&s, as explicit iterated
blowups of M;. Section 7 connects our new moduli spaces to the moduli space
M., of the Deligne-Mumford stable-pointed curves of genus zero. This leads to
a new angle to look at the Kahler topology.#f, , which is discussed in the end.
There are some previous works on the moduli spacesrdihary polygons
([22], [17], [12], [6], among others) which may fall into the general framework
on relations between geometric invariant theory quotients and symplectic reduc-
tions ([20], [4], [16], [1], [8], [2], among others). The idea that,, ought to
have a counterpart in terms of symplectic geometry was based on the observation
([13] and [8]) on a natural connection between GIT quotients and Chow (Hilbert)
guotient.

2. Geometry of Ordinary Polygons

Many of the results on ordinary polygons that we shall collect below follow dir-
ectly from some well-known general theory. See [12], for example, for a nice
self-contained treatment.

2.1. A (spatial) polygon withn sides in Euclidean space is determined by its

labeledn vertices{v, ..., v,} and these vertices are joined in cyclic order by the
directed edgeses, ..., e,}, wheree; starts fromv; and ends at;,, (here we set
vpe1 = v1). Since then-gon is closed{es, .. ., e,}, regarded as vectors, add up to

to zeroe1 +---+e¢, =0.

We consider the following equivalence relation among polygons. /ygons
are equivalent if one can be obtained from the other by the action of an orientation
preserving Euclidean isometry.

Figure 3 illustrates three 12-gons. (The last two will be used later for other
illustrations.)

Throughout this papeiM, will stand for the moduli spaceof n-gons with the

side length vector = (4, ..., r,). The normalized side length vectorrgfdenoted
> a
=
= 3
— e .
Figure 3.

* The topology of this space is rather easy to see. We will review some of its finer structures soon.
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byr, is defined to b&2/L(r))r whereL(r) =ry + --- + r, is the perimeter of the
polygons ofM;. As is well known,f lies in the hypersimplex

D} := (xl,...,xn)eR":ngigl,i:l,...,n,in=2}.

To see that fine structures d,, we will appeal to the theory of symplectic re-
ductions and K&hler geometric invariant theory (GIT), from which one will see
that M, andM; are biholomorphic as complex analytic spaces and their symplectic
(K&hler) forms (away from singularities) are proportional by the scalar. 2

2.2. Consider the diagonal action of the group PGLORof projective transform-
ations on(P})" and identify its maximal compact group with SO(3). Identify
with the unit spheres? in R3, SO(3)-equivariantly. Let VoK?) be the volume form
on $2. Given anyr with r, ..., 7, > 0, L, = r1p} Vol (S?) +- - - +r, p} VoI (S?) is

a Kahler symplectic form oxiP)" with respect to which the group SO(3) acts on
(PY)" in a Hamiltonian fashion. Herg; (1 < i < n) is the projection form(P!)"
onto theith factor. The moment map,: (P1)" — so(3)* = R3 determined by this
Hamiltonian action is given a®, (x1, ..., x,) = rixy + -+ - + r,x,.

The correspondence between symplectic reductions and Kahler (GIT, in the
case that is rational) quotients asserts thigt*(0)/SO3) = (P1)" (r)//PGL(2, C)
which is induced by the inclusio®,1(0) c (PY)" (r), where(PY)" (r) denotes
the set of PGL (Z})-semistable points with respect to the Kahler fotp. We
point out thatd,1(0) # @ (or, equivalently(PH)" (r) # ¢) if and only if F € D5.

In this case, the quotient spaee 1(0)/SO3) = (PYH" (r)//PGL2, C) has
the expected dimension— 3 if and only ifi € int D% (see [8]). For this reason,
we make the assumption that int D7 throughout the rest of the paper.

For any polygon with edgeées, ..., e,) of the prescribed side lengthis =

(r1,...,r,)suchthaf € intD?, setu; =¢;/r; forl <i <n.Then(uy,...,u,) €
($?)" = (PY)" and satisfiesyu; + - -+ + ryu, = e1 +--- +¢, = 0.
Thatis,(uq,...,u,) € <I>;1(0). Conversely, making the above arguments back-

ward, any point in®1(0) determines a polygon with the prescribed side lengths
r = (ry,...,r,). Thus we obtain the natural identificatiad, = @, 1(0)/SQ(3)
which, via the identificatiord, 1(0)/SQ(3) = (P1)" (r)//PGL(2, C), providesM,;

a holomorphic structure and a Kahler symplectic fespraway from singularities.

2.3. Alternatively, the moduli spacéf; can also be constructed as a symplectic
guotient of the Grassmannian(2, C") by the maximal torusC*)". A simple way

to see this is to look at the natural action of the gradp)” x GL(2, C) on the
space of full-rank matrices of size<x and then take quotients by stage. Using this
approach taV,, the results of [3] and [5] (among others) can be applied directly.

2.4. The hypersimplex is divided into chambers (maximal or otherwise, making a
polytopal chamber complex) by the walls defined as follows
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W; = (Xl,...,xn)G]DZIin:l},

ie
whereJ runs over all the proper subsets[of = {1, 2, ..., n}. J and its comple-
mentJ° define the same walW; = W;.. When|J| = 1 orn — 1, W, is a facet
of D5 which is asimplex Other facets oD} are of the formF; = {(x1,...,x,) €

D5:x; = 0}. Whenn > 4, F; are again hypersimplexes. A proper subsetefines
an interior wall if and only if 2< |J| < n — 2 (i.e.,|J| > 1 and|J¢| > 1). Each
interior wall W, dividesD’ into two parts

{(xl,...,x,,) e D: ij < 1}
J

and

[(xl,...,x,,) e D: ij < l].
JC

Two pointsx and y are in the same chamber (maximal or otherwise) if the
following holds. For all proper subsét,

Y oxj<le ) y <1
J J

When only strict inequalities occur, we get characterizations of maximal chambers.
Points in the same chamber define homeomorphic (actually biholomorphic) moduli
spaces of polygons. But their naturally equipped structures of symplectic Kahler
space are different, in general.

