
/ . Austral. Math. Soc. 21 (Series B) (1979), 2-20

BIFURCATION AND STABILITY OF PERIODIC
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Abstract

A study is made of the branching of time periodic solutions of a system of
differential equations in R2 in the case of a double zero eigenvalue. It is shown
that the solution need not be unique and the period of the solution is large. The
stability of these solutions is analysed. Examples are given and generalizations to
larger systems are discussed.

1. Introduction

Consider the two-dimensional system of differential equations

(1.1)

where fi is a real parameter, a, b, c, d are real analytic functions of /J. for all
and where the functions fu\x,y), gu\x,y),j = k,k+1,... (A;>2) are homogeneous
polynomials in x and y of degree j . The variable t is understood to represent time.
Under these conditions {x,y) = (0,0) is a solution pair for all values of \i. In the
usual way, the stability of the null solution is determined by the nature of the two
eigenvalues AtQz) and A2(JJ) of

M b(jxf
(1.2)

Suppose that for ft negative both At and A2 have negative real parts; then the null
solution is asymptotically stable to small disturbances. Assume also that the null
solution loses its stability at fi = 0; this means that at least one of the eigenvalues
At or A2 crosses to the right half of the complex plane when \i passes through zero
and becomes positive.
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[2] Bifurcation and stability 3

The classical bifurcation theorem due to Hopf [5], which generalizes results of
Poincare, assumes that the eigenvalues A, and k2 are complex conjugates and that
at// = 0

*,(<)) = K » / 0 and ^-Re(A,0/))|ii=o>0. (1.3)

The Hopf theorem tells us that there exists a solution of (1.1) which is periodic,
with period close to 2 /̂cu, when |^| is small, and that this solution exists either
for fi>Q (supercritical) or for /i<0 (subcritical) but not for both. Further this
solution is unique, in particular there are no other periodic or nontrivial steady
solutions in the neighbourhood of (x,y) = (0,0) and n = 0. Also, this periodic solu-
tion is stable if it is supercritical and unstable otherwise. This result of Hopf is valid
for a system of n ordinary differential equations, but it has an especially simple
interpretation in two dimensions, when phase plane methods are available. A sub-
critical bifurcating periodic solution represents an unstable limit cycle around a
stable focus, while a supercritical bifurcating periodic solution represents a stable
limit cycle around un unstable focus.

In this article we will discuss the case when the null solution loses its stability
when the first condition of (1.3) is not satisfied. Moreover, we do not require that
ky and i 2 be complex for fi # 0; they may be complex, real and possibly multiple.
The assumptions made may be expressed as follows:

Re (A,(/i)) < 0 for \i < 0, / = 1,2,
and either

Aj(O) = 0 and —i

or, for i = 1,2,

A,(0) = 0 and -^

(1.4)

There are two results which are known concerning this problem. A result by
Coppel [2] for a quadratic system may be interpreted in the following way for the
bifurcation problem. If k = 2, then system (1.1) can only have a nonconstant
periodic solution surrounding the origin and bifurcating from n = 0, if the origin
is a focus or a centre. Hence there can be no such periodic solution if the origin is
a proper or improper node. Freedman [3], on the other hand, assuming (1.4),
proves that no nonconstant periodic bifurcating solutions can exist with period
T(ji)^T0 # 0 as n-+0.

In this paper we will show that nonconstant periodic bifurcating solutions under
(1.4) may exist if Freedman's requirement on the period is removed.

Under the conditions of loss of stability of the null solution at \i = 0 given in
(1.4), the matrix (1.2) at n = 0 can have only three possible structures, since either
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K. A. Landman 13]

one or both of the eigenvalues Ax and A2 can be zero at \i = 0. Written in Jordan
form these are easily shown to be

[o o] ro oi ro r

, (B): , or (C):
0 - l j [0 Oj [0 0

(1.5)

We wili show that periodic solutions may bifurcate in Cases (B) and (C), and
that their periods will tend to infinity as //-»0. Moreover there may be more than
one such periodic solution and we may expect bifurcation of other steady solutions
as well.

