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Growth of Selmer Groups of CM Abelian
Varieties

Meng Fai Lim and V. Kumar Murty

Abstract. Let p be an odd prime. We study the variation of the p-rank of the Selmer groups of
Abelian varieties with complex multiplication in certain towers of number ûelds.

1 Introduction

Let A be an Abelian variety deûned over a number ûeld F. _e Mordell–Weil group,
that is, the group of rational points A(F), has been an object of much study in arith-
metic. One of themain approaches towards studying it is via the Selmer groups. More
precisely, one looks at the p-primary component of the Selmer groups (for a choice
of a prime number p).

Let p be an odd prime. In this paper, we are interested in the variation of the p-rank
of the Selmer groups of Abelian varieties with complex multiplication in certain fam-
ilies of number ûelds. We ûrst establish a lower bound for this rank with respect to a
p-power degree isogeny (see Corollaries 4.3 and 4.4) under some mild assumptions
on the prime p. Our proof utilizes the techniques developed in [4, 9] and a property
of Abelian varieties with complex multiplication as observed in [16].

Our lower bound is somewhat in the spirit of the papers ofMazur andRubin [10,11],
where they obtain lower bounds for the Zp-corank of the Selmer group of an elliptic
curve over Galois number ûeld extensions of degree twice a power of an odd prime
under the assumption (and some other assumptions on the reduction of the elliptic
curve) that the Zp-corank of the Selmer group is odd. Our result diòers from theirs
in two aspects. First, we consider p-rank rather thanZp-corank. Second, our Abelian
varieties have complex multiplication. In the case of a CM-elliptic curve, the Zp-
corank of the Selmer group may not be odd, and so the results of [10, 11] do not apply.
We also remark that since our result is an estimate on the p-rank, this contribution
can go either to the Mordell–Weil group or the Tate–Shafarevich group, though we
are not able to distinguish which one at present.

We will then apply our lower bound to study the growth of the p-rank in certain
classes of inûnite p-extensions of number ûelds, namely the Zdp-extension and the
inûnite p-Hilbert class tower (see Proposition 5.1 and _eorem 6.2). _eorem 6.2
complements results proved in [8,11,14] (see Section 7). In the case of aZp-extension,
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we obtain a lower bound of certain Iwasawa invariants attached to the Selmer groups
in terms of certain Iwasawa invariants attached to theZp-extension (see_eorem5.6).

We now give a brief description of the layout of the paper. In Section 2 we review
the deûnitions and properties of Selmer groups. In Section 3 we record some lemmas
on cohomology groups that will be used in the remainder of the paper. In Section 4
we will prove our lower bounds, which will be applied to the study of the growth of
the p-rank of Selmer groups in Zdp-extension in Section 5 and inûnite p-Hilbert class
tower in Section 6.

2 Preliminaries

In this section, we will review the arithmetic objects that will be studied in this paper.
Let A and B be two abelian varieties deûned over a number ûeld F. Suppose we are
given an isogeny

A
ϕ // B.

We write A[ϕ] = ker ϕ. For any algebraic extension L of F, we will write A(L)[ϕ] =
A[ϕ] ∩ A(L). _e Selmer group of A over L with respect to ϕ is denoted and deûned
by

Selϕ(A/L) = ker (H1(L,A[ϕ]) Ð→ ∏
w

H1(Lw ,A)) ,

where w runs through all the primes (including archimedean primes) of L.
If A = B, we can consider the isogeny ϕn for every n ≥ 1, and we denote by A[ϕ∞]

the union of all the A[ϕn] for n ≥ 1. As before, we will write A(L)[ϕ∞] = A[ϕ∞] ∩
A(L). One can check easily that we have the following commutative diagram with
exact rows for m ≥ n:

0 // Selϕn(A/L)

��

// H1(L,A[ϕn])

��

// ∏
w

H1(Lw ,A)

0 // Selϕm(A/L) // H1(L,A[ϕm]) // ∏w H1(Lw ,A).

Taking the direct limit, we obtain the following exact sequence

0Ð→ limÐ→
n

Selϕn(A/L) Ð→ H1(L,A[ϕ∞]) Ð→ ∏
w

H1(Lw ,A).

We shall write
Selϕ∞(A/L) = limÐ→

n
Selϕn(A/L).