2.5. We should also consider the positive cone dvgto take into account-gons
with all possible side lengths

. " 2(x1, ...y Xp)
CDY) =] (xr..... %) €RY: D i #£0, lZ—x

whereR, is the set of all nonnegative real numbers. Equivalently,

eDyt,

CODP U =1{Gr....x) eERH0K <Y xi=1....n
J#

For anyn-gon P € M,, the length vector belongs taC (D3), that is,r € D4. Walls
and chambers i induce obvious walls and chambersGiaD?%). Cone walls and
cone chambers will generally be denoted®yV ;) andC (A) (etc.) if W, is a wall
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of D7 andA is chamber of)5. All the above discussions extend to the cah@?)
directly. The dependence of the moduli spaces of polygons on the cone chambers
is the obvious one.

2.6. Letr andr’ be in the same chambe&r (maximal or otherwise)C is ra-
tional and thus contains a rational poirg. Let M- denote the GIT quotient
PYH (re)//PGL(2). This is a projective variety and depends only on the chamber
C. Then we have the following isomorphism$ — M < M, . The two iso-
morphisms are&anonicalbecause they are naturally induced from the inclusions
o, 10) c PYHY" (re) D <I>;1(0), which, of course, depend on no auxiliary choices.
Hence, we obtain an inducednonicalisomorphismf;.: My — M,..

DEFINITION 2.7. A polygon is called a line gon if it lies entirely on a straight
line.
A line gon occurs if and only if there is a proper subgetith

E rp = E ri.
J Je

Whenn > 5, they are singular points of the moduli space and are isolated.

2.8. Let C be a chamber that lies on the boundary of another chadibdy [8]
(also [2] among others), there exists a canonical projective morphismMc —

Mc which, by 2.6, induces a canonical complex analytic néap M,, — M,,
wherer’ € C" andr € C. When(’ is a maximal chamber, the above maps are
resolutions of singularities it > 4.

3. Favorable Chambers

3.1. For chambers adjacent to the boundary of the hypersimplex, the corresponding
moduli spaces take simple forms.

Let A; be the (unique) maximal chamberI that contains the simplex facet
Wi (1 < i < n). Numerically, this chamber can be characterized as follaws.
A; ifand only if Y, x; < 1 for all properJ withi ¢ J and|J| < n — 1. Or
equivalently (taking the complemedit), > ", x; + x; > 1 for all properJ with
i ¢ Jifandonlyifx; +x; > 1forall j #i.

DEFINITION 3.2. These chambers;(i = 1,...,n) and their corresponding
conesC (A;) will play spacial réles in this paper. We will refer themfasorable
chambers

PROPOSITION 3.3 (Theorem 2.1, [8] and Theorem 6.14, [BPtr be an element
in the interior of the favorable chambér(A;). ThenM, is isomorphic tdP"—2.
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PROPOSITION 3.4.Assume that > 3. Letr € C(4A;). Then theith edgee; is
the longest edge, that ig, > r; for all j # i.

Proof. Dividing by 2/L(r), we may assume thate A;. Assume otherwise that
rj > r; for somej. Then 1> Zh#i T, = Zh#j T > Zh#i’j rm+r>1a
contradiction. O

Recall from the introduction that for simplicity, edges are said to be parallel if
they point the same direction. Edges pointing in opposite directions are considered
to be anti-parallel, not parallel.

DEFINITION 3.5. A polygon is said to degenerate at a set of edges- {¢;};c;

with |7] > 1 if {¢;};c; are all parallel and no other edges are parallel to them. An
edge is said to be degenerate if it belongs to a set of degenerate edget

1] > 1.

PROPOSITION 3.6.Letr be an element in the interior of the favorable chamber
C(A;) and P € M,. Then theth edge ofP never degenerates along with others
Proof. Dividing by % we may assume thate A;. Assume otherwise. Then

ritri < )i ;T for somej # i which implies that; +r; < 1, a contradictiorm

Remark3.7. Likewise, there is also a maximal chamB&rin D containing
a (relatively) maximal chamber in the hypersimplex faggf(1 < i < n) such
that for anyr in the interior of the chambex;, M, is isomorphic toP*)"—2. More
precisely, a poinkt of D} belongs to the chambaf; if and only if ), x; > 1 for
all properJ with i ¢ J if and only if x; + x; > 1 for all j, k # i. Or equivalently
(taking the complemenf©), >, x; +x; < 1 for all properJ with i ¢ J. For
more information abouV;, consult Theorem 2.1 of [8] and Theorem 6.10 of [9].
We point out that these particular chambers will not play any special réles in this
paper (although they may do if a different approach than the one in this paper is
taken).

4. Stable Degeneration of Polygons

To clarify the principal subject of our study, we shall give in this section a detailed
set-theoretic description of stable polygons, leaving out their finer structures to be
treated in the sequel.

DEFINITION 4.1. Ann-gon is called generic if it does not have parallel edges.
Given a side length vector we useM? to denote the subspace of generic polygons.

LEMMA 4.2. The moduli spacei? of all genericn-gons with the fixed side
lengthsr can be identified with the moduli spacermotlistinct ordered points on
the projective line.
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Proof. This follows from the identificatiodd, = (P)" (r)//PGL(2). a

This is an open holomorphic space (in fact, quasi-projective) and we are looking
for nice and geometrically meaningful compactifications of it by addimgting
polygonal objectsuch that the added objects fit together to form a divisor with
normal crossings. The limiting polygonal objects that we choose to add will be
called stable polygons which we will describe now.

4.3. The idea is the usual one as in Deligne—Mumford’s construction of stable
pointed curves. The principal guiding principle is that whenever a set of edges
become parallel, we will resolve it by introducing a ‘bubble’ polygon in a coherent
way. Here goes some detailed descriptions of staljens forn < 5 to just gain
some concrete feelings about general stable polygons.

All triangles are generic and thus stable.

A generic quadrangle is stable. Given a degenerate quadrdgghdth two
parallel edges; ande;, to remedy the ‘coincidence’ problem, we introduce an
independent arbitrary (stable) trianghe with side lengthsr;, r;, r; +r; — € ),
whereg; ; is a fixed suitably small positive number. The collectioiPy, P;) of
these two labeled (but not ordered) polygons is a (reducible) stable quadrangle.

For pentagons, one degeneration case is just like quadrangles: twoegdgds
e; are parallel. In this case, we introduce an independent arbitrary (stable) triangle
in exactly the same way as we did in the quadrangles cases.

When three edges;, ¢;, ¢, are parallel, to get a moduli-stable pentagon, we
add an independent arbitrary moduli-stable quadrangle with prescribed side lengths
(ri,rj, re, i +rj + v — € 1), Whereeg; j is a suitably small positive number.
The collection of these labeled (but not ordered) polygons is a (reducible) stable
pentagon.