We present a simple example here which illustrates some of these properties.
Consider the system

— = n<xx-(x+y)(x2+y2),

(1.6)

where a is a positive real number. This is an example of Case (B) and the matrix,
(1.2) has a double eigenvalue net, which is negative for //<0 and positive when
H>0.

For convenience, let us rewrite (1.6) in polar coordinates (r, 6); put x = rcosfl,
y = rsin0, then the system (1.6) becomes

dr

dt

(1.7)

The equation dr/dt = 0 defines circles in the plane. This has the unique nontrivial
solution r2 = fia which exists only for n>0. For this value of r, dQ/dt = n<x;
therefore without any loss in generality, since we are working with an autonomous
system, we have 6 = pat. Hence a unique periodic solution of (1.7) is

r = VG«0, O = H<*t, w>0, (1.8)
or, for (1.6),

(.x, y) = VO"*) (cos (/KXO, sin (jiat)), /x > 0. (1.9)

This supercritical solution has period In/fiu. in t, which is large for all small values
of fi; in particular the period tends to infinity as /i-+0.

The steady solutions of (1.6) are found by setting the left side of this equation to
zero. We see that this simple example only has x = y = 0 as a steady solution.

The next three sections of this paper will be devoted respectively to a discussion
of Cases (A), (B) and (C) defined in (1.5). In order to find small nonconstant
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[4] Bifurcation and stability 5

periodic solutions (x,y) which are continuously differentiable in time with period
T>0, we introduce a small real parameter e>0 , whose value will be taken as a
measure of the magnitude of the bifurcating T^-periodic solution. Set

(x,y) = e(u,v) (1.10)

for small values of n; the explicit relation between n and e will become apparent
later. Substitute (1.10) into (1.1) and obtain

at
(1.11)

dt

We suppose that at least one off(k)(u, v), g(k\u, v) is not identically zero.
We will also study the stability of the bifurcating periodic orbits that we find.

Suppose that (w(0> "(0) is a nonconstant periodic solution of period T of (1.11)
whose orbit in the (w, v) plane is F. We say that F is asymptotically orbitally stable
if any solution of (1.11) which comes near a point of F tends to this orbit as
r-+oo ([1], p. 323). The linear variational equations of this solution are

;*-1/^)(",^)]u+O(efc),

(1.12)
do
-T = [c(p) + e" " ' g(fX", v)] u + [d(ji)+er~1 gik)(u, v)] v + 0(8*).

This is a linear system with coefficients periodic in /, period T. By Floquet theory
([1], p. 323; [4], p. 220) the stability of (M, V) is determined by

Jo
exp f \aiji) + dQi) + ek-»[/<»(«, v)+g™(u, v)]]ds (1.13)

since one of the Floquet multipliers of this system is equal to one, corresponding
to (u,v) = (du/dt,dv/dt). If the value of the expression (1.13) is less than one,
(«, v) is asymptotically orbitally stable; but if it is greater than one, then the
periodic orbit is orbitally unstable.

In Section 5 we give an account of generalizations to M-dimensional systems of
equations and to equations in a Hilbert space.

2. Case (A): a simple eigenvalue at \i = 0

When the matrix (1.2) is evaluated at \i = 0 and has the form given in (1.5A), we
may rewrite the system (1.11) as

% v)+..., (2.1)
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6 K. A. Landman [5]

— = ficQi) I I + ( - 1 + / * ) ) v + e»- V »(«, p) + eV *+"(«, »)+..., (2.2)
a/

where 5, 5, c and d are real analytic functions of fi.
The following theorem allows us to eliminate v of (2.2) and to concentrate on

equation (2.1).

THEOREM 2.1. Let e and n be sufficiently small and let u(t) belong to the space of
continuously differentiable functions of t, which are T-periodic for some T> 0 such
that max0 S ( $ T |w(0| <1- Then equation (2.2) has a unique solution v = v(t,u,fi,e)
which is T-periodic, with maxOgt<T |u(f)|</? where ft = O(ji,ek~1) as n,e-*0.
Moreover

v(t,u,n,e) = fi(r,M,|/,8) + o(/i,6*~1) asfi,e^0, (2.3)

where t is the T-periodic solution of

% = - v + nc(0) u + e"-1 gm{u, 0). (2.4)
dt

Also, v is an analytic function of u, \i and e.