We end this section by giving two examples of isogenies that will be considered in
this paper. _e ûrst is the multiplication-by-p map, where p is a prime. In this case,
we have A[ϕ∞] = A[p∞].

We now describe the second example. Let K be a ûnite Galois extension ofQ with
ring of integers OK , and let F be a ûnite Galois extension of K. Suppose that A is an
Abelian variety deûned over F with complex multiplication by OK . Let p be a prime
in K lying above p. _ere exists some integer h > 0 (for example, one may take h to
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be the class number) such that ph = αOK . _en the multiplication-by-α map is an
isogeny of Awith degree a power of p.

3 Some Cohomology Lemmas

In this section, we record some basic results on Galois cohomology that will be used
later. We begin by stating the following standard result (cf. [15, Corollary 1.6.13]).

Lemma 3.1 Let G be a pro-p group. _en every discrete, simple, p-primary G-mod-
ule A is isomorphic to Z/p (with trivial G-action). In particular, if A is a p-primary
G-module, then A = 0 if and only if AG = 0.

For an Abelian group N , we deûne its p-rank to be the Fp-dimension of N[p]
which we denote by rp(N). If G is a pro-p group, we write h1(G) = rp(H1(G ,Z/p)).
We now state and prove the following lemma, which gives an estimate of the p-rank
of the ûrst cohomology group.

Lemma 3.2 Let G be a pro-p group, and let M be a discrete G-module that is coûnitely
generated over Zp . If h1(G) is ûnite, then rp(H1(G ,M)) is ûnite, and we have the
following estimates for rp(H1(G ,M)):

h1(G)rp(MG) − rp((M/MG)G) ≤ rp(H1(G ,M))
≤ h1(G)( corankZp(M) + logp(∣M/Mdiv∣)) .

Moreover, if M is a trivial G-module, we have the equality

rp(H1(G ,M)) = h1(G) rp(M).

Proof We shall ûrst establish the upper bound. If M is ûnite, it then follows from a
standard dévissage argument and the ûrst assertion of Lemma 3.1 that

rp(H1(G ,M)) ≤ h1(G) logp(∣M∣).

For a general M, we denote by Mdiv the maximal p-divisible subgroup of M. Note
that Mdiv is a G-submodule of M. _en the short exact sequence

0Ð→ Mdiv Ð→ M Ð→ M/Mdiv Ð→ 0

induces the exact sequence

H1(G ,Mdiv) Ð→ H1(G ,M) Ð→ H1(G ,M/Mdiv).

_erefore, we are reduced to showing that rp(H1(G ,Mdiv)) and rp(H1(G ,M/Mdiv))
are ûnite, and that the inequalities

rp(H1(G ,Mdiv)) ≤ h1(G) corankZp(M),
rp(H1(G ,M/Mdiv)) ≤ h1(G) logp(∣M/Mdiv∣)

hold. Since M is coûnitely generated over Zp , we have that M/Mdiv is ûnite. _e
ûniteness of rp(H1(G ,M/Mdiv)) and the validity of the second inequality then follow
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from the above discussion. To show that the ûrst inequality holds, we ûrst note that
the short exact sequence

0Ð→ Mdiv[p] Ð→ Mdiv
pÐ→ Mdiv Ð→ 0

of discrete G-modules induces a surjection H1(G ,Mdiv[p]) ↠ H1(G ,Mdiv)[p] and,
consequently, the inequality

rp(H1(G ,Mdiv)) ≤ rp(H1(G ,Mdiv[p])) .
By the above discussion, the latter is less than or equal to h1(G) logp(∣Mdiv[p]∣), and
the required inequality follows from the observation that

logp(∣Mdiv[p]∣) = corankZp(M).