4.4. In general, given any polygon,ifedges are parallel, we add a genékie-1)-
gon whose first sides inherit the lengths of the original edges but whose last
side has a new length, + --- + r;, — €;,..;, with a choice of a small positive
numbere;, ;. In any of the polygons obtained, we allow more degeneration, and
whenever edges become parallel, we introduce (bubble) polygons as above. It is
important to point out that in the further degeneration, the edges with the new
lengths* will not degenerate (point the direction of any other edge). This will be
automatic after choosing, . ; carefully (see Corollary 4.7 below).

To formally define an arbitrary stable polygon, some preparations are in order.

LEMMA 4.5. Letr be any point in the interior of (D3). Then(r, > r; — €) isin
the chamber of® (A,11) ofC(]Dg“) if and only ife < 2 min{ry, ..., r,}.

* This will be made precise when stable polygons are formally defined.
** Such edges correspond to double points of Deligne-Mumford stable curves, as we shall see
later.
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Proof.By 3.1, we need

2
eri—ézrj <1

J

for all proper subsets/ of {1,...,n}, which is equivalent toee < 2) ,.r;
for all proper subsets/ of {1,...,n}, which is, in turn, equivalent to
€ <2min{ry, ..., r,}. O

4.6. Fix a vectorr in the interior of the cone” (D3) over the hypersimpleXy.
Sincer lies in theinterior of the coneC (D), it is impossible to havé: — 1) many
edges to point to the same direction. It does not make sense to treat the case that
‘there is one edge pointing to the same direction’. Less trivial and a bit tricky is the
case when exactly two edges point the same direction. According to the rule, we
will have to, in this case, introduce a triangle to make the polygon stable. However,
because a triangle is rigid, it affects neither the moduli space nor the symplectic
structure (Sections 5, 6 and 7). This last point will be important when we consider
the Kahler cone ofW(,,.

So for any proper subset C {1, ..., n} with cardinality 1< |J| < n — 1 we
fix a (suitably small) positive number

O<e; <2 mjin{rj}.

Setr]’gj = (I’j,zjl’j —61).
We frequently writer ; ., asr, when no confusion may occur.

COROLLARY 4.7. The vectorr ., lies in a favorable chamber. Consequently,
M;, is isomorphic to some projective space and hence is independent of the choice
of ¢,. Furthermore, no polygon iV, , ever degenerates at the last edge (i.e., the
longest edge).

Remark4.8. Note that forany < € < 2 min{ry,...,r,}, we can set; = ¢
for all proper subsetg C [n]. This will satisfy part of our purposes (cf. Corollary
4.7) and may save some notational mess. In particular, there exisisomical
choicee; = min{ry, ..., r,} for all proper subsetd c [r]. To keep generality,
however, we will work with an arbitrary choice ef in the legal range.

Remarld.9. We will useC; to denote the favorable chamber thabelongs to.
In particular,M¢, stands for the common projective model for &} with x € C;.
Note that this chamber does not depend on the choieg. of

DEFINITION 4.10. Letr be a point in the interior o€ (D%). Given any proper
subset/ of {1,...,n} with |J| > 2, a pair(P, P’) € M, x M,, is said to be a
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Figure 4.

bubble pair if P degenerates at the edges(i.e., the edgege;}, of P point to
the same direction and no other edges point to the direction of these edges). In this
case,P’ is called a bubble oP.

By Corollary 4.7,P’ never degenerates at the last edge (i.e., the longest edge
whose length i3, r; —e€,). We point out that P, P') € M, x M, being a bubble
pair implies thad ", r; <> . r;.

DEFINITION 4.11. For this reason, we shall call such a proper sulesetant

Thus onlyrelevantproper subsef will occur as the index sets for bubble pairs.
Thus the relevancy is a relative concept. This point will be useful in the defini-

tion of stable polygons. For simplicity, the set of all relevant subgets{1, ..., n}

with respect ta is denoted byR (r).

4.12. Now letr be any point in the interior of (D) ande = {¢,|J € R(r)} with
¢; chosen as in 4.6. Fix them once and for all. (We point out again that by Remark
4.8, we may choose all; equal to a fixed numbet. And there is even an canonical
choice of sucle, namely, midry, ..., r,}.)

For a notational clarification, we make a remark that in this paper, a plain Greek
letter ¢ is always to mean a suitably small positive number, while to stand for
a collection of suck.

DEFINITION 4.13. A stablen-gon with respect to the side length vectoand
e = {ey]J € R(r)} is a collection of labeled (butot ordered polygons

Pi=(Po, Pr,..., Py) € My x My, x -+ x M,
satisfy the following properties:

(1) whenevetJ, C J;, thenP, is a bubble ofP;.
(2) if P, does not have a bubble, then it is generic (iR.e M° ).

I'Jh
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In particular, in Definition 4.13 (1), we must have thatc J; is relevant with
respect ta ..

One thing worths a word now. Wheh € R(r) and|J| = 2, M,, consists of
a single triangle. Although it is convenient to include it to define a stable polygon,
in effect, it will not do anything to the moduli space. In particular, when we later
formulate the Kahler cone af(o ,, these ‘small’J’s will have to be dropped out
from computations. For later use, we $i,(r) = {J € R(r) | |J| > 2}.

Remark4.14. Using a permutation among edges, we can always arrange the
edges pointing to the same direction to be adjacent. The inverse of the permutation
will allow us to get back what we start with.

This observation will simplify our exposition at points

Figure 5 illustrates two polygons that are related by the permutation

(123456789101122— (17210311412586)9
The edges of the first polygon are numbered starting from the left most edge with
the direction—. The edges of the second polygon are numbered in the same way.

DEFINITION 4.15. We uséi; . to denote the set of all stable polygons. For
simplicity, one may abbreviat®t, . as,.

Itis rather easy to see that the 38f . of all stable polygons with the prescribed
side vector and a choice of carries a natural compact Hausdorff topology. This
topology will be the underlying topology of the complex structured@ip, which
we will construct in the next section.

5. Moduli Spaces), . of Stable Polygons

Throughout, unless stated otherwisedenotes a fixed length vector away from
the boundary o€ (D}) andC denotes the chamber (not necessarily maximal) that
containsr.