(We note that since e was chosen as a measure of the norm of the solution we lose
no generality by choosing the magnitude of u to be less than or equal to one.)

PROOF. Write (2.2) as

dv
— =-v+p(t)+q(t,v,fi,e), (2.5)

where

pit) = j*c(O)tt(O+e*-Y4)(«(0,0), (2.6)

q(t, v, n, e) = fi3(ji) v + n(c(n) - c(0)) u(j)

+ e*- 1{g™(u,v)-gm(u,0)} + Ekg<k+1\u,v)+.... (2.7)

For each T-periodic function u{t),p{t) is a known function of t which is also
r-periodic.

First let us consider the nonhomogeneous linear equation

dv
-=-v+p(t). (2.8)

Since the linear equation dv/dt = — v has no T-periodic solution other than v = 0,
it is called noncritical with respect to the r-periodic functions. Then it is well
known ([4], p. 148) that (2.8) has a unique T-periodic solution 0 such that

max |0| <constant{ max \p(t)\} = Oil*,!?'1). (2.9)
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[6] Bifurcation and stability 7

Now return to (2.5) and write

v=Q+z, (2.10)
then z satisfies

dz
z+q(t,i> + z,n,e). (2.11)

at
Since q satisfies the required Lipschitz conditions, we know that there exists a
unique T-periodic solution

v =O(t,u,fi

where \z(t,u,(i,e)\ = o^.e*"1). This follows from [4] (pp. 154-156). Finally since
p and q are analytic functions of u, n and e, so is C. This completes the proof.

This theorem allows v in equation (2.1) to be replaced by v, the solution of (2.2).
Then we see that the problem of solving the pair of equations (2.1-2.2) for non-
constant T'-periodic solutions reduces to solving the following equation for non-
constant r-periodic solutions u(t) with maxos,^r|u(r)| < 1, provided £ and \i are
sufficiently small to satisfy Theorem 1.1:

^• = na(fi)u+tf(M)v(t,u,n,e)+ek-lf(kXu,v) + Ekf«+iKu,v)+.... (2.12)
at

We are looking for a solution u(t) which can be expanded as a series in e:

u = uo + eul+e2u2 + ..., (2.13)

where the «,(/ = 0,1,2,...) are nonconstant 7*-periodic and bounded as e-»0.
Substitution of (2.13) into (2.12) tells us that the nonconstant T-periodic w0 must
satisfy

^ = MO) u0 + Ek~»f(k\u0,0), (2.14)
at

where the terms on the right are the dominant linear and nonlinear terms. But
fm(u0,0) = Aif0, so that we must find solutions of

^ M O K + e * " 1 ^ . (2.15)

It is obvious that this equation has no nonconstant r-periodic solution. Hence it
follows that no such solution of the form (2.13) can exist. This implies that when
the linear part of (1.1) evaluated at \i = 0 has the form represented by Case (A), no
periodic solution (of any period) can exist.

3. Case (B): a double eigenvalue at \i = 0

In this case, the coefficients of the linear terms in equation (1.11) as given by
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matrix (1.2) are

(3.1)

where a, 5, c and 3 are analytic functions of fi. For |/i| small the two eigenvalues of
(3.1) are analytic functions of fi and may be written as

X2 = = H(K21+HK22+H2K23+...),\

(3.2)

where the KtJ are complex coefficients. In order to satisfy condition (1.4) the first
nonvanishing power of ju must be odd; for convenience, so as to minimize the
technicalities, we assume that KU,K21 =£ 0. (The more general case can be investi-
gated in a similar fashion.) That is, we assume that the dominant terms of (3.1) are
given by

~\m nb~\
(3.3)

jic \id\

where a = 5(0), b = 5(0), c = c(0) and d = 3(0). The assumption on the stability of
the null solution given by condition (1.4) is equivalent to

a+d>0, ad-bc>0. (3.4)

Therefore the linearized system of (1.11) cannot have any periodic or constant
solutions for |/i | small. We are looking for a nonconstant T-periodic solution
(u, v) of (1.11) which is a function of n; such a solution can only be generated by a
balance between the linear and nonlinear terms. Since the dominant terms in (1.11)
are

dU • k-1f'k\u,v),

(3.5)
dt

— = ficu + iidv+ek~1 gik\u, v),
dt

this suggests that we set

= ek~lv, |v|=0(l) ase-»0.

