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1. Introduction. A Baer semigroup is a semigroup 5 'with 0 and 1 in which, for each
xeS, the left annihilator L(x) = {yeS: yx = 0} of x is a principal left ideal generated by an
idempotent and the right annihilator R(x) = {yeS: xy = 0} of x is a principal right ideal
generated by an idempotent. Baer semigroups are of interest because (see [5]) the left
annihilators of the elements of a Baer semigroup S, &(S) = {L(x): xeS}, form a bounded
lattice and (see [4]) every bounded lattice arises in this manner. In this note we look at a
type of map <j> on a Baer semigroup S which has the property that S<f> is a Baer semigroup.
(The homomorphic image of a Baer semigroup need not be a Baer semigroup. For a case
where it is, see [7].) When the Baer semigroup is specialized to a Boolean algebra, this type of
map generalizes Halmos's notion of a quantifier.

2. Quasi-multiplicative maps.

DEFINITION 1. A map 0 of a semigroup S into itself is quasi-multiplicative if ((xcf>)y)<l) =
(x{y4>))(j) = (,x<t>)(y<t>) for all x, y e S.

THEOREM 2. If S is a Baer semigroup and </»: S -* S is a zero-preserving, idempotent,
quasi-multiplicative map, then S<f> is a subsemigroup ofS and a Baer semigroup in its own right.

Proof. It is clear that S<t> is a subsemigroup of S. If xeS, let (x<j>)1 be the idempotent
that generates L{x<j>), i.e., L{x4>) = S(x<t>)'. We claim that, in S<j>, we have L{x$) = (S(j))((x<l>)l<j>),
and that (x<f>)'(f> is an idempotent. From ((X</>)'<£)(JC0) = ((x<t>)lx4>)<l> = 0<f> = 0 it follows that
(5</>)((^)V) £ L(x(j>). It also follows that (JC</>)'# is idempotent, since (y(p)(x(t>) = 0=>y(f> =
(y<t>)(x<j>)1 => y<j> = y<p<f> = ((y<t>)(x<p)')<f> = (y<j>)(.(x<p)l<j>). T h i s las t a r g u m e n t a l so s h o w s t h a t , in
S(t>, L(x<t>) £ (S^)((x^)'(/>). A dual argument shows that, in S<j), we have R(x(f)) = ((x0)r0)(S0),
where (x<j>)r is the idempotent that generates R(.x<j>) in S, and that (x<j>)r<f> is an idempotent.

We have as a corollary the following result from [1].

COROLLARY 3. If S is a Baer semigroup and e = e2eS, then eSe is a Baer semigroup.

Proof. The map x t-* exe is idempotent, zero-preserving and quasi-multiplicative.

REMARK. TO see that a zero-preserving, idempotent, quasi-multiplicative map ^ o n a
Baer semigroup S need not be of the form x(j> = (l$);c(l$), notice that any map cj>: S-* S
such that range (f> = {0, 1}, 00 = 0, and 10 = 1 is idempotent and quasi-multiplicative.

THEOREM 4. Any quasi-multiplicative map that preserves 1 is idempotent. If (p is any
zero-preserving, idempotent, quasi-multiplicative map on a Baer semigroup S, then <j> = di//,
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where there is an idempotent eeS such that x9 = exe and where ij/, considered as a map on
SO = eSe, is zero-preserving, quasi-multiplicative and l-preserving.

Proof. To see the first part, notice that (x(j))4> = ((;c0)l)</> = (JC$)(10) = (x$)l = x<j>.
For the second assertion let e = 1<£. We have (l<£)(l</>) = (0</>)l)<£ = \H = l<j>. Now let
& = 4> \ese- $ clearly preserves l<j>, which is the unit element ofeSe. Finally, ((1 </>)*( 1 </>))<£ =
(10)(x(ltf>))</> = (l</>)((xtf>)l)tf> = (fyX*tf) = ( K * 0 ) ) 0 = x<t><j> = x<f>, which shows tha t <j> = #
when xO = exe.

REMARK. It is shown in [1] that SC(eSe) is isomorphic to the set of fixed points of a
certain map on i?(S).

3. Quasi-multiplicative residuated maps on a Boolean algebra. A Boolean algebra,
considered as a semigroup with respect to the meet operation, is a Baer semigroup. In this
lattice context the condition in Definition 1 becomes (xAy<f>)cj) = x<j>Ay(j>. A map (j> on a
Boolean algebra L which has this property and which is zero-preserving and increasing
(x ^ X(f) for all xeL) is what Halmos calls [3, p. 220] a quantifier. Quantifiers were studied
in the more general context of an orthomodular lattice by M. F. Janowitz in [6]. It turns out
that quantifiers are residuated maps and that there is a notion of adjoint available for residuated
maps on a Boolean algebra (or any other involution partially ordered set). On using this
adjoint, it follows from Theorem 3 of [3] that the quantifiers on a Boolean algebra are
precisely the increasing projections (0 being a projection if </> = #2 = $*). We shall use this
adjoint to characterize quasi-multiplicative residuated maps on a Boolean algebra.