We now prove the second assertion of the lemma. Let M be a trivial G-module.
Since cohomology commutes with ûnite direct sums, it suõces to prove the equalities

h1(G) = rp(H1(G ,Z/pr)) = rp(H1(G ,Qp/Zp)) .
_e natural injections

H1(G ,Z/p) �
�

// H1(G ,Z/pr) �
�

// H1(G ,Qp/Zp)

yield the inequalities

h1(G) ≤ rp(H1(G ,Z/pr)) ≤ rp(H1(G ,Qp/Zp)) ,
and the last term is less than or equal to h1(G) by our estimate for the upper bound.
Finally, it remains to show the lower bound. _e short exact sequence

0Ð→ MG Ð→ M Ð→ M/MG Ð→ 0

induces the exact sequence

(M/MG)G Ð→ H1(G ,MG) Ð→ H1(G ,M).
(In fact, the map on the le� is injective, although we will not need this.) _is gives the
inequality

rp(H1(G ,M)) ≥ rp(H1(G ,MG)) − rp((M/MG)G)
= h1(G)rp(MG) − rp((M/MG)G) ,

where the second equality follows from the second assertion of the lemma.

Corollary 3.3 Retain the notation and assumptions of the preceding lemma. If G is a
compact p-adic Lie group, then the quantity

sup{rp(H1(U ,M)) ∶ U an open subgroup of G}

is ûnite. If G is not a p-adic Lie group and MG /= 0, then the above quantity is inûnite.

Proof By a theorem of Lubotzky and Mann [7], we have that G is a compact p-
adic Lie group if and only if sup{h1(U) ∶ U an open subgroup of G} is ûnite. _e
ûrst assertion then follows from the estimate for the upper bound in the preceding
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lemma. To show the second assertion, note that for any open normal subgroup U of
G, we have the inequality

rp(H1(U ,M)) ≥ h1(U)rp(MU) − rp((M/MU)U) ≥ h1(U)rp(MU) − rp(M) .

Since MG /= 0, it follows from the equality (MU)G/U = MG and Lemma 3.1 that
MU /= 0. _erefore, the lower estimate goes to inûnity by the theorem of Lubotzky
and Mann, giving us the required conclusion.

4 A Lower Bound for the p-rank of Selmer Group

In this section, we will prove a lower bound for the p-rank of the Selmer group. For a
given number ûeld L, we will let µ(L) be the group of all roots of unity in L.

Proposition 4.1 Let A and B be two Abelian varieties deûned over F. Let p be an odd
prime and suppose that there is an isogeny ϕ∶A→ B such that A[ϕ] has p-power order.
Suppose that A satisûes at least one of the following conditions.
(i) _e Abelian variety A has good reduction everywhere over F.
(ii) _e Abelian variety A has complex multiplication by K, and p does not divide

∣µ(K)∣.
Let L be an unramiûed Galois p-extension of F. _en we have the inequality

rp( Selϕ(A/F)) ≥ rp(H1(Gal(L/F),A(L)[ϕ])) .

Proof Denote by Σ the Galois group Gal(L/F). We ûrst prove the inequality when
A satisûes (i). Consider the following commutative diagram with exact rows

0 // Selϕ(A/F)

sL/F
��

// H1(F ,A[ϕ])

hL/F
��

// ∏v H1(Fv ,A)

gL/F
��

0 // Selϕ(A/L)Σ // H1(L,A[ϕ])Σ // ( ∏w H1(Lw ,A))
Σ ,

where the vertical maps sL/F , hL/F , and gL/F are the natural restrictions. Since L
is an unramiûed extension of F, and A has good reduction everywhere over F, it
follows from [4, Propositions 4.1, 4.3] (see also [9, Corollary 4.4]) that ker gL/F =
0. A diagram chasing argument will then show that ker hL/F injects into Selϕ(A/F).
On the other hand, the in�ation-restriction sequence gives the equality ker hL/F =
H1(Σ,A(L)[ϕ]). _erefore, we have an injection

H1(Σ,A(L)[ϕ]) �
�

// Selϕ(A/F) ,

which gives us the required inequality.
Now suppose that A satisûes (ii). _en by [16, _eorem 7], there exists a ûnite

extension F′ of F such that A has good reduction everywhere over F′, and [F′ ∶F]
divides 2∣µ(K)∣. Set L′ = F′L and Σ′ = Gal(L′/F′). By the above argument, we have
an injection

H1(Σ′ ,A(L′)[ϕ]) �
�

// Selϕ(A/F′),
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which is also a Gal(F′/F)-map. Taking Gal(F′/F)-invariants, we have

H1(Σ′ ,A(L′)[ϕ])Gal(F′/F) � � // Selϕ(A/F′)Gal(F′/F) .