Then (3.5) becomes

—- = 6* 1 [vau+vbv +fw(u, t>)],
at

dt
vcu+vdv+glk)(u, i>

(3.6)

(3.7)

https://doi.org/10.1017/S0334270000001879 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001879


[8] Bifurcation and stability 9

In order to find the 2~-periodic solution («, v) we need to rescale the time variable t;
we obtain an equation which is 0(1) in e if we put

s = ek-1t; (3.8)

then we have

—- = vau+vbv+f(k\u,v),
as

(3.9)

—- = vcu + vdv+gw(u, v).
as

We are now looking for solutions (u(s),v(sj) which are periodic in s, period
T= 0(1) as E-*0. The relation between the period Tint and Tin s can be seen from
(3.8): T = T/e*~J; hence the period in the original time / will be large for small values
of e.

Now let us suppose that the reduced nonlinear equation (3.9) has a periodic
solution (u(s, v), v(s, v)), period ?(v) in s. When does the full equation (1.11),
satisfying (1.4) (or equivalently (3.4)) have a periodic solution close to (w, V) and
how is its period related to T? To answer these questions we need to study the
variational equations of this solution:

fHM))!/',
(3.10)

^- = (vc+gik)(u, v))<t> + (vd+g<f\ii, v)) \j/.

In the usual way ([4], p. 120) one solution of (3.10) is just ((/>, ij/) = (du/ds,dv/ds),
and since this is a T-periodic solution, it corresponds to a Floquet multiplier having
the value one. The second multiplier can then be determined by the trace of the
variational matrix ([4], p. 120) and is

P [v(a
Jo

exp [v(a + d)+fM(u(s),v(s))+gi«Xu(s),v(s)))ds. (3.11)

THEOREM 3.1. Suppose that the reduced system (3.9) has a nonconstant f-periodic
solution (ii(s), v), v(s), v)) in s = e* ~ 1 1 . Then if the value of the expression (3.11) is not
equal to one, the full perturbed system (1.1), satisfying (1.5B) has a unique small
bifurcating nonconstant periodic solution in the neighbourhood of n = 0. Its period is
71*(e)/£l~1 in t, where T*(0) = T and its structure is

(x*(t, v, e), y*(t, v, e)) = e(u*(t, v, e), v*(t, v, e)), n = £* " 1 v,
where } (3.12)

(u*(t, v, 0), v*(t, v, 0)) = (u(ek~»/, v), v(ek-11, v)) = (U(s, v), v(s, v)).
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10 K. A. Landman [9]

If the value of the expression (3.11) is less than one, then for E sufficiently small,
{x*,y*) is asymptotically orbitally stable. If the value of the expression (3.11) is
greater than one, (x*, y*) is orbitally unstable.

PROOF. Using (x,y) = e(u, v) of (1.10), we can, with the aid of (3.3), write the full
perturbed system (1.11) as

— = Ek~1(vau+vbv+fik\u,i

(3.13)

— = e* ~ * (vcu+vdv+gw(u, v) + eR2(u,v, e)),
dt

where

RX(JX,V,E) = Ek~2v{[a(ji) — a]u+[B(ji) — b]v}+fik+1\u,v) + Ef^k+2\u,v)
(3.14)

R2(u,v,e) = Ek~2 )

Now, Rt and R2 are continuous in u, v and e and they have continuous partial
derivatives with respect to u and v, and Rxiu, v, 0) and R2(u, v> 0) a r e bounded. The
existence and uniqueness of such a solution (u*,v*) to (3.13) follows from the
theory of perturbations of autonomous systems ([1], p. 352; [4], p. 222; [9], p.
95). Further, the stability of (M, V) is determined by (3.11), which are the dominant
terms in the multiplier (1.13) whose value determines the stability of (x*,y*).

The following theorem may also be proved; it is useful in proving the non-
existence of solutions to (1.1).

THEOREM 3.2. If (x*(t, n, e),y*(t, \i, e)) is a nonconstant small T(e)-periodic solution
bifurcating from fi = 0 of (1.1), then a nonconstant T-periodic solution in s = e*"1 /
of the reduced problem (3.9) must exist, where T= e*"1 T(0).

