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1. Introduction. In this paper, we investigate various " arithmetical " functions associated
with the factorisation of polynomials in GF[q, Xu..., Xk], where k ^ 1 and GF[q] is the finite
field of order q. We shall assume throughout that all polynomials discussed are non-zero and
have been normalised by selecting one polynomial from each equivalence class with respect to
multiplication by non-zero elements of GF[q]. The constant polynomial will be denoted by 1.
With this normalisation, GF[q,Xu...,Xk] becomes a unique factorisation domain. When
k = 1, normalisation is achieved by considering only monic polynomials. By the degree of a
polynomial A(Xu...,Xk) will be understood the ordered set (mu...,mk), where mx is the
degree of A(XU..., Xk) in X, (/ = 1 , . . . , k).

In [3], the author evaluated N(ml,...,mk), the total number of polynomials of degree
(m,, . . . ,mk) and, for k ^ 2, obtained estimates for n(mu...,mk) the number of irreducible
(or prime) polynomials of the same degree. The value of n(mu.. .,mk) when k = 1 is well-
known. We proceed now to define functions M, Qr(r ^ 2),D and $ all of which have been
evaluated by Carlitz [1], using a zeta-function method, when k = \. Our aim is to estimate
them for k ^ 2. Let a typical, non-constant polynomial A in GF[q,Xu...,Xt] have prime
factorisation

A = P?...P? (1.1)

and define the functions n(A) (" Mobius " function), nr(A)(r ^ 2) and d(A) on GF[q, Xu... ,Xk]
as follows:

\ 1, if ,4 = 1,

U-\)', if a, = . . . = «, = 1,}- (1.2)

0, otherwise;

{1, if <Xj < r, i = 1 , . . . , I or if A = 1,

} (1.3)

0, otherwise;

}
} (14)

, otherwise. J v ' '
In (1.2), (1.3) and (1.4), if A # I,A is assumed to have the form (1.1). Now put M{ml,...,mk) =
Y^niA), 2r(wi> • • • > mk) = Z ^ r ( ^ ) a n d D(mu • • • > mk) =$yO4)>where in each case the sum is over
all polynomials of degree (mu..., mk). Thus Qr(mu..., mk) is the number of " r-free " poly-
nomials of degree (mu.. -,mk) and, since d(A) is just the number of divisors (including 1) of
A,D(ml,... ,mt)/7V(mj,... ,mk) is the average number of divisors of polynomials of degree
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22 STEPHEN D. COHEN

(wj1,...,m/t). Finally, let 4>(A) (" Euler's " function) denote the number of polynomials
relatively prime to and of the same degree as A and put ^ (m, , . . . , mk) = £</>(,4), where the
sum is as before.

In our method, we employ formal power series in k indeterminates such as

Z(ult...,ut)=> £ ... E Ar(ml, . . . ,m*)«r-. .«"k. (1.5)
m i = 0 ntfc = 0

Now for large values of ml,...,mk,N(ml,...,mk) = o(qlmi + lh--(mk+u). Hence if we regard
(1.5) as a power series in & real variables uu..., uk and if « t . ..uk # 0, we see that Z(uu...,uk)
is convergent only if k = 1 and |wj | < q~l. Accordingly, we develop briefly a theory of
purely formal power series. In [3] we proved the relation

m1N(ml,...,mk)= E ••• Z slL(si,...,sk)N(ml-sl,...,mk-sk), (1.6)

where, if 7t(0,...,0) = 0,

L{mu...,mk) = £ j~ln{milj,...,mklj). (1.7)
J I (mi mfc)

Relation (1.6) was first proved for k = 2 by Carlitz [2]. In the paper cited, he also gives a
proof of (1.6) for k = 2 involving a formal use of the series (1.5). (In (1.7) and elsewhere the
greatest common divisor (mu...,mk) of mi,...,mk, is to be distinguished from the degree
(m,, . . . ,mk) by context.) Using our theory of power series, we derive various relations similar
to (1.6), including one for each of the functions M,Qr,D and 0 involving the function and N
and one for each of M, Qr and D involving the function and L (i.e., n). Using the relations
involving N, and our knowledge of N, we obtain the required estimates.