Now consider the following commutative diagram with exact rows

0 // Selϕ(A/F)

sF′/F
��

// H1(F , A[ϕ])

hF′/F
��

// ∏v H
1(Fv , A)

gF′/F
��

0 // Selϕ(A/F′)Gal(F′/F) // H1(F′ , A[ϕ])Gal(F′/F) // ( ∏v H
1(F′v , A))

Gal(F′/F) ,

where the vertical maps are the natural restrictions. Since Gal(F′/F) has order co-
prime to p, we have ker hF′/F = coker hF′/F = ker gF′/F = 0, and consequently it
follows from a diagram chasing argument that the map sF′/F is an isomorphism. It re-
mains to show that H1(Σ′ ,A(L′)[ϕ])Gal(F′/F) ≅ H1(Σ,A(L)[ϕ]). _is follows from
the observation that the two spectral sequences

H i( Gal(F′/F),H j(Σ′ ,A(L′)[ϕ])) Ô⇒ H i+ j( Gal(L′/F),A(L′)[ϕ]) ,
H i(Σ,H j(Gal(L′/L),A(L′)[ϕ])) Ô⇒ H i+ j( Gal(L′/F),A(L′)[ϕ])

collapse (since Gal(L′/L) ≅ Gal(F′/F) has order coprime to p) and yield the isomor-
phisms

H1(Σ′ ,A(L′)[ϕ])Gal(F′/F) ≅ H1( Gal(L′/F),A(L′)[ϕ]) ≅ H1(Σ,A(L)[ϕ]).
_is ûnishes the proof.

In the case where A = B, we have the following proposition, which is proved simi-
larly.

Proposition 4.2 Retaining the notation and assumptions of Proposition 4.1, we have
the inequality

rp( Selϕn(A/F)) ≥ rp(H1(Gal(L/F),A(L)[ϕn]))
for 1 ≤ n ≤ ∞.

Set L to be the p-Hilbert class ûeld of F and set ϕ to be multiplication-by-p. _en,
combining the above results with Lemma 3.2, we obtain the following corollary.

Corollary 4.3 Suppose that A is an Abelian variety over F satisfying either of the two
conditions in Proposition 4.1. _en we have the inequality

rp(Selpn(A/F)) ≥ rp(Cl(F))rp(A(F)[pn]) − rp((A(L)[pn]/A(F)[pn])Gal(L/F))
for 1 ≤ n ≤ ∞.

Proof It remains to show that h1(Gal(L/F)) = rp(Cl(F)). Since Cl(F) is a ûnite
Abelian group, the p-rank of Cl(F) is also given by the Fp-dimension of Cl(F)/p,
but the latter is isomorphic to H1(Gal(L/F),Z/p) by class ûeld theory.

One can also deduce the following variant of Corollary 4.3.
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Corollary 4.4 Let A be an Abelian variety deûned over a number ûeld F, with com-
plex multiplication by the ring of integers OK of K. We also assume that K ⊆ F. Let p
be an odd prime, and let p be a prime of OK lying above p. Suppose that at least one of
the following statements hold.
(i) _e Abelian variety A has good reduction everywhere over F.
(ii) p does not divide ∣µ(K)∣.

Let L be the p-Hilbert class ûeld of F. _en we have

rp( Selpn(A/F)) ≥ rp( Cl(F)) rp(A(F)[pn])−rp((A(L)[pn]/A(F)[pn])Gal(L/F))
for 1 ≤ n ≤ ∞.

Proof For 1 ≤ n < ∞, we can ûnd an Abelian variety Bn and an isogeny ϕn ∶A →
Bn such that ker ϕn = A(F)[pn] (cf. [13, p. 72, _eorem 4]). _e required conclu-
sion then follows from Proposition 4.1. For n = ∞, let h be a positive integer such
that ph = αOK . Since A has complex multiplication by the ring of integers OK , the
multiplication-by-α map is an isogeny of A with p-power degree. _e required in-
equality now follows from Proposition 4.2.

Remark 4.5 Suppose that A = E is an elliptic curve with complex multiplication
by an imaginary quadratic ûeld K. Since µ(K) has order a power of 2 when K is not
Q(

√
−3), and order 6 when K = Q(

√
−3), Proposition 4.1(ii) and Corollary 4.4 hold

if p ≥ 5. In the case that p = 3, statement (ii) also holds if one assumes further that K
is not Q(

√
−3).