PROOF. We can write this solution (x*,y*) as

(x*,y*) = £(«*(*, fi, e),v*(t, n,e)) (3.15)

and since (3.15) is a nonconstant r(e)-periodic solution, we can expand u* and v*
in powers of s

u*(t,n,e) = uo(t,n,e) + eu1(t,n,s)+...,)
\ (3.16)

v*(t, fi, e) = vQ(t, n, e) + £!>,(/, n, E) +..., J

where the coefficients ut,v, (i = 0,1,2,...) are nonconstant r(e)-periodic and in
particular we require u0 and vQ to be dependent on fi. The discussion prior to
Theorem 3.1 requires (uo,vo) to be a solution to (3.9).
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[10] Bifurcation and stability 11

Therefore we can now focus our attention on the system (3.9). First of all, from
the discussion of the stability of the null solution, the matrix

(3.17)

satisfies (3.4). This matrix can be written in Jordan form, and it is easy to establish
that there are only four possible structures of (3.17). These are

a

0

°1 a

0

0

P

r
lo

r
a

or
a y

-y cc

\, a,/J>0. (3.18)

Therefore the origin (u, V) = (0,0) of (3.9) is either a node (proper or improper
node) or a focus.

For quadratic systems in the phase plane, that is for k = 2, it is known [2] that a
critical point in the interior of a closed orbit must be either a focus or a centre.
Therefore, if we have a node at the origin no closed orbit can surround it. However,
this result is not true for cubic systems—this is illustrated by the example given in
the Introduction.

Example 1. Suppose the system (3.9) has the structure

— = vxu -(u+v) (u2 + v2),
as

— = vtxv + (u — v)(u2 + v2),
as

s = e2 = e2v, <x>0.

(3.19)

We found in the Introduction that this system has a unique supercritical closed
orbit surrounding the proper node at the origin, u2 + v2 = va (v > 0), with period
2n/v<x in s.

The variational system for this periodic solution is

ds

dxji

~ds

"(va - 3u2 -v2- 2uv) (-3v2-u2- 2uv)

(3M2 + v2 - 2uv) (va - 3v2 -Q2 + 2uv)
(3.20)

The second Floquet multiplier, as given by (3.11), is just

f2n/vx

exp [2va-4(u2(s)+v2(s))]ds = e~A* (3.21)
Jo

which is less than one. Therefore the full equation (1.1) has a nonconstant periodic
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12 K. A. Landman [11]

solution in the neighbourhood of

)), H>0, (3.22)
with period close to 2n/(itx and this solution is asymptotically orbitally stable.

This raises some interesting questions. Suppose system (3.9) has a node at the
origin. We know that for a quadratic system there exists at least one nonzero
critical point, but that no periodic solution can surround the origin. This means
that there exists at least one steady bifurcating solution but no nonconstant
periodic bifurcating solution. On the other hand, from the above example and
others to follow, it can be seen that for systems which are not quadratic a non-
constant periodic bifurcating solution can exist. But in the examples given the null
solution is the only steady solution. This allows us to pose the following question.
For a double eigenvalue of type (B) at n = 0, does there always exist a bifurcating
solution from (x,y) = (0,0), \i = 0 which is either steady or nonconstant periodic?
If there is a steady solution, does this exclude the existence of a nonconstant
periodic one and vice-versa? We have not been able to construct any examples
where neither steady nor periodic bifurcating solutions exist or where both exist
together.

To throw some light on this we suppose that there exists a closed orbit surround-
ing the origin. Thus it encloses at least one critical point as required. The index of
an isolated critical point is defined ([1], p. 400) and equals —1 if it is a saddle
point and +1 otherwise. Further, the interior of any closed orbit contains a finite
number of critical points, the sum of whose indices is one. Suppose we have a
cubic system, then including the origin, there are at most four critical points. The
above discussion tells us that a closed orbit surrounding the origin cannot enclose
the origin and one or three other isolated critical points, for then the sum of the
indices will either be zero or even. This partially answers the above questions, but
does not exclude the possibility of three isolated critical points inside a closed orbit.
Since the index of an isolated critical point exterior to the closed orbit is not defined,
the above discussion tells us nothing about the existence or nonexistence of such
points.