In [3] we noted that, for k = 1,

n(m) ~ m~ xN(m) as in -* oo, (1.8)

while, if k ^ 2,

n(mu...,mk)~(l-ql-n)N(ml,...,mk) as mk-*co, (1.9)

where n is defined for all A: ̂  1 by

n = (w1 + l) . . . (mt + l)/(m» + l). (1.10)

Suppose that k ^ 2 and that /nt_ t -> oo. Then n -> oo and so q1 ~" -> 0. In view of this and
(1.9), when k^.2 we concentrate almost exclusively on the case when w,, . . . ,mk_j are
considered fixed and mk -* oo. In spite of the dissimilarity of (1.8) and (1.9) we can state the
results for Qr, M and O simultaneously for all k. Thus we have, as mk -> oo

M(mu...,mk)~ -(l-q1-")2N(mu...,mk),
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On the other hand, it is inevitable from (1.8) and (1.9) that a separate statement is required
for the two cases k = 1 and k > 1 in the estimate for D{mu... ,mk). We have, if k = 1,
D{m) = (m +1 )N(m), while if k £ 2,

D(mu.. .,mk) ~ 2(1 — ql~")~lN(mi mk) as mk-*ao.

For convenience, we shall subsequently abbreviate any function U(ml,.. .,mk) to U(mt)
bi bi bk

where possible. Similarly £ will mean £ . . . £ , and the degree (m,,...,mk) of a poly-

nomial will be written (m().

2. Formal power series. Let Sk be the set of all formal power series (f.p.s.) in k indeter-
minates, ul!...,ukof the form

F(uu...,uk)= i / ( m , K ' . . . U r , (2.1)
mt-0

where f(mt) is a real valued function of the non-negative integer variables m , , . . . , m k . From
now on the f.p.s. (2.1) will be denoted by F(M() =Yjf(mi)u?'- T h e f-P-s- w i t n / ( °» • • • ,0) = 1 and
/(m,) = 0 otherwise will be denoted by / and the zero f.p.s. by 0. Let G(ut) be the f.p.s.
Yj9(.mi)u7' m Sk- We say F = G if and only if/(w,) = <?(/«,•) for all integer sets {ml,...) mk}, and
F+ G is defined in the natural way. The product FG is defined to be the f.p.s. E, where

(2.2)

and C(OT() is the Cauchy product

<md= Z/(s,Mm(-s(). (2.3)
i, = O

It is evident that, with the above operations, Sk is a commutative ring with identity /. More-
over, Sk is an integral domain and hence the cancellation law holds. To see this, suppose that
F and G are non-zero f.p.s. in Sk. Then there exist sets {su...,sk) and {f,,..., tk} such that

f(si) = 9(t'i) = 0 if £ s; < ^ Sj and £ f| < £ i, but /(*,).<?(;,) * 0. Let m, =
i = l i = l i = l i = l

/ = 1 , . . . , k. We have

i O . (2.4)
n = o

It follows from (2.2), (2.3) and (2.4) that FG ^ 0.
Let F' denote the formal derivative of FeSk with respect to ut. Then trivially (F+ G)' =

F' + G' and it is easy to verify by using (2.2) that (FG)' = F'G+FG'. This product rule extends
in the usual way to the product of any number of f.p.s. In particular, if r ^ 1, we have (Fr)' =
r{F~l)F'. Further it is obvious that if r ^ 1 and £(w,) = F(M-), then £ ' = ru\~lF'.
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24 STEPHEN D. COHEN

For f.p.s. of a certain type we now extend the definition of product to that of an infinite
number of f.p.s. Let x be a real multiplicative function of GF[q, Xu..., Xk], not identically
zero. Thus xi^B) = x(d)x(B) if C<4> B) — 1 and ^(1) = 1 • For an irreducible P of degree («,)
let HP(Ui) be the f.p.s.