5.1. Consider the space afpolygons with one free side:
n-gons with the nonzero fixed side lengtis. . ., r,_1

Zin =
"} but the last side is free
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For any polygonP in Z,,;, definel(P) to be the length of the free side (i.e., the last
side). Then this length functidnZ,,; — R assumes the maximal valug+ - - - +
r,—1. For convenience, we may allow the length of the free side to be zero./Then
also assumes the minimal value 0.

Every level set of provides a moduli space of polygons with the obvious pre-
scribed side lengths. At the extremgt;%(0) is the moduli space ofz — 1)-gons
with the prescribed side lengthis,, . .., 7,_1); while f=*(r{+- - - +r,_1) consists
of a single line polygon.

We are interested iM, = [~1(r,) where the length of the last sidg is close
to the maximumry + -+ - +r,_1.

By Lemma 4.5, if

i+t —2minfry, ..., <a<b<ri+--+r_q,

then/=%(a) andl~1(b) are both isomorphic to the same projective space. We may
use f,;, to denote theanonicalisomorphism fromi=1(a) to I71(b): fup: 1 *(a) —
I71(b).

Whenb = ry + - -- + r,_1, [71(b) is a single point. In this case, we understand
f. as the total collapsing mdpt(a) — I71(b).

5.2. Let Py € M, be am-gonand/ = {j; < --- < j;}asubsetofl, ..., n} such
that Py degenerates at (see Definition 3.5). For an® € M;, via a permutation
if necessary, we can assume that the edggs. ., e¢; are adjacent in that order
Now letd; = —(ej, +- - -+e;,) be the vector starting from the endegf and ending
at the initial ofe;, . d; will be referred as thd-diagonal and can be zero in general.
Thene;(j € J) andd,; form a polygonQ,, while via a similar arrangementd,
ande;(j € J¢) form a polygonQ9. Informally, we may say that thé-diagonald
divides the (permuted)-gon P into the union of two sub-polygong,; and Q¢:
P := Q,; U Q4. For our purpose, we assume the® ;) (= the length|d,| of the
J-diagonal= the length of the last side @) is close to the maximal value &f
in the sense that

I’j1+"'+rjs —2min{rj1,...,rjs}<l(QJ)<rj1+---+rjs.

Then(rj,,...,r;,,1(Q,)) is in the favorable chambef, unlessi(Q;) = rj +
.-+ 4 rj, in which case the normalization a@f;,,...,r;,[(Q,)) belongs to a
boundary simplexC’,.

Remark5.3. Applying the inverse of the permutation (if necessary), we can
remove the assumption that edggsare adjacent. For simplicity, rather than de-
claring this at every place where we use it, we will simply say that ‘the permutation
scheme is applied’ or ‘apply the permutation scheme'.

DEFINITION 5.4. LetPy; € M; be ann-gon andJ = {j; < --- < j,;} a subset of
{1,...,n} such thatP, degenerates a. Let P € M, andQ € M,,. LetalsoQ,
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Figure 6.

and Q¢ be as in 5.2. Here the permutation scheme is applied when necessary. We
say thatP and Q are incident, denoted by

u(P, Q),

rjl—i—---—{—er—Z min{rjl,...,rjs}<l(QJ):|dJ|grjl—{—---—i-rjs

and Q is mapped taQ ; by the morphismf; oo, - The mapfipyo, iS an iso-
morphism unless(Q ;) is maximal (i.e.,Q; is a line gon) in which casé )0,
is a total collapsing map to a point variety.

Figure 6 depicts an example whaPeand Q ; are assumed to be isomorphic by
the morphismf; o) ,)-

Note that we automatically have for ady € M, that

P44 =2minfrj,...,r} <1(Q) <rj+---+rj

becausé(Q) = ), r; — €,, by definition. Thus, the above definition makes sense
because of the discussion in 5.2.

LEMMA 5.5. The incidence relation is complex analytic. That is, the subset of
M, x M,, defined by incidence relation is complex analytic.

Proof. It basically follows from the fact that all map&() in the definition
of incidence relation are complex analytic. O

5.6. Let Py € M; be a polygon that degenerates at the edgeblere, if necessary,
we may apply the permutation scheme. BgtPy); C M; to be the subset a¥f,
consisting of polygong such that

rjl—i—---—{—er—Z min{rjl,...,rjs}<|d1|<rj1+---+rjs.

This is an open neighborhood &§ in M, .
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LEMMAS5.7. We have

(1) If Pyis notaline gonlU,(Py),; does not contain a line gon. In particular,
U, (Py), is smooth.

(2) If Pyisaline gon,P;is the only line gon i, (Py) ;. In particular, U, (Po)
is smooth away fron®.

Proof. We apply the permutation scheme and assume that the edga®
adjacent. LetP; be a line gon inU; (Pp),; that degenerates at edggsfor some
I # J. (Here, whether the edges are adjacent is irrelevant to our proof.) In
particular, we have _, r;, = >, r;. Letd, be theJ-diagonal forP{. Without loss
of generality, assume that ,,r; > Y .+, rj- Then

ld;| = |er — er| = er —Zer < er -2 rr}in{rj}.

inJ enJ J “nJ J
This contradicts thaP) € U, (Po),. O
We will need a general lemma:
LEMMA 5.8 (Removable Singularity Theorem)let f: X — Y be a continuous
map between two holomorphic complex varieties. Assume that the restrigtidn
f to a dense open subsetXfis holomorphic. Thery is itself holomorphic.
Proof. It follows from the consideration of the following diagram
f:X — Graph(f) = Graphfp) — X xY — Y. O
When Py is a line gon that degenerateagtande;., thene; ande;. are the only
sets of degenerating edges . SetU,O(PO) = U;(Py)jNU; (Py)ye. This is again
an open (singular) neighborhood Bf in M, . Define a correspondence set
UMPo) C U(Po) x My, x M,
as follows
f]\rl(PO) = {(P’ Pla PZ) € Mr X Mrj X Mrjcﬂ(P, Pl)aL(P’ PZ)}

ﬁrl(Po) projects ontd/? by forgetting the last two factors.

LEMMA 5.9. Let P, be a line gon. Then the projectidﬁ,l(PO) — U,O(PO) is a
(canonical) resolution of singularitiesof U2(Py).

* This lemma is a special case of a more general result from the Geometric Invariant Theory or
the theory of symplectic reductions. Our proof is independent and uses only polygons.
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Proof. We will apply the permutation scheme in this proﬁfl.(Po) is the subset
of US(Py) x M;, x M; ,. defined by the incidence relation. It projects surjectively
onto the subset/; (J¢) of U2(Py) x M; . by forgetting the middle facto/, (J¢)
is nothing butt; (J¢) = {(P, P1) € U%(Po) x My ,.:t(P, P1)}.