Further, the question regarding the number of bifurcating periodic solutions is
still open [2]. This contrasts the uniqueness result by Hopf [5].

Finally, we give an example where the linear part is a focus.

Example 2. Consider the problem when (3.9) has the following structure:

(3.23)

—- = vtxu+vyv—u(u +v ) ,
as

— = — vyu+vav—v(u2 + v2), s = e21, n = e2v, a>0, y # 0.
as
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[12] Bifurcation and stability 13

The null solution loses its stability as the complex eigenvalues n(cc ± iy) + O(ji2) of
(1.5) pass from the left half of the complex plane to the right half.

In polar coordinates x = rcosO, y = rsin0, this system becomes

dr
— = vtxr —
ds

dQ
(3.24)

The equation drjds = 0 defines a circle r2 = va which exists only for v>0. Also,
without loss of generality 6 = —vys; hence a unique supercritical periodic solution
is

r = V(va), e=-vys, v>0, (3.25)
or

« = \/(va)cos(vyj), i; = - y/(\a) sin (vys), v>0. (3.26)

The variational system for this periodic solution is

ds

Is

va — 3M 2 — v2 vy — 2uv

— vy — 2uv va — 3v2 — u2
(3.27)

Since the trace of variational matrix in (3.27) is the same as that in Example 1,
there is a unique periodic solution in the neighbourhood of

and its period is close to 2n/ny. This solution is asymptotically orbitally stable.
Further, no steady solutions exist.

4. Case (C): second type of double eigenvalue

In the final case, the coefficients of the linear terms in equation (1.11) as given
by matrix (1.2) are

(4.1)

where a, B, c and d are analytic functions of /z. For |/z| small, the two eigenvalues
of (4.1) are functions of |/i|* and may be written as

(4-2)
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where the xi} are complex coefficients. To minimize technicalities we write

a = 5(0), 6 = 5(0), d=3(0), co = c(O), c, = — (c(ji))\^0, (4.3)

and assume that a, b, d and either c0 or ct are nonzero real numbers. Then consider
the dominant terms of the matrix (4.1) which determine the stability behaviour
of the null solution:

f
(4.4)

nd_

The eigenvalues of matrix (4.4) are

Cl))]}- (4-5)

For n < 0, both A* must have negative real parts and at least one of these must have
positive real part when n > 0. Since fic0 is the dominant term under the square
root, we need the following two alternative conditions:

Cl if c0 = 0andc! # 0, a+d>0, ad-c^O,

C2 if c0 ̂ 0 , a+d>0, co>0.

Thus we see that if C2 is satisfied, then for fi negative disturbances to the null
solution are decaying oscillations, while for fi positive they are growing exponen-
tials. In contrast to this, if Cl is satisfied, for fi negative disturbances may be
decaying exponentials (if {a-df^-^c^) and for \i positive they are growing
exponentials. This difference in the nature of the behaviour of the disturbances
affects whether (1.11) has periodic solutions or not.

First of all, we see from equations (1.11) that v must tend to zero as fi and s
tend to zero. This allows us to seek solutions of the form

(4.6)

then (1.11) becomes

— = efivau + E°
dt

\ (4-7)

— = EP~° vcou+E2p~avclu+Efvd6+Ek~1~agw(u,0) + o(Efi,E2fi~'', Ek~x~a).
dt

We now distinguish between the two cases Cl and C2.
(1) When Cl is satisfied. We are looking for a nonconstant T-periodic solution

which is a function of fi. Since the linear terms of (4.7) do not give such a solution,
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[14] Bifurcation and stability 15

a balance between the linear and nonlinear terms is needed. This suggests that we
set

o = P = (k-l)l2. (4.8)

Then the dominant terms in these equations are

dt

= eik-^ = e
dt

l)'2[v2
Cl u+vdti + Bif],

(4.9)

for («(<), b(t)) ^-periodic for some T > 0. We have replaced g(k\u, 0) by Bv/1 here. Now,
Bendixon's theorem [8] gives a necessary condition for a periodic solution to exist
in the plane; the trace of the variational matrix corresponding to (4.9) must have
a zero. However, from (4.9), we see that the trace equals E*"1 v(a+d). Condition
Cl requires a+d>0, hence for v # 0 Bendixon's condition can never be satisfied.
Therefore the system (4.9) cannot have any closed orbits if we require the loss of
stability on the null solution. By the same reasoning as in Theorem 3.2, this tells
us that (1.1) cannot have any bifurcating nonconstant periodic solutions. (It can
be shown, [6] and [7], that a unique steady bifurcating solution exists which is
unstable on both sides of criticality.)