HP(ut) = i+X(P)ur+x(P2)ufi+...= £ xinw-.-urr (2.5)

a = 0

and define the product H(u,) of the ///>(«,) for all irreducible P to be

H(ud = UHpdh) = ZKmW, (2.6)
where h(m,) =YJX(^)> the sum being over all polynomials of degree (m,). Now suppose that
Xi and Xz a r e non-zero multiplicative functions of GF[q,Xit...,Xk] and that/P(M()and KP(u,),
respectively, are the corresponding f.p.s. of type (2.5). By (2.2), JP xKP = HP, where HP(u,)
has form (2.5) with x(l) = 1 and

x(n = i xiinxitr") = Z h^QxAD). (2.7)
s = 0 CD = P'

Extend x to be a (non-zero) multiplicative function of GF[q, Xu...,Xk]. Thus f ] {JP x KP) has
p

the form (2.6). It is of fundamental importance that we can write

p p p

To prove (2.8), the coefficient of uf in the f.p.s. on the left side of (2.8) is, by (2.2) and (2.6),

D). (2.9
CD = A

By (2.6) and (2.9) it is therefore sufficient to show that we can extend (2.7) to

X(A)= £ Xi(C)x2(D). (2.10)
CD = A

The truth of (2.10) is established by using induction on the number t of distinct primes in A.
The inductive step is, if A has form (1.1) with / > 1,

x(A) = xiAPr")x(P?) = ( I Xi(C)x2(D'))(
\CD' = AP,-'t / \ s

from which (2.10) follows. Thus (2.8) holds.

We remark finally that in what follows we shall use freely the properties of f.p.s. described
in this section without specific mention.
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3. Relations involving the functions. Let ZP(ut) be the f.p.s. of type (2.5) with xO4) = 1
for all A. Accordingly, by (2.6) we have

z(iO = n Zp(«/) = !N(.">d»7', (3.1)
p

where, if deg P = (n,),

ZP(M,.) = 1 + ui'+uf" +.... (3.2)

Hence, by (3.1), if if(«f) is the f.p.s. i/f^miLCm,)!*™', where L(m,) is denned by (1.7), an
expression equivalent to (1.6) is

(3.3)

We employ (3.3) in the sequel to derive relations involving L (i.e., 7i).
We now prove two relations involving M(m^.

THEOREM 1. Ifk^l and mu...,mk are non-negative integers not all zero, we have

t s1.) = 0 (3.4)

and

s,). (3.5)

Proof. Let JtP(u,) be the f.p.s. (2.5) with x(^) = K^). Thus, if degP = (nt), then
JtP(u,)= 1-wJ" and

(3.6)

Now it follows from (3.2) and (2.2) that

= I-
Hence

y/(M,.)Z(Ul) = n(^p(",)Zp("() ) = /• (3-7)
p

Now differentiate (3.7) with respect to «,. Clearly since / ' = 0, we obtain, by (3.3),

JC(udZ(u,)+Jl(MdSe(udZ(ud = 0,
i.e.,

Jl'(ut)=-X{udJl(ud. (3.8)

Statements (3.4) and (3.5) are now immediate from (3.7) and (3.8) by using (2.2). The proof
is complete.