We will first argue that the subsét. (/<) is smooth by identifying it with a
smooth open subset 81, wherer’ is a perturbation of. For this purpose, assume

that

ry= (”jl,...,”js,zl’j—61>, andr e = (”J‘%er_elc>'

J Je

Note that

Yr=Xn

J Je
Letr, = (rj,...,r},>_,r; —€) € C; be a small generic perturbation iof =
(r.,'l,...,rjs,zjrj —€y) in C; such that

/ !’ L
rj1+"'+rj:_g rj — €ge.

Je

Letr’ be obtained fronm by replacingr;,, ..., r; by, ..., r; correspondingly.
Sincer’ is in more general position, and can be taken to be close we get a
canonical surjectio: M, — M, by 2.8.

LetUy = B~L(UX(Py)). Theng restricts to an isomorphism betwe®h\ 81 (Po)
andU,O(PO)\{PO}. Note thatg—1(Py) consists of the polygons &f, that degenerate
at the edges;.

Defineg: U, (J¢) — U,  as

g: (P, Py) — B7X(P), if P # Py
g: (Po, P]_) —> P/, if P= Po,

whereP’ is obtained fromP; € M, . by breaking the longest edge (whose length is
>, rj—€ e) into the consecutive edges according to the lengths. ., . (which
add up to)_,.r; — €,¢, by assumption). The inverse gfcan be checked to be
g %P — (B(P)), Py, if B(P') # Py, whereP; € M; . is uniquely determined
by B(P"). g1 P' — (B(P"), Py), if B(P) = Py, where P; is obtained frompP’
(which degenerates a}) by taking the degenerating edges as a single edge whose
length is, by assumption},_, 7; = > ;. r; —€,c. The functiong andg~! are easily
seen to be continuous and holomorphic on some dense open subsets. Thus by the
Removable Singularity Theorem (Lemma 5.8andg—! are both holomorphic.

By the same proof as in Lemma 517, contains no line gons (it also more or
less obviously follows from the fact that, = ~1(U°(Py)) and Lemma 5.7). This
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shows thatl/, (J¢) = U, is smooth. Consider the projecticiﬁl(PO) — U;(J9).

It is easy to see that all fibers of the projection are projective spaces (ni9%tly
and the projection is bimeromorphic. Thus the uniqueness of blowup implies that
UX(Py) — Uy (J°) is a blowup ofU, (J¢) along smooth centers. Thig'(Pp) is
smooth, and this completes the proof. O

Remarks.10. Likewise, one obtaing, (J) by forgetting the last factor of
UX(Py) C UX(Po) x My, X My,

By the same arguments as in the above propf/) can be identified with a smooth
open subset oM, for some other”. It follows then thatt; (J¢) — UP(Pp) and
U, (J) — UQ(Po) are also resolution of singularities, although neither is canonical
due to a choice betweehandJ¢. As a consequence of the above, we have shown
thatﬁ,l(PO) is a common blowup of/, (J¢) andU, (J).

If we setZ; (compare withZ,;) to be the moduli space ¢f/| + 1)-gons with
first |J] sides having fixed length; , ..., r; but the last side being free, then all
the above discussions abdtyf,; apply toZ; in an obvious way.

5.11. This allows us to define the following correspondence (variety). For any
stable polygon

P:(PO’P]_""’PHI)EMI'XMI"[lX”'XMI'Jm’

define

(Py, P{,...,P,) e M x M, XX M,
U (P) =
r t(P], P/) wheneverJ, C J;

If P = Py, we simply setU;(P) = M?. Note that the components of a stable
polygon are labeled but not ordered. Consequently, we need to point out that the
incident correspondendg, (P) is, up to isomorphisms (induced by permutations
among the components), uniquely determined by the stable poRgon
LEMMA5.12. Let(Py, Py, ..., P,) € U;(P). For everyJ, C J, P/ is uniquely
determined byP, unlessP/ is a bubble ofP;.

Proof. This follows from the definition of incidence relation. O
It then follows

COROLLARY 5.13. There is a canonical injectiop, (P): U, (P) — I, ..

LEMMA 5.14. Given any stable polygoR, U;(P) is a smooth complex analytic
subvariety ofdf, x M, XX M, .
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Proof.In this proof, the permutation scheme will be applied whenever the length
of a diagonal of a polygon is used. Given any stable polygon

P:(PO’P]_""’PHI)EMI'XMI"[:LX”'XMI'JW’

we shall describe/; (P) inductively. If Py generic,U;(P) = M? is obviously
complex analytic and smooth. So we assume that 1. If J = J; for some
1 < k < m,wewill call P; := P/ to be theJ-component (ork-component) of
P = (P} Pl,..., P)).

First, letU2(P) be the subset af/; consisting of pointsP} with the following
property: For any/ such thatP, degenerates at, we require that thd -diagonal
of P} satisfies) _, r; — 2 miny{r;} < |d;| < )_,r;. This is a complex analytic
open neighborhood afy in M, .

Define an incident correspondeng(P) c U%(P) x I, M,, as follows. Here,
the product is over all's such thatP, degenerates at the edggs SuchJ’s will
be referred as the subsets of the first kind. We then require that for any point
P e ﬁ,l(P) we have the incidence relatiaiiPg, P;) where Py is the (main) O-
component oP” and P; is the J-component of’. Since the incidence relation is
holomorphic,ﬁrl(P) is holomorphic.

Then we takeJ(P) to be the subset dfi}(P) consisting of points with the fol-
lowing additional requirements. Given any poRitin ﬁ,l(P), it belongs toU}(P)
if for any J-componentP; of the point (where/ is of the first kind) and any C J
such thatP; degenerates at the edggs we demand tha} _, r; — 2 min,{r;} <
I(d) ) < Y, rj, whered) , is thel-diagonal ofP;. ThenU/}(P) is a holomorphic
open subset of]rl(P). We may refer to the abovEs as the subsets of the second
kind.

Likewise, one can define the incident correspondence vdﬁ%@) C UNP) x
[T, M,, where the product ister all subsets of the second kind and a complex
analytic open subséf2(P) c U2(P), ..., and keep going until ally, ..., J,, are
taken into account. We hence obtain inductively a sequence of projections

UXP) — UX(P),
U2(P) — UL(P),

Uit — Ul=2(p),
Ul — Ul=(p),

One checks directly that the so-inductively defir@h(P) coincides with the in-
cident correspondence varidti (P) as defined in 5.11.