(2) When C2 is satisfied. This time the system (4.7) suggests that we choose

and p = (k- (4.10)

then the dominant terms are

dt

(4.11)

for (M(0, #(0) ^-periodic in t. It is necessary to rescale the time variable in order
to obtain a system which is 0(1) in e. Put

_y = e(*-i>/2, ( 4 1 2 )

for then we obtain

du
-dS = v'

dO

jrVCo&

(4.13)

for (u(s), 0(s)) ^-periodic in s, where t= 0(1) as e->0. Then T= T/e(* 1)/2; hence
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16 K. A. Landman [151

the period of the solution in / will be large. Such periodic solutions do exist—an
example will be presented below.

Let (u, v) be such a T-periodic solution. The variational matrix corresponding
to this solution is

0 1"

0

this has both elements on the leading diagonal equal to zero; that is, both the
Floquet multipliers are equal to one. Therefore, the solutions form nonisolated
curves in the (u,if) plane and the theorems we have used in Section 3 do not apply.
The system (4.13) is called a fully oscillatory system. Urabe [9] analyses the
problem of when a perturbation of a fully oscillatory system has a unique closed
orbit. Using the local coordinates of a moving orthonormal system, Urabe writes
the perturbed system as an averaged equation. If this has a simple zero then a
unique orbit exists.

Let us consider the example when k = 3. First of all, with the condition C2 and
B negative, the system (4.13) has two critical points for v>0, namely

,0), v>0. (4.14)

These are the points A and C marked in Fig. 1. Therefore it can be shown, [6, 7],
that the system (1.1) has a branch of steady bifurcating supercritical solutions,

Fig. 1. Illustrating the phases for different values of H.
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which is close to

U~"r')fi\, n>0. (4.15)

Also, the system (4.13) is a conservative system and has first integral

}vc0 u
2+\Bu* - it2 = - H, (4.16)

where H>0 are constants. The phase portrait for different values of H is as shown
in Fig. 1. Thus we have nonisolated closed curves in the (u,6) plane—both the
Floquet multipliers of the variational system are equal to one.

We remark that this example shows that in Case (C) both steady and periodic
bifurcating solutions may exist together. This should be compared with the
discussion of Case (B) in Section 3.

5. Generalizations

Under conditions which are generalizations of the ones used in the Introduction,
the results which we have obtained can be extended to the bifurcation of non-
constant periodic solutions of a system of n ordinary differential equations.

Consider the system

—- = A(ji)x+F(x), (5.1)

where x and F are n vectors and A is an n x n matrix. Assume that A is analytic in /x
for all jxeR and that F is an analytic nonlinear function of x for small |JC|.

The matrix A can always be written in Jordan canonical form

0
(5.2)

0

where A(ji) is an r x r matrix and B(ji) is an (n — r) x (n—r) matrix. We make the
following assumptions. For \L negative all the diagonal elements (which are the
eigenvalues of A(ji]i) have negative real parts; at \i = 0, the diagonal elements of
A(0) are zero while those of 5(0) have negative real parts; and for small positive
fi, at least one of the diagonal elements of A(ji) is positive while those of B(ji) still
remain in the left half of the complex plane. Hence the null solution loses its
stability through the zero eigenvalue which has multiplicity r.