5 Growth of Selmer Groups in Zdp-extension

Let A and B be two Abelian varieties deûned over F. Let p be an odd prime and sup-
pose that there is an isogeny ϕ∶A→ B such that A[ϕ] has p-power order. We assume
throughout the section that A satisûes either of the two conditions in Proposition 4.1.
We will be interested in the growth of the p-rank of the Selmer group Selϕ(A/F) (and
Selϕ∞(A/F) in the case A = B). We let S(A/F) be either Selϕ(A/F) or Selϕ∞(A/F)
for this section.

Let F∞ be a Galois extension of F with Galois group Σ ≅ Zdp . DenoteM∞ to be the
maximal Abelian unramiûed pro-p extension of F∞ and write X∞ = Gal(M∞/F∞).
We also write Σn = Σpn

and Fn = FΣn
∞

. Combining the estimates obtained in Section 3
with a theorem of Monsky [12], we prove the following proposition.

Proposition 5.1 Suppose that A is anAbelian variety over F satisfying either of the two
conditions in Proposition 4.1, and suppose that A(F)[ϕ] /= 0. Let F∞ be a Zdp-extension
of F with the property that X∞/pX∞ is inûnite. _en the following statements hold.
(i) _e p-rank of S(A/Fn) goes to inûnity as n goes to inûnity.
(ii) _e group S(A/F∞) has inûnite p-rank.

Proof (i) By a theorem of Monsky [12], the assumption of X∞/pX∞ being inûnite
implies that rp(Cl(Fn)) goes to inûnity as n goes to inûnity. If A satisûes either of the
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two conditions in Proposition 4.1, then A also satisûes the same condition over Fn .
_e conclusion then follows from an application of Corollary 4.3.
(ii) As in the argument of Proposition 4.1, the kernel of the map

S(A/Fn) Ð→ S(A/F∞)Σn

is contained in either H1(Σn ,A(F∞)[ϕ]) or H1(Σn ,A(F∞)[ϕ∞]). By Corollary 3.3,
the latter groups have bounded p-rank as n goes to inûnity. _e assertion then follows
from this and assertion (i).

For the remainder of the section, we shall focus our attention on the case d = 1,
and we write Λ = ZpJΓK, where Γ ≅ Zp . Fix a topological generator γ for Γ. _en
this ring is topologically isomorphic to ZpJTK, where the isomorphism is induced
by γ ↦ 1 + T (cf. [15, Chap. V, Proposition 5.3.5]). By abuse of notation, we shall
also denote the ring ZpJTK by Λ. We now recall the following structure theorem for
ûnitely generated Λ-modules (cf. [15, Chap. V, 5.3.8]).

_eorem 5.2 Let M be a ûnitely generated Λ-module. _en there is a Λ-homomor-
phism

M Ð→ Λr ⊕ (
s
⊕
i=1

Λ/pm i) ⊕ (
t
⊕
j=1

Λ/ f n j
j )

with ûnite kernel and cokernel, where each f j is an irreducible distinguished polynomial.
_e numbers r,m i , n j and f j are uniquely determined by M.

_e Iwasawa µ-invariant (resp., the Iwasawa λ-invariant) ofM is given by∑s
i=1 m i

(resp., ∑t
j=1 n i deg f j). We are also interested in s(M) which is the number of sum-

mands in (⊕s
i=1 Λ/pm i ). Clearly, we have s(M) = 0 if and only if µ(M) = 0. Also,

we see that ifM is a ûnitely generated Λ-module with the above decomposition, then
M/pM is a ûnitely generated Λ-module with µ(M/pM) = r(M) + s(M). _e fol-
lowing lemma is a straightforward calculation.

Lemma 5.3 Let M be a ûnitely generated Λ-module. Let wn = (1 + T)pn − 1. _en
for big enough n, we have

rp(M/(p,wn)M) = ( r(M) + s(M)) pn + O(1) = µ(M/p)pn + O(1).