A map 0 of a lattice L into itself is residuated if the inverse image of a principal ideal is
again a principal ideal or, equivalently, if <j> is isotone and there is another isotone map <j>+

(called a residual map) of L into itself such that x</>+</> ̂  x ^ xcfxj)* for all xeL. Residuated
maps are join homomorphisms and preserve the lattice zero if it has one. The semigroup of
residuated maps on a lattice L will be denoted by S(L). Under the pointwise partial order,
S(L) is a join semilattice with, for <j>, \j/ eS(L), (pv\j/ and ($ v \p)* given by x((j) v i//) = x^> v xij/
and J C ( 0 V ^ ) + = x(j>+ AX\J/+.

LEMMA 5. IfL is a Boolean algebra and <j)eS(L), then cj>*, given by x(f>* = (x'<j)+)' for all
xeL, is residuated and the map (j> -*<f>* is a semigroup involution on S(L).

Proof. This follows from Lemma 22 of [5].

LEMMA 6. Let Lbe a Boolean algebra. An isotone map (j): L-* Lis residuated if and only
if there exists an isotone map \j):L-*L such that, for each xeL,

(ii) wy* g x'.
If such a \j/ exists, it is unique and equals </>*.

Proof. This follows from a proof on p. 651 of [2].

COROLLARY 7. If L is a Boolean algebra and <}>, [j/eS(L), then^vij/)* = <f>*v\j/*.
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PrOOf. (*(0 V l/O)'(0* V l/r*) = (*0' A X</OW>* V \ji*) = (*0' A Xl/O0* V (*
x0'0* v x < ^ * S x' and similarly (x(0* v tA*))'(0 v ^ ) g *'.

LEMMA 8. A quasi-multiplicative residuated map 0 on a lattice L is zero-preserving (if L
has a zero) and is idempotent.

Proof. Since 0 is residuated, it preserves the zero and joins; 0 is idempotent since
X00 = (X(j> A(XV X0))0 = X0 A(XV X0)0 = X0 A (x<j) V X00) = X0.

LEMMA 9. IfL is a Boolean algebra and 0 eS(L), then 0 is quasi-multiplicative if<f>2^(j>
and 00* ^ 0.

Proof. Notice first that ^00* ^ j0=>((y0)'0+)'^ j0=>(^0) '^ (^0)'0+=>O'0)'0 ^
(y<j>)' => y<j> ^ (Cv0)'0)'- Notice also that, since x0 ^ (xv(j>0)')0 = [(XAJ0) V(J>0)']0 =
(xAycj))(j> v(_v0)'0, we have x0 A ((y0)'0)' ^ (XAJ/0)0. Now x0 A J 0 ^ x0 A ((j>0)'0)' ^
(xAy0)0. On the other hand, ( X A J 0 ) 0 g x0 and (xAy(j>)(j> ^ j 00 ^ J 0 ; so ( X A J 0 ) 0 ^
JC0 A _y0. This shows that (x A J 0 ) 0 = x0 A ̂ 0.

LEMMA 10. 7/"Z fr a Boolean algebra and <j>eS(L) is quasi-multiplicative, then \j/eS(L),
given by xty = x0 A (00+)', u a projection.

Proof. \]/ B S(L) since it is the composition of two residuated maps. (In a Boolean algebra
xf-»xAe is residuated with xi->xve' as its residual.) To show that i]/ = \j/* it will suffice, by
Lemma 6, to show that (xif/)'*]/ ^ x' for all xeL. Now (x^)'i^ = (x0 A (O0+)')'0 A (O0+)' =
((x0)'vO0+)0 A ( O 0 + ) ' = (x0)'0 A ( O 0 + ) ' ; SO we have (xi//)'ij/^x'o(x(f>)'<j)A(0<j>+)'^
X' O (X0)'0 A (00 + ) ' A X = 0 O (X0)'0 A X ^ 00 + <*• ((X0)'0 A x)0 = 0. But ((X0)'0 A x)0 =
(x0)'0 Ax0 = ((x0)' Ax0)0 = 00 = 0; so we have i// = \j/*. To show that \J/2 = \j/ it will be
sufficient to show that \p2 S $, for then we shall have ^ * = ii1 ^ i/', making ^ quasi-multi-
plicative by Lemma 9 and hence idempotent by Lemma 8. But xij/i// = (x0 A (O0+)')0 A (00+)'
^ x00 A (O0+)' = x0 A (O0+)' = xi/'. This completes the proof.