A standard procedure, which is just a generalization of Theorem 2.1 using
perturbation techniques and the contraction mapping theorem ([4], pp. 148-156),
gives that the existence of nonconstant r-periodic solutions depends only on the
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system of r ordinary differential equations

[17]

(5.3)

wherey = (xltx2, ••-,xr), the first r components of x and

where F, (/ = \,...,r) axe the first r components of F.
When r = 1 or 2, A(ji) at p. = 0 is

TO 0
[0], or

0 0 N
then we find that the equation (5.3) for small solutions will be just the equations we
discussed in Sections 2, 3 and 4 respectively, and the results established there are
valid. Therefore if A has a simple eigenvalue at n = 0, no bifurcating nonconstant
periodic solution can exist, while for a double eigenvalue a nonconstant periodic
solution with period 0(1///) for n~*0 may exist.

If r > 2, suitable theorems can be proved [6] to show that bifurcating nonconstant
periodic solutions with period 0(1//*) for (i-+0 exist.

Now we demonstrate by example that in several cases both a periodic and steady
bifurcating solution may exist together (see the discussion in Section 3).

Examples. In (5.3) let
y = e{u, v, w) (5.4)

then, in the same way as in Section 3, we find that if F(y) begins with a cubic
nonlinearity, we must set

s = e21, n = e2 v. (5.5)

1. Consider

— = VOCM -(u+v) (u2 + v2),
as

— = vctv+(u-v)(u2 + v2), a,fl>0,
as

dw
— = vflw - w(u2

as
w2).

(5.6)

This time A has a triple eigenvalue at /x = 0 and the null solution loses its stability
as the real eigenvalues \i<x and nfi pass from negative to positive values. Notice that
the first two equations are the same as Example 1 in Section 3.

This system has a nontrivial steady solution curve, namely u = v = 0 and
w= ± ViyP) f° r v>0> which is unstable. Therefore (5.1) also has a unique super-
critical runstable steady solution in the neighbourhood of (0,0, ± -\Z(jifl),O, ...,0).
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As well as this solution, equation (5.4) has a periodic solution u2 + v2 =va, w =0
with period 27i/va in s. The stability of this solution will be determined by the
variational system

~ds~

_
Is

ds

\v<x-3ii2-v2-2uv) (-3v2-u2-2uv)

+ v2-2uv) (v(x-3v2-u2

0 0

0

0

v/}_ C.

(5.7)

One Floquet multiplier is one; another is e *"< 1 (just that given in Example 1 of
Section 3) and the third is e2nP"> 1 for )?/<x>0. Therefore the full equation (5.1)
has a supercritical periodic solution in the neighbourhood of

WUict) cos (juxt), V0*°0 sin (jxixt), 0,0,..., 0), n > 0,

with period close to 2n/[i<x, and this solution is orbitally unstable.
2. Consider

du ,2 7,
— = vaw + vyv — u(u + v ) ,
as

—- = — vyu+vxv — v(u2 + v2), a,
ds

dw
— = vpw — w(u2 + v2 + w2).
ds

(5.8)

Again A has a triple eigenvalue at fi = 0 and the null solution loses its stability as a
complex conjugate pair fi(a. ± iy) and the real fifi pass from the left to the right half
of the complex plane. Note that the first two equations are the same as Example 2
in Section 3.

The system (5.1) will then have a unique supercritical steady bifurcating solution
in the neighbourhood of (0,0, ± \/(jxf}),0, ...,0), which is unstable. There also
exists a bifurcating supercritical periodic solution in the neighbourhood of

(V(/«0 cos (jiyt), - sin (jxyt), 0,0,..., 0), fi > 0,

with period close to 2n/ny. This solution is orbitally unstable.
For r ̂  3, the general categorization of the number of periodic solutions can no

longer be calculated because Bendixon's theorem and phase plane techniques are
no longer available. For further discussion see [6].

The techniques outlined here also apply to a partial differential equation in a
Hilbert space, if A has compact resolvent. Then using semigroup theory of operators,
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all but r of the equations may be eliminated so that a system of r ordinary differen-
tial equations, like (5.3), need to be studied (see [6]).

Finally, we remark that the results due to Freedman [3] that no bifurcating
periodic solutions exist with period T(/i)->T0 # 0 as /x->0 can be extended to a
system of equations in R" or to a Hilbert space. However, Freedman's proof depends
on the fact that each limit cycle in the plane has a critical point in its interior, and
therefore his methods cannot be applied to the case of A having an eigenvalue of
multiplicity r ̂  2 at \i = 0. A proof which does take this into account is given in
[6].
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