Statement (3.7) also leads to the following general inversion formula.
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26 STEPHEN D. COHEN

THEOREM 2. Suppose that f (ml) and g(mt) are real functions of the non-negative integer
variables ml,...,mk(k'^.\) and that r is a positive integer. Then

mi

g(mi)= £ N(s,lr)f(m,-s,)
s,=o

<• I (S l Sk)

if and only if
mi

Si = O
r I (si s«c)

Proof Let /"(«,) and G(K,) be the f.p.s. corresponding to/(/n() and g(mt) respectively. We
then have

G(ut) =
i.e.,

oF(ut) = G(u,)^(t,[), (3.9)

by (3.7). The result is immediate from (3.9). This completes the proof.
As an application of Theorem 2, we deduce from (1.6) an explicit formula for n(m,) in

terms of N(m() and A/(m,). Uj\(mi,...,mk), put m, =jnl,i=l,...,k. We then have

m1n(m,)= £ nU) I «i N(sdM{n,-sd, (3.10)
J I (mi mi,) si = O

where in (3.10), fi(j) is the ordinary Mobius function.
We consider now the function Qr(md-

THEOREM 3. Ifk'^l,r'^.2 andm1,...,mk are non-negative integers, we have

N(mi)= I NisJryQXm,-!,) (3.11)
s, = 0

r |(s, ,sk)
and

QXmd= I M(si/r)N(mJ-si). (3.12)
s, = 0

r|(si sx)
Moreover, we have

mi mi

»»i &<»»,)= J s1L(sI)e,(mi-s,)- E SiHsJryQAmi-sd- (3-13)
S( = 0 Ji = 0

r | (s i , . . . ,sk)

Proo/. By Theorem 2, (3.12) follows from (3.11). To verify (3.11) and (3.13) let, for
fixed r ^ 2,2P(Ui) be the f.p.s. (2.5) with x(A) = n,(A). Hence J2P(u,) = 1+ wj" + . . . + u\'~x)ni

(degP = («,)) and
du?1- (3-14)
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However, l

Mut)ZP(u-t) = (1 +«?• + . . . + M{'- ' ""XI + « r + «?"" + •••) = Zp("()- (3-15)

It follows from (3.14) and (3.15) that

J2r("i)Z(«D = ZOO- (316)
Differentiating (3.16) and using (3.3) and (3.16) yields

It follows from (3.17) that

- r u r 1 ^ "? )^" , ) . (3.18)

(3.11) and (3.13) follow from (3.16) and (3.18) by equating coefficients of u?". In particular,
note that the coefficient of u^ lu"' in ur,~x£C(u1)lr("i) is

r|(Sl sk)

The proof of the theorem is complete.

THEOREM 4. Ifk^\ andml,...,mk are non-negative integers, we have

D(mt)= £ JV(s,)/V(m,-s,) (3.19)
s, = 0

and

m, D(mf) = 2 | s, L(s()D(mi-si). (3.20)

Proof. It is easy to prove (3.19) directly. Thus

and (3.19) is immediate from (3.21). Now let S(«,) be the f.p.s. ££>(m,K"- Then clearly
(3.19) is equivalent to the expression

3 ( H , ) = Z2(U(). (3.22)

Differentiating (3.22) and using (3.3) leads to

©'(«,) = 2Z(ut). Z(Ui)SC (ut) = 20(M()JS?(U(), (3.23)

by (3.22). From (3.23) we at once obtain (3.20). This proves the theorem.
Finally in this section we shall derive some relations involving N, Q2, D and the function

deg/l = (m,)

where (o(A) is the number of distinct prime divisors of A and co(l) = 0.
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THEOREM 5. Ifk^l ndmi,...,mk are non-negative integers, we have

t t-s,) (3.24)

and

D(md= I N(sJ2)W(m,-s,). (3.25)
s, = O

2 I (si sk)

Proof. This time choose x(A) = 2a(A) in (2.5) and let the corresponding f.p.s. be ifpiu,).
We have

*"(«*) = Y\irP(Ui) = l,W(m,)u?',
p

where, if degP = (n,),
TrP(w,.) = l + 2u

On the other hand, if r = 2 in (3.14), we have

Zp(Uf)j2P(Ml.) = (l+«?' +
Hence

Z(u,)22(ud = inud- (3-26)

(3.24) follows from (3.26). Multiplying both sides of (3.26) by Z(«?) and using (3.16), we
obtain

#"(U,.)Z(«,2) = Z\ut) = 0(u,.) (3.27)

and the assertion (3.25) follows from (3.27). The proof is complete.
We remark that further relations could be found from those of Theorem 5 by " inverting "

and by using Theorem 2.
We note finally that it is possible to derive some of the results of this section directly

using the technique of [3]. However, such proofs of (3.13) and (3.20), for example, are fairly
lengthy.