Proof It suõces to compute the terms in the summands in _eorem 5.2:

rp(Λ/(p,wn)Λ) = rp(Z/p[T]/T pn
) = pn ,

rp((Λ/pm i )/(p,wn)) = rp(Z/p[T]/T pn
) = pn ,

rp((Λ/ f n j
j )/(p,wn)) = rp(Z/p[T]/(T pn

, f n j
j )) = n j deg f j

for big enough n.

_e following lemma is well known, but for the convenience of the reader we in-
clude a proof.

Lemma 5.4 Let A be an Abelian variety over F, and let F∞ be a Zp-extension of F.
_en HomZp(S(A/F∞),Qp/Zp) is a ûnitely generated Λ-module.
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Proof WriteW = HomZp(S(A/F∞),Qp/Zp). By the topological Nakayama lemma
(cf. [15, Chap. V, Proposition 5.3.10]), it suõces to show thatWΓ is a ûnitely generated
Zp-module. _is is equivalent to showing that S(A/F∞)Γ is a coûnitely generated
Zp-module. Let S be a ûnite set of primes of F consisting of primes above p, primes
at which Ahas bad reduction primes and the archimedean primes. Let FS be themax-
imal extension of F unramiûed outside S. _en for any algebraic extension L of F that
is contained in FS , we write GS(L) = Gal(FS/L). By the standard theory of Selmer
groups, S(A/F∞) is contained in either H1(GS(F∞),A[ϕ]) or H1(GS(F∞),A[ϕ∞]).
_erefore, we are reduced to showing that

H1(GS(F∞),A[ϕ])Γ and H1(GS(F∞),A[ϕ∞])Γ

are coûnitely generatedZp-modules. Since Γ has cohomological dimension 1, we have
surjections

H1(GS(F),A[ϕ]) ↠ H1(GS(F∞),A[ϕ]) Γ ,

H1(GS(F),A[ϕ∞]) ↠ H1(GS(F∞),A[ϕ∞]) Γ .

_erefore, we are reduced to showing that H1(GS(F),A[ϕ]) andH1(GS(F),A[ϕ∞])
are coûnitely generated Zp-modules, which is a consequence of the next lemma.

Lemma 5.5 Let M be a discrete GS(F)-module that is a coûnitely generated
Zp-module. _en H i(GS(F),M) is coûnitely generated over Zp for each i.

Proof By considering the cohomology sequence of the short exact sequence

0Ð→ Mdiv Ð→ M Ð→ M/Mdiv Ð→ 0,

we are reduced to showing the lemma for the case when M is ûnite and M is p-
divisible. If M is ûnite, then H i(GS(F),M) is ûnite by [15, Chap. VIII, _eo-
rem 8.3.20], thus proving the lemma in this case. Now suppose that M is p-divisible.
_e short exact sequence

0Ð→ M[p] Ð→ M
pÐ→ M Ð→ 0

of discrete GS(F)-modules induces a surjection

H i(GS(F),M[p]) ↠ H i(GS(F),M)[p].

Since M[p] is ûnite, it follows from the above discussion and the surjection that
H i(GS(F),M)[p] is ûnite. By the dual version of Nakayama Lemma, this implies
that H i(GS(F),M) is coûnitely generated over Zp .

Retaining the notation in the above proof, we then have that S(A/F∞)[p] is iso-
morphic to the Pontryagin dual of W/pW . Assuming the hypothesis of Proposi-
tion 5.1, it will then follow from Lemmas 5.3 and 5.4 and Proposition 5.1(ii) (for the
d = 1 case) that r(W) + s(W) > 0. In fact, we will show the following sharper result.
Recall that X∞ is the Galois group of the maximal unramiûed pro-p extension of F∞
over F∞.
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_eorem 5.6 Suppose that A is an Abelian variety over F satisfying either of the
two conditions in Proposition 4.1. Let F∞ be a Zp-extension of F. _en we have the
inequality

r(W) + s(W) ≥ rp(A(F∞)[ϕ]) s(X∞)
of Iwasawa invariants. In particular, if A(F)[ϕ] /= 0 and µ(X∞) > 0, then r(W) +
s(W) > 0.