To see thal; (P) is smooth, we will analyze the above sequence. We will have
to divide the proof into two cases.
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Casel. Pyisnotaline gon. In this casé, is a smooth point oM, and thus the

open neighborhood@?(P) is smooth by Lemma 5.7. Every fiber of the projection

l(P) — UP(P) is easily seen to be projective spaces (moBfly. In addition,
the projection is bimeromorphic. Thus the uniqueness of blowup implies that the
above projection is a blowup df°(P) along smooth centers. Indeed, the centers
are the loci ofP} € U2(Po) that are degenerate at some edgesach component
of the center can be identified, by taking the degenerate eggesa single edge,
with a smooth open subset 8f, (which must be a projective space because such
X must be in a favorable chamber) TkM,é(P) is smooth. Likewise, step by step,
one can show thal/2(P), ..., and U"(P) are all smooth. In particulat/; (P) is
smooth.

Case2. Py is aline gon. In this caseP, is a singular point of¥f, and thus
the open nelghborhoodIO(P) is singular. By Lemma 5.9, noting tha/trl(P) =
l(Po) the prolectlonUl(P) — UP(P) is a (canonical) resolution of singularities

of U(P).
Now, follow the proof inCasel, build up fromUl(P) step by step, we conclude
thatU (P) is smooth as desired. O

As an immediate consequence of Lemma 5.14, we have

THEOREM 5.15.97; . carries a natural smooth, compact complex analytic struc-
ture induced by the injectiong (P): U, (P) — 2, . for all stable polygon$.

Proof. The complex structures gn(P) (U; (P)) (induced by those of, (P)) for
various stable polygonB obviously agree with each other over the overlaps. The
theorem then follows. O

6. M, . as Iterated Blowups of M,

Globally, by forgetting all the bubbles of a stable polygon, or locally, by the pro-
jection fromU, (P) (see 5.11) to (the main facto#),, we obtain

COROLLARY 6.1. There is a canonical complex analytic map.: 9, . — M;
which restricts to the identity om?.

Proof. The existence of the projection as a set-theoretic map is obvious. That
7, is complex analytic follows from that locally, is equivalent to the projection
U (P) —> M,. O

6.2. When M, is smooth, that is, whenis away from walls, the map, .: 9, . —
M, ought to be an iterated blowup @f, along some smooth subvarieties. The
details go as follows.

6.3. Let F[n] be the set of all partitions df:] = {1, ..., n}, partially ordered by
reverse refinement. That is, an elemenf¢t] is of the forma = L [[--- [ [ Ik =
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A

[n]. Let B = J1]]-- ]I Jn = [n] be another partition ofn]. We sayax < B if
forany 1< s < m, J;, C I, for some 1< ¢ < k. The maximal element it [n]
is {1} ]]---[[{n}. The smallest element i&] itself (but we will never use this
smallest element).

Given anyax in F[n], defineY, to be the set of all polygon® in M, such that
the edgeg,, (1 < s < k) are parallel. This is a closed subvarietyMf which is
isomorphic toM,, by an obvious natural may,: Y, — M;,, where

fe =D el D lesl

selp sely

Figure 7 illustrates the mafj, as the composition of a permutation followed by
an identification.

We must point out that the straig are empty for manw € F[n] (e.g., when
r, lies outside of the con€ (D%)).

Obviously, ally,, are smooth i/, is (having no line gons). In general, it always
contains a smooth dense open subget= £, (M7 ). That is,Y? is the set of all
polygonsP in M, such that the edges, (1 < s < k) are all parallel to each other
but not to any other edges.

Then we obtain a canonical decompositidh = [ J

This is a stratification oM, by smooth strata.

One checks readily that

YO,

acF[n] *«a

PROPOSITION 6.4.Y,, C Yg if and only ifa < 8.

In fact, it can be shown that an intersection of the closed skdtais again a
closed stratum unless it is empty.
Now we come to our main theorems in this section.

THEOREM 6.5. Assume thad, is smooth. Then, .: 0, . — M, is the iterated
blowup of M, along (the proper transforms of) all the smooth closed stiatan
the order dictated by the partial ordetr( C Y; if and only ifa < ), starting
from the smallest ones.

* To see this, one may need to use permutations among edges. Consult Figure 7.
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Proof. This follow from the details of the proof presented for Lemma 5.14 and
the fact that the blowup construction is local and unique. O

Remark6.6. For suitable smadl, 9t, . comes equipped with a symplectic form
Q. whose cohomology class is uniquely defined so that (M ., Q2r.) —
(M, , o) can be interpreted as a symplectic blowup (see Lemma 6.44 and pp. 230—
231 of [19]). The ambiguity of the so-called symplectic blowups provides another
angle to see how natural it is the choiceg af the definition of stable polygons.

The singular case is slightly complicated. Assume Mats singular. ThenV/,
has isolated singularities defined by line gons. Each of these line gons forms one of
the smallest strata iff; = | J,.,, Ys- Recall by Lemma 5.9, these singularities
admit canonical resolutions.

THEOREM 6.7. Assume thad/, is singular. Thenz, .: 9, . — M, is the com-
posite of the canonical resolutions as described in Lemma 5.9 followed by the
iterated blowups of the resulting resolution along (the proper transforms of) all
other smooth closed strath, in the order dictated by the partial ordel, C Yy
if and only ifa < B), starting from the smallest ones.

Proof. After applying Lemma 5.9, all other arguments remain the same as for
the proof of Theorem 6.5. O

Remark6.8. Whenr is on a wall,M, carries a singular Kahler form. In this
casen, . — M, ought to be interpreted as a K&hler morphism in a suitable sense.

6.9. Among all the iterated blowups; .: (M, ., ;) — (M, w), two special
cases worth mentioning. For one kind of special choiceas 8f, is isomorphic to
(P23 (see 3.7). In this case, our presentation of the bloWyp — M,, putting
asside symplectic structures and after showing in the next section the isomorphism
betweerdt, , andM,,, specializes to the blowup representatiomef,,, Mo, —
(P1)"=3, as utilized by Keel in his study on the Chow ring.f, , ([14]). For some

other special choices of M, is isomorphic toP"~3 (see 3.3). In this case, our
blowupt, . — M., again forgetting symplectic structure, amounts to the blowup
representation o, ,, Mo, — P"3, as studied by Kapranov in [13]. We give
below some details of the latter.