4. Estimation of the functions. We turn now to the question of computing the functions
we have defined.

For convenience, we shall often assume, without loss of generality, that if k £; 2 then
mi,..• >mk-i a r e non-negative integers satisfying

wt_, = max wi; ^ 1. (4.1)
lSig*-l

Hence if (4.1) holds and the integer R is defined by

(0 (fc=l),
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where n is given by (1.10), then, if k }£ 2,

R= max nmjtmj+l)""1. (4.3)

We state a lemma concerned with the value of N(m,). For proofs see [3].

LEMMA 1. Ifk^l and ml,...,mk are non-negative integers, we have

(4.4)
i = 0

where £ ( l ) denotes the sum over all different terms obtainable from the one shown by permutation
of the m/s. Moreover, i/(4.1) holds and R is given by (4.2), we have

(q - l)N(mi) = fa" - 1)<Tk + O(qRm"), (4.5)

where the implied constant is independent ofmk.

We shall use the following estimate of N^A^m,—st) several times. It is an immediate
consequence of Lemmas 3 and 4 and statements (3.7) and (3.14) of [3].

LEMMA 2. Suppose that k^2 and that ml,...,mk are non-negative integers such that
(4.1) holds. If also s l , . . . , s k are integers satisfying

O g s . S m , (i = l , . . . ,k)

for which s l t . . . , s k _ , are not all zero and st ^ m{for all i(i = \,...,k— 1), then

(4.6)

where the implied constant is independent ofmk.

In fact, we could state a stronger result than that of Lemma 2, which informs us under
what conditions we can replace O(qRmk) in (4.6) by O(q^R~1)m"). In general this would lead
to slight improvements in the error terms of results stated below. However, such improvements
are gained only at the cost of fairly considerable detail and we merely state the improved
result, where applicable. (Compare the proof of Theorem 2 in [3].)

We are now equipped to estimate the functions M(m,), Qr{m^ and D(m^. We begin
with M(mt). When k = 1, the result is in [1, §3].

THEOREM 6. If k ~§. 1 and mu...,mk are non-negative integers satisfying (4.1) (if k ^ 2),
then

Af(fn,)= -{\-ql-n)2N{mt + 0(mkq
Rm% (4.7)
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where the implied constant is independent of mk. More precisely, if k = 1, we have

1, m = 0.

M{m)-\-q, m = l, (4.8)

0, m ̂  2.

Proof. We employ (3.4). First, suppose that k = 1. (4.8) is trivially true if m = 0 or 1.
If m ̂  2, we have, by (3.4),

0= £ MW-q™^M(s)qm-'-° = M{m),
s=0 s-0

since 7V(m) = qm. This proves (4.8) and hence (4.7) when k = 1.
Assume now A: ^ 2. By Lemma 2, we see that many of the terms in (3.4) are O(gRmk) for

large mk, since it is obvious that | M(mt) | <; N(mt). In fact, we have, if mk ̂  1,

where the implied constant is independent of mk. By (4.8), (4.9) becomes

E%« %1,s)f-'+%1,.,mt)-<iNK...,»iJ.1,mrl) = O(m(rt (4.10)
1=0

Now if mk ̂  2 and we subtract from (4.10) the same expression with mk replaced by mk— 1
and with a factor q, we obtain

M(m,)= -iV(w,,... ,mk) + 2qN(mu...,mk.umk-l)-q
2N(mu...,mk-umk-2)

+ 0(mkq
Rm-)

= -(l-2q1-tt + q2(1-"))N(ml) + O(mkq
Rmk), (4.11)

by (4.5). The result now follows from (4.11) and the proof is complete.
Using precise values of the TV function given by (4.4) and (3.4), we can prove that, for

large m,
M(2,m)= - ( l - q - 2 ) 2 N ( 2 , m ) + ( q - l ) ( q 2 - l ) 2 m ?