Proof As seen in the proof of Proposition 5.1, the kernel of the map

S(A/Fn) Ð→ S(A/F∞)Γn

has bounded p-rank. Combining with Lemma 5.3, we obtain the estimate

( r(W) + s(W)) pn ≥ rp( Selp∞(A/Fn)) + O(1).
By Corollary 4.3, the term on the right is greater or equal to

rp(A(Fn)[ϕ]) rp( Cl(Fn)) + O(1).
By [15, Chap. XI, Lemma 11.1.5], there exists n0 (depending on F∞) such that for n ≥
n0, there is a surjection

Cl(F)/p↠ X∞/( p, wn

wn0

)

with kernel bounded independent of n. Calculations similar to those in Lemma 5.3
yield

rp( Cl(Fn)) = s(X∞)pn + O(1)
for big enough n, noting that r(X∞) = 0 (cf. [15, Chap. XI, Proposition 11.1.4]). _ere-
fore, we obtain the following estimate

( r(W) + s(W)) pn ≥ rp(A(Fn)[ϕ]) s(X∞)pn + O(1)
for big enough n. _is implies the inequality as asserted in the theorem.

Remark 5.7 If F∞ is the cyclotomic Zp-extension of F, then µ(X∞) (and hence
s(X∞)) is conjectured to be zero. _erefore, _eorem 5.6 is conjecturally vacuous in
this case.

We end the section discussing how one can obtain examples of _eorem 5.6, if
one allows a change of the base ûeld F. Again, let p be an odd prime. If F∞ is
a Zp-extension of F, we will write µ(F∞/F) (resp. s(F∞/F)) for the µ-invariant
(resp. s-invariant) of the group X∞ attached to the Zp-extension F∞/F as deûned
in this section. Now choose a number ûeld L such that it has a Zp-extension L∞
with µ(L∞/L) > 0 (such a choice exists by [6,_eorem 1]). Now suppose that A is an
Abelian variety deûned over a number ûeld F and satisûes either of the two conditions
in Proposition 4.1. We then choose a number ûeldM big enough such that it contains
the ûelds F and L, and that A[ϕ] is rational over M. Set M∞ = ML∞. _is is clearly
a Zp-extension of M, and it is an easy exercise to check that µ(M∞/M) ≥ µ(L∞/L).
By our choice of L∞/L, we then have µ(M∞/M) > 0, and hence s(M∞/M) > 0.
Note that if A satisûes either of the two conditions in Proposition 4.1, then A also sat-
isûes the same condition over M. _erefore, we can now apply_eorem 5.6 to obtain
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r(W)+ s(W) > 0, whereW here is the Pontryagin dual of S(A/M∞). We record our
discussion formally.

Proposition 5.8 Suppose that A is an Abelian variety over F satisfying either of the
two conditions in Proposition 4.1. _en there exists a ûnite extension M of F and a Zp-
extension M∞ of M such that r(W) + s(W) > 0, where W is the Pontryagin dual of
S(A/M∞).

6 Growth of Selmer Groups in Hilbert Class Field Tower

Retain the assumptions and notation introduced in the ûrst paragraph of Section 5.
We introduce an interesting class of (inûnite) unramiûed extensions of F. Let S be
a (possibly empty) ûnite set of primes in F. We denote the S-ideal class group of F
by ClS(F). For the remainder of the section, F∞ will denote the maximal unramiûed
p-extension of F inwhich all primes in S split completely. Write Σ = ΣF = Gal(F∞/F),
and let {Σn} be the derived series of Σ. For each n, the ûxed ûeld Fn+1 corresponding
to Σn+1 is the p-Hilbert S-class ûeld of Fn .

Let S∞ be the collection of inûnite primes of F, and deûne δ to be 0 if µp ⊆ F and
1 otherwise. Let r1(F) and r2(F) denote the number of real and complex places of F
respectively. It is known that if the following inequality

rp(ClS(F)) ≥ 2 + 2
√

r1(F) + r2(F) + δ + ∣S ∖ S∞∣
holds, then Σ is inûnite (see [3] and [15, Chap. X, _eorem 10.10.5]). Stark posed the
question on whether rp(ClS(Fn)) tends to inûnity in an inûnite p-class ûeld tower as
n tends to inûnity. By class ûeld theory, we have rp(ClS(Fn)) = h1(Σn). It then fol-
lows from the theorem of Lubotzsky and Mann [7] that Stark’s question is equivalent
to whether the group Σ is p-adic analytic. By the following conjecture of Fontaine–
Mazur [2], one does not expect Σ to be an analytic group if it is inûnite.