EXAMPLE 6.10. Choose € A; for some fixed 1< i < n (see Section 3 for the
characterization of\;). Note that a polygo® € M, = P"~3 will never degenerate

at the edger;. This fact together with the identificatio,: Y, — M,, implies

that every stratuny,, is isomorphic taP%™¥« Point strata correspond to polygons

P whose edges have exactly three different directions. Thergnare 1) such

strata. They are points i3 in general position. Any other stratum, obviously
containing a subset of these points, is the projective subspace spanned by the points
in the subset. Applying Theorem 6.5 (together with the isomorpBigm = Mo,
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to be proved in Section 7), we recover Kapranov’s blowup representatign, —
Pr=3,

7. M, . and Mo,

7.1. Recall that az-pointed connected complex algebraic curve of genus 0O is stable
if

(1) then-marked points are smooth points;

(2) every singular point is an ordinary double point;

(3) for each irreducible connected component, the number of marked points
plus the number of singular points on the component is at least 3.

The setM , of equivalence classes of alpointed stable algebraic curve of genus

0 carries a natural structure of a smooth projective variety.Meg}, be the moduli
space ofi-pointed smooth curves of genus zero. Thég,, \-Mo,, is a divisor with
normal crossings. Given amy-pointed stable curvel(, we can associate to it a
graph graph X): the vertices of graphX) correspond to the irreducible compon-
ents ofX, and two vertices are joined by an edge if their corresponding components
share a common singular point. Then that the cu¥vis of genus 0 is equivalent

to the graph graphX) being a tree.

7.2. Likewise, we can also attach a graph, grapj) {o any given stable-gonP =

(Po, Py, ..., P,): the vertices of graptP) correspond to the polygod#o, Pi, ...,

P,.}, and two vertices are joined by an edge if their corresponding polygons satisfy
the bubble relation (Definition 4.10). One checks easily that grRpis(a tree.

THEOREM7.3.Letr be a point in the interior o€ (D%) ande be chosen as before.
Then, 9, . and My, are biholomorphic. Consequently, the complex structure on
M, . is independentof r and the choice of. Moreover,i))tr,g\Mr0 is a divisor with
normal crossings.

Proof. 901, , is easily seen to be bimeromorphic #d,,. That is, we have a
biholomorphismy %: M2(C 9, ) — Mo, (C Mo.,).

This map can be extended continuously as follows. For any stable polygon

P=(Po,Pr....Pw) € My x My, X -~ x My,

we obtain a collectiok = (X4, ..., X,,) of pointed curves of genus zero via the
identificationsM, = (PY)" (r¢)//PGL(2).

Now regarding the coinciding points in eakh as a single point, and {{P,, P;)
is a bubble pair, we joink; and X, at the coinciding points (regarded as single

* The structure of Kahler space, however, depends on choices.
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point) of X, (which corresponds to the same direction pointing edges of the poly-
gon P,) and the point ofX; that corresponds to the longest edgePaf This way,

we obtain a reducible algebraic cur¥e U - - - U X,, which has:-labeled (smooth)
points. It is of genus zero because its associated graph coincides with the graph
of the stable polygof® which is a tree by the construction. One checks that each
componentX; has at least three distinguished (marked plus singular) points. Hence
X, U---UX, is a stable:-pointed curve of genus zero. The so-induced map

VZmr,s — ﬂo,ny
(Pl,...,Pm)—>X1U---UXm

is (more or less) obviously continuous and injective. By Lemma $.& holo-
morphic. Sincey is bimeromorphic, it is also surjective. This implies thais
biholomorphic. The rest follows from some well-known properties\af, . O

Remark.7.4. Whenr is away from walls, being Kahler and Moishezo; .
is projective. SincéN, . andMo,, are biholomorphic, the GAGA theorems imply
thatO, . and My, are isomorphic as projective varieties as well.

8. The Kahler Cone of M,

8.1. To pave a way to determining the Kéahler conemf, we first study the
Kahler cone ofM,. We shall mainly focus our attention on the most important
special cases that lies in a chamber around the center ©{D3). The others,
though less significant for the Kéhler coneb,,, can be treated similarly. There
will be some differences between the case whés odd and the case whenis

even.
8.2. The odd caseThis is the nicer case. There is a unique chantgthat
contains the half raR . - (1, ..., 1) in C(D%). In terms of inequalityCy is defined
by
Zer < Z ri it |J] <%; Zer > Z rj if |J|>%.
jeJ 1<j<n jel 1<j<n

Equivalently,Co N D} is defined by
er<lif |J|<%; er>1if |J|>%.
jeJ jeJ

Recall that allM, underly a common projective variet¥, whenr lies in
the interior of Cy. It is well known that the second Betti number or the Picard
number of this projective variety is equaltoMany people have made independent
calculations. The following provides one of them.
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THEOREM 8.3 ([10]). M, can be obtained fror?"~2 by the following sequence
of ‘blowups’ and ‘blowdowns’: we start with blowing yp;") points (in general
position) of P"~2 to (";*) P"~4; then blowing down(*") P* to (";*) points fol-
lowed by blowing ug(*;") points to(";") P"~5; then blowing down(";") P? to
(*3%) points followed by blowing u@';*) points to(";*) P~%; ... .; finally, blowing
down 1) P*z to (4-3) points followed by blowing uf,3 1) points to(-3) P'z"
Proof (Outline.) 'Igake a general point in a favorable chambe@pf%)on&der
the line segment joining this point and the barycentr@®#®f By Theorem 2.2 of
[8], one get a sequence of projective morphisms betvi#ed and M, such that
the dimensions of special fibers change according to the/rale = n —4, starting
with 0 + (n — 4), then 1+ (n — 5), and so on. ., till we arrive at the center db%
and end up within — 5)/2+ (n — 3) /2. Taking into account of the number of walls
that we have crossed, we obtain the assertion as in the theorem. O

The theorem immediately implies that

-1
Pt(MCo) = Pt(Pn_S) + <n )[Pt(Pn_4) - 1] +

1
n—1 n—5 1
+( 2 >[P1(P ) — P.(PH] +

+---+< )[Pz(P ) — PP,
2

That is,
e R I AN o |
Py = o+ (1)
n—1\ ,1%n% -1
(1 )

n—1
++( 3 )tn—3.
2

Here P,(X) denotes the Poincaré polynomial &f. These Betti numbers were
probably first computed by Kirwan.