2 m - 3 + O(q2m). (4.12)

Hence, by (4.12), (4.7) cannot, in general, be improved. However, apart from (4.12) and the
corresponding expression for M{\, 1, m), we can replace the error term in (4.7) by O(qRm").

We now estimate Qf(n>i). For k = 1 see also [1, §6].

THEOREM 7. Let r ( ^ 2 ) and m1,...,mk be non-negative integers such that (4.1) holds if
2. Then

*) (4.13)
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holds, where the implied constant is independent ofmk. More precisely, ifk — 1, the error term
in (4.13) is Ofor mk ^ r. Otherwise, Qr(m) = N(m).

Proof. Thistimewe use (3.12). Suppose first that/: = 1. Clearly we can also assume m Si r.
By (3.12) and (4.8), we have

Q,(m) = N(m)-qN(m-r)

and the theorem is proved for k = 1.
Assume now that k ^ 2. Now clearly, if r \ (s,,..., sk),

Hence, by Lemma 2, if j , , . . . , sk_ t are not all zero and r\(su...,sk),

M(Silr)N(mi - s,) = Ofa*"*) (4.14)

for large mk, except possibly if st = mt, i = \,...,k—\ and r\(ml wij-i ,sk). But in this
latter case, by Lemma 1,

(4.15)

since, by (4.1), m^.! ̂  r and r ^ 2 and so (mk_,/r)+1 ^ / " t - i . Again using the fact that
mk.l ^ 2 and hence R ^ 2, we deduce from (4.15) that (4.14) is valid in this case also. It is
now a consequence of (3.12) and (4.14) that, if mk 2: r,

Qr(m,)= I M(0 0,s/r)N(m1,...,mt_1,s) + O(mk<Z
Rm'0

j = 0
r\s

k) , (4.16)

by (4.8). The assertion (4.13) now follows from (4.16) by Lemma 1 and hence the theorem is
proved.

We remark that in this instance the error term in (4.13) can be improved to O(qRn"') in
every case.

As indicated in §1, we require two statements concerning the value of D(m,) corresponding
to the cases k = 1 and k ^ 2. For another proof when k = 1, see [1, §4]. From the theorem,
we have, as expected, lim lim D(m,) = 2, when k ^ 2.

THEOREM 8. Ifk = 1, we have

(4.17)
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Ifk^2 and mu...,mk are non-negative integers such that (4.1) holds, we have

D(mt) = 2(l-q1-ny1N(mi) + 0(mkq
Rmk), (4.18)

where the implied constant is independent ofmk.

Proof. We employ (3.19). (4.17) is a trivial deduction from (3.19). Assume now that
k 3; 2. By (3.19) and Lemma 2, we have, for large mk,

E N(0,...,0,mk-s)N(ml,...,mk_l,
j=0

s = 0

by Lemma 1. Thus, since n > 1,

by Lemma 1 again, which proves (4.17). This completes the proof.
Once again, we can improve the error term in (4.18) to O(qRm"), except for D(\,m),

D{2, m) and Z)(l, 1, m). Thus we have, for example,

where the implied constant is independent of m.
We conclude this section with some remarks about Theorem 5. Suppose first that k = 1

and m ̂  2. Then (3.24) and (4.8) yield
m-2

W{m)= £ (l-q-1)qsqm-s + 2qm = [m(l-q-l) + (l + q-i)-]N(m). (4.19)

(4.19) implies that the average value of 2<S>(A) for polynomials of degree m(^2) is

m[\ — <7~1)+(1 + <7~1)~m{\-q~y) as m-*co.