Conjecture (Fontaine–Mazur) For any number ûeld F, the group ΣF has no inûnite
p-adic analytic quotient.

Without assuming the Fontaine–Mazur Conjecture, we have the following uncon-
ditional (weaker) result, proved by various authors.

_eorem 6.1 Let F be a number ûeld. If the inequality

rp(ClS(F)) ≥ 2 + 2
√

r1(F) + r2(F) + δ + ∣S ∖ S∞∣
holds, then the group ΣF is not p-adic analytic.

Proof When S is the empty set, this theorem has been proved independently by
Boston [1] andHajir [5]. For a general nonempty S, this was proved in [8, Lemma 2.3].

Collecting all the information we have, we obtain the following result, which an-
swers an analogue of Stark’s question, namely the growth of the p-rank of the Selmer
groups.
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_eorem 6.2 Let p be a prime such that the inequality

rp(ClS(F)) ≥ 2 + 2
√

r1(F) + r2(F) + δ + ∣S ∖ S∞∣
holds. Suppose that A is an Abelian variety over F satisfying either of the two conditions
in Proposition 4.1. Let F∞ be the maximal unramiûed p-extension of F in which all
primes of a given set S split completely, and let Fn be deûned as above. _en for big
enough n, we have the inequality

rp(S(A/Fn)) ≥ rp( ClS(Fn)) rp(A(F∞)[ϕ]) .
In particular, if A(F)[ϕ] /= 0, then the p-rank of S(A/Fn) is unbounded as n tends to
inûnity.

Proof It follows from [8,_eorem 2.5] that A(F∞)[p∞] is ûnite. Since ϕ is assumed
to have degree a power of p, we have that A[ϕ∞] is also contained in A[p∞]. _ere-
fore, for big enough n, the group Σn acts trivially on A(F∞)[ϕ∞]. _erefore, the re-
quired inequality follows from Lemma 3.2 and Propositions 4.1 and 4.2. _e second
assertion then follows from Lemma 3.3 and_eorem 6.1.

We end the section discussing how one can obtain examples of_eorem 6.2, if one
allows a change of the base ûeld F. Now let A be an abelian variety that satisûes either
of the two conditions in Proposition 4.1. Replacing F if necessary, we may assume
that A(F)[ϕ] /= 0. Now choose a ûnite p-extension M of F such that

rp(ClS(M)) ≥ 2 + 2
√

r1(M) + r2(M) + δ + ∣S ∖ S∞∣,
where we abuse notation denoting the set of primes of M above S (which is origi-
nally a ûnite set of primes of F) by S. Such a choice of M satisfying the inequality
is possible by [15, Chap. X, Proposition 10.10.3] (see also the proof of [15, Chap. X,
Corollary 10.10.6]). Combining our discussion with _eorem 6.2, we have the follow-
ing result.

Proposition 6.3 Suppose that A is an Abelian variety over F satisfying either of the
two conditions in Proposition 4.1. _en there exists a ûnite extension M of F such that
the conditions (and hence the conclusions) of _eorem 6.2 hold.

7 Concluding Remarks

Wemake some remarks about _eorem 6.2 and its relation to works of [8, 11, 14].
● If the Abelian variety A satisûes Proposition 4.1(i), then this theorem is a special
case of [8, _eorem A].

● _is result, in some sense, is a generalization of a variant of [14, _eorem 4]. Note
that in their paper, Murty and Ouyang proved the theorem for p-rank of the Selmer
group of an elliptic curve with complex multiplication in an inûnite p-class ûeld
tower, which is a ûner version than our result in the case of an elliptic curve.

● In their paper, Mazur and Rubin [11, _eorem 2.19] have an analogue of _eo-
rem 6.2. Namely, if A is an elliptic curve over Q with Selmer group of an odd
Zp-corank, and F is an imaginary quadratic ûeld F of discriminant prime to p with
an inûnite p-Hilbert class ûeld, then the Zp-corank of its p-power Selmer group
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grows to inûnity over the inûnite p-Hilbert class ûeld. Note that in their result,
they are considering Zp-corank, and they do not require the assumption that the
inûnite p-Hilbert class ûeld is not p-adic analytic.
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