Now we turn to the Kahler con& (M¢,) of M¢,. Define a mawy: Co —
K(Mc,) byr — [w], where[wy] is the cohomology class af;. This is initially
defined in the interior o€ but can be extended easily to the boundary.

THEOREM 8.4.Assume: > 5. The Kahler con& (Mc,) of M, can be naturally
identified with the con€y by the linear isomorphism: Co — K (Mc,).
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Proof. By Duistermaat—Hechman’s theorgm is linear. Since dinCy = dim
K(Mc,) = n, to prove that is a linear isomorphism, it suffices to argue that
0o is surjective onto the open Kahler cone. Because the Kahler cone is gener-
ated by the cone of ample divisors (in this case), it is enough to consider integ-
ral points. LetL be any ample line bundle ovaéd., = (PY)" (r¢,)//GL(2, C)
wherer ¢, is any fixed integral point in the interior afo. Let 7: (PY)" (r¢,) —

PYH" (re,)//GL(2, C) be the quotient map. Then*L extends canonically to an
ample line bundle£ over (P1)" because the compleme@®*)"\ (P1)" (r¢,) has
codimension greater than 1. Now the surjectivity follows from the fact @&t
(re,) = (PH (L) and L descends td.. It remains to show that the imaged Co)
lies on the boundary oK (Mc,). This basically follows from the fact that when
r approaches the boundary 6§, one gets a non-trivial (symplectic) blow down
map, and in particular, for any cuns that is contracted to a point the pairing
([wr], [S]) approaches zero asapproaches the boundary 6§. Here[S] is the
homology class of. O

Remark8.5. A few remarks are in order. Firsfy is the unique chamber that
is invariant under permutations of coordinates. Seca#g, is the only quotient
that admits an induced action of the permutation graygwhich acts on(P')" by
permuting the coordinates). This is so beca(®®” (rc,) is the only semi-stable
set that is invariant undex,,.

The even cases are somewhat complicated due to the fact that the h&lay
R, - (1,...,1) liesin the intersection of a number of chambers

First we record a result oM.

THEOREM 8.6 ([10]). M can be obtained fro®~2 by the following sequence of
‘blowups’ and ‘blowdowns’: we start with blowing uf3;*) points to(";*) P"~*;
then blowing dowr(";") P* to ("3") points followed by blowing ug',") points
to (*;') P"5; then blowing down(";") P2 to (*;*) points followed by blowing
up ("37) points to("3") P"~%; ....; then blowing dowr(_:) P'Z° to (i-2) points
followed by blowing ugf;_3) points to(’:_#) P"z"; finally, blowing down(s-3) P""
2 2 2
to (3=2) points.
2
Proof. The proof is similar to that of Theorem 8.3. O

It follows that

-1
IPI(ME) = Pt(Pn73) + (l’l 1 )[Pt(Pn4) - l] +

* Strictly speaking, to apply Duistermaat—Heckman'’s theorem in this case, one should use the
Grassmannian construction &f; as mentioned in 2.3.
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-1
+(” 3 )[P,aP"s) —P(FY] +

_ l n—2 n—
+ot (”u )[P,GPT) ~P,(P'7)].
2

That is,
R R T AN o |
IP(Mp) = ﬁ+< 1 )f2ﬁ+
n—1\ 29 1
+( ) )z L

P n—ltn_4t4—l
4 21

HerelP,(X) denotes the intersection Poincaré polynomiaXoThese intersection
Betti numbers are first computed by Kirwan.

Now, take any maximal chambeér, that contains the half rag (the symbokk
stresses on the choice of a base point to single out a chamber). Again, the Picard
number ofMc, is equal ton, and we can define a m&#pC, — K(Mc,), in the
way as before. A similar proof as in Theorem 8.4 will give

THEOREM 8.7.Assume 2 6. The Kahler con& (M, ) of M, can be naturally
identified with the con€, by the linear isomorphisré: C,. — K (Mc,).

9. The Kéahler Cone of Mg,

9.1. By the virtue of Remark 6.6/, carries (classes of) symplectic forms that
are transported from (the classes Qf). by the isomorphisnmy: 9, . — Mo,. A
quick computation on the number of independent paramete£3,fpteads to

which coincides with the second Betti number or the Picard numbaf gf. It is
well-known that the Kahler cone (or dually the Mori cone of effective curves) of
a projective variety is, in general, very hard to compute. Our theory, as providing
a large family of (classes of) Kahler fornsg ., sheds a light on the shape of the
Kahler cone ofM,,,. We shall now give some heuristic arguments and formulate a
conjecture below.

9.2. To this end, letC* be Cq whenn is odd or a choiceC, of the maximal
chambers that contains the r&y; - (1,...,1) whenn is even, and introduce a
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2n—1_l_n_ n(n—=1)

large cone built or € C*ande = (¢)) jen e R, 2 in the legal

range as follows:

>2(r)

Y nn-1)

n—1
C={reeC xR; 210 <€, <2 min{r;}jes. J € Rop(N).
(One can check that this is indeed a positive convex one.) Then for any(poiit
in the coneC, we have obtained a Kéahler fory, ., provided that is away from
wallls. This leads to a well-defined mapP from the interior of@ to the Kéahler
conek (Mo, of Mo, by taking the cohomology classes®f .. One checks that
Q. depends orir, ) continuously and° extends to a continuous m&p ¢ —
K (Mo,). To exclude triviality, we assume that> 5.

CONJECTURE 9.3.Assume that > 5. The map® identifies a subcone of the
coneC with the Kahler conek (M,,) of M,,.

Dually, we may also consider the Mori cone effective curves (see a conjec-
ture by Fulton as formulated in [15]). It should be instructive to study the two
approaches altogether.

We end our exposition by a digressive remark.

Remark9.4. By 3.3.21 of [2],C(D%) is theG-ample cone for both the PGL(2)-
action on(PY)” and the maximal torus action on the Grassmanigi&®, C"). It is
known that the Chow quotients of these two actions can be identified AGit).
Thus the above conjecture would establish an interesting connection between the
G-ample cone of projectivé-variety and the ample cone of its Chow quotient.
This and moreover the case for a general algebraic group action call for further
investigation.

In a forthcoming paper, we will return to these topics ([11]).
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