Hence we would expect the average value of (o(A), (i.e., the average number of distinct prime
divisors of A) to be ~c\ogm(m^> oo) for some constant c. In fact, c = 1 and the author
intends including this result in a further paper. If now we assume that k ^ 2, we can prove
in a similar fashion to the proof of Theorem 8 that as mk -> oo

W(mi) ~ {2 + 2(1 -q-n)(qn-' - 1 ) " '}N(m,.).

Thus the average value of 2°>(A) is 2+(l-q~n)(q''~i-iyi and so the average value of co(A)
will be just greater than 1. A precise estimate will be given in the later paper.
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5. The functions of Mobius and Euler. This section is mainly devoted to describing the
properties of cj)(A) defined in §1. We begin, however, with some remarks about the Mobius
function n(A). Exactly as in elementary number theory it can be shown that

if A = l,

\0, otherwise,

holds and hence that, if g(A) and G(A) are real valued functions in GF[q,Xu...,Xk], then

I Z (5.1)
D\A CD=A

is valid. This is the Mobius inversion formula.
It is natural to ask whether Euler's function cp(A) has analogous properties to the Euler's

function of elementary number theory. When k = 1, the answer is yes, and the situation has
been studied (see [1]). In this case it is easier to use an equivalent definition of <j>(A) as being
the number of polynomials (not necessarily monic or non-zero) whose degree is less than that
of A, and which are prime to A. In other words <j)(A) is the number of elements in a reduced
system of residues (mod A). Thus, it is shown in [1] that <f>{A) is multiplicative, i.e.,

4>(AB) = <t>(A)(j)(B) when (A,B) = 1. (5.2)

Moreover, if deg/1 = m and | A | = qm = N(m), <I>(A) is given explicitly by

M i l l
P\A

where the product in (5.3) is over all prime divisors of A. Fundamental to the derivation of
(5.3) is the fact that, when k = 1,

| i 4 S | = | i 4 | | B | . (5.4)

In the general case, when k ^ 1, it is most natural to extend the definition of | A | by
putting | A | = N(m,), where deg/1 = (mu... ,mk). If A: ^ 2, then by Lemma 1, (5.4) is certainly
false with this definition of | A |. Hence (5.3) is also false, in general. For example, in place
of (5.3), we can only say, if A has form (1.1), that

To prove (5.5), note that (j> is multiplicative since (AB, C) = 1 if and only if (A, C) = 1 and
(B, C) = 1, and (5.2) follows if {A, B) = 1. It is also evident that 0(Pa) = |P a | - IP""11,
where P is irreducible and a ^ 1. This proves (5.5). Another important relation, proved in a
similar way to one proof of the corresponding result for positive integers is the following.

THEOREM 9. We have

I<K/» = M|. (5-6)
D\A
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Moreover,
<KA)= £ KQ\D\. (5.7)

Proof. By (5.1), it is sufficient to prove (5.6). Let D beany divisor of A. Among the \A\
polynomials whose degree is that of A, consider those which are divisible by D. Let Av D be
any such polynomial. Then AXD has highest common factor D with A if and only if
(AtD, A) = D, i.e., if and only if (Alt A/D) = 1. By the definition of <p, there are exactly
<j)(AID) ways of choosing Au since deg^j = deg(/4/Z>). To summarise, we have shown that
for any divisor D of A, there are exactly 4>(AID) polynomials whose degree is that of A and
which have highest common factor D with A. Since each polynomial whose degree is deg/1
has a unique highest common factor with A, it follows that

£ <t>(AID) = \A\. (5.8)
D\A

(5.6) follows at once from (5.8) and the theorem is proved.
We consider now the sum <D(m,) defined in §1.

THEOREM 10. Ifk k 1, we have, for non-negative integers m1,...,mk,

mi

<P(m,) = £ M(s|.){iV(mi-s/)}
2.

Proof. We give a proof based on (5.7). We have

Z KC)}\ Z \O\\. (5.9)
deg^=(mi) CD = A si = O ldegC = (s() J (.deg £> = (m,- i i ) J

The assertion of the theorem follows from (5.9) by the definitions of M(Sj) and | D |. The proof
is complete.

Alternatively, we could prove Theorem 10 as follows without assuming the MSbius
formula (5.1). We have, by (5.6),

Z Z <K0)= Z \A\ = N2(md. (5.10)
deg .4 = (mi) D\A d e g . 4 = ( m i )

However,
"I f ") f ") mi

Z Z W = Z i E i Z «fi) = E W(w r S i ) . (5.ii)

Combining (5.10) and (5.11) leads to

N\md= Z WsWmt-s,) (5.12)

and hence to Theorem 10 by Theorem 2. Conversely, we could deduce (5.12) from Theorem
10.
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We require now a lemma which plays the same role as Lemma 2 in our previous
investigations.

LEMMA 3. Suppose that i k 2 and that m1,..., mk are non-negative integers such that (4.1)
holds. If, in addition, sl,...,sk are integers satisfying 0 ̂  st ^ Wj (1 ^ i g k) and s1,..., sk-i
are not all zero, then

where the implied constant is independent ofmk.

Proof. By Lemma 2, if s{ # 0 or mt for all i (/ = 1, . . . , k — 1), then, for large mk, we have

i-Si) = 0{q2Rm% (5.13)

by Lemma 1, again using the fact that the st are not all zero (/ = \,...,k—l). It remains to
establish (5.13) with $, = w( (1 ^ / g k— 1). In this case we have, by Lemma 1,

= 0{qnmk)

= 0(q2Rmk)

provided 2R ̂  n, i.e., provided m t _ , ^ 1, which we have assumed. Thus (5.13) holds and the
lemma is proved.

We can now prove our estimate of O(w,) valid for k ^ 1. For another proof when k—\,
see [1, §5].

THEOREM 11. lfk^\ andmu...,mk are non-negative integers satisfying (4.1) (if k ^ 2),
then

O(ffij) = (l-q1-2n)N\mi) + O(q(n+R)mi>). (5.14)

More precisely, when k = 1, the error term in (5.14) is zero ifmk£t 1.

Proof. When k = 1, substituting (4.8) in Theorem 10 yields, if m ^ 1,

O(m) = N2(m)-qN2(m-l) = ( l - g - ' V " .

This proves the theorem for k = 1. Assume now that k ^ 2. Since, trivially, | Af(m() | ^ iV(m,),
we have, from Theorem 10 and Lemma 3,

= Y,M(V,---As)N2(mu...,mk_i,mk-s)+O(mkq
2Rn"<), (5.15)

s = 0

where the implied constant is independent of mk. Substituting (4.8) in (5.15) we obtain, if
mk^\,

= N2(m1,...,mk)-qN2(ml,...,mk-l,mk-

by Lemma 1. This completes the proof of the theorem.
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In fact, it can be shown that, for large m,

0(1, m) = (1 -q~3)N2(l, m) + 2(q2 - I)q3m~3+ 0(mq2m),

so that, in general, (5.15) cannot be improved.

It is natural to define p{m^, the probability that two polynomials of degree {mu.. .,mk)
be relatively prime, as the ratio of relatively prime pairs to the number of all pairs of poly-
nomials of degree (m, , . . . ,mk). This leads to an alternative way of expressing the result of
Theorem 11.

COROLLARY 12. Ifk}±\,we have

lim p{m^=\-ql-2n.
I71fc-»OO

Proof. \imk ̂  1, the total number of (distinct) pairs of polynomials of degree {mx,..., ntk)
is

2 2 as mk->co. (5.16)

On the other hand the corresponding number of relatively prime pairs is

deg M =(mi) deg N = (mt) deg M =(mj)
(A/, N ) = l

= mm,) ~ 1(1-q1-2"^™,) (5.17)

as mk-> oo, by Theorem 11. The result follows from (5.10) and (5.17) and this completes
the proof.
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