REMARK. The converse of Lemma 10 is false. Consider an 8-element Boolean algebra
with atoms a, b, and c. The map \j/a given by

f 0 if x g a , ] ,

[x v a if x $ a J
is residuated with ^ given by

*̂ fl" = \ ~ f

[a if a ^ x.J
The map i/̂  is not quasi-multiplicative, since (c' Ab'\}/^\pa — a\j/a = 0, whereas c'\}/ttAb'\j/a =
c' A b' = a. However,

+ , _ r OAO' if x g a , | _ f x A a ' if x g a, |

[(x v a) A a' if x ^ a J [x A a' if x $ a J

so ^ is a projection.
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THEOREM 11. Let Lbe a Boolean algebra and 0 e S (L). The following are equivalent.

(a) 0 is quasi-multiplicative.
(b) 0 = 01v</>2, where <j>u 0 2 eS(L) , 4>i & a projection, 0 i 0 2 = 02> 02$i=O> and

02 02 ^ 01-
(c) 0 2 ^ 0 am/00*^0.
Proof. (a)=>(b). Let 0 t and <j>2 be given by x0j = x0 A ( O 0 + ) ' and JC02 = x0 A O 0 + .

It is clear that x0 = x0x v x 0 2 for all x61 , ; 01 ( </>2eS(L) since they are compositions of
residuated maps. 0X is a projection by Lemma 10.

0 t 0 2 = 0 2 since x<f>2 = x0 A 0 0 + = (x0)0A0<j>+ = [(x</>A0<£+)V(X<^A(O0+)')]0 A0< )̂+

= [ ( X 0 A O 0 + ) 0 V ( X ^ A ( O 0 + ) ' ) ^ ] A O 0 + = ( X < / . A ( O ( / . + ) ' ) 0 A O ( / . + = xfafa for all JCGL.

(^2^! = 0 since x ^ 2 ^ i = (x0 A0^ + )</>A(0^> + ) ' ^ O<£+0 = 0 for all xeL.
Notice that ^ 2 is given by x(j>2 = (xv(0</>+)')</>+. Thus x $ 2 0 * = (X^AO0 + )< / )2 =

((x^ A 0tf>+)'tf>2
+)' = (((x*)' v (0<t>+)')<ti)' = (((JC^)' v (04>+)')<t>+)'. We thus have x</.2 <̂>5 ^

+y and x^2</>2 ^ (W>)'tf>+)'- Now O0+^. = 0 ̂  (0^+) '=*0<^+^ (O</>+)'0+=*
+)'g(O0+)'=>^2<^^(O^+)'. In addition, W ) ' ^ A ^ = W A X ^ = 0=>

)'0 ^ (x</))' => (x^)' ^ (x0)> + => ((xtf>)'<£+)' g x<̂> => x0 2 0 2 ^ x</>. This shows that
xcf)2(j)* ^ X 0 A ( O 0 + ) ' = x^i for all xeL, and so </>20* ̂  ^ i -

(b)^(c) . Suppose that <j) = (j>1V(f)2> where 0 ! and <j>2 are as in (b). Then x(j>2 =
(x^vx^X^v^^x t^ iVx^ iVx^^vx^^ . Since 0i^i = <Ai, 02</>i=O,
<}>\<t>2 — 4>2 a n d ^2 <̂ 2 = <̂ 2 0 i <̂ 2 = 0, we have x $ 2 = x ^ v x 0 2 = x</>. By Corollary 7 we

have that (</>i v</>2)* = <̂ t v^>*- Thus x</><£* = ( x ^ vx(/>2)((/>t v^>*) = X4>i4>\ vx<£2$*v
x ^ ^ l v x ^ ^ * - Since (j>1(])*1 = 4>i, (t>2(t>* = 4>i4>i = 0, ^ i 0 * = (02<£*)* = (^2^1)* =
0* = 0, and <£2 0* ^ 0 n w e n a v e ^ ^ * ^ ^0i ^ x(f>1vx(j)2 = x(j). Thus 0 0 * ^ 0.

(c)=>(a). This is Lemma 9.

The author is grateful to Professor M. F. Janowitz for his generous help and guidance.

REFERENCES
1. T. S. Blyth and M. F. Janowitz, On decreasing Baer semigroups, Bull. Soc. Roy. Sci. Liige 38

(1969), 414-423.
2. D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.
3. P. R. Halmos, Algebraic logic I, monadic Boolean algebras, Compositio Math. 12 (1955), 217—

249.
4. M. F. Janowitz, A semigroup approach to lattices, Canad. J. Math. 18 (1966), 1212-1223.
5. M. F. Janowitz, Baer semigroups, Duke Math. J. 32 (1965), 85-95.
6. M. F. Janowitz, Quantifiers and orthomodular lattices, Pacific J. Math. 13 (1963), 1241-1249.
7. B. J. Thorne, A-P congruences on Baer semigroups, Pacific J. Math. 28 (1969), 681-698.

UNIVERSITY OF MASSACHUSETTS

AMHERST, MASSACHUSETTS 01002

https://doi.org/10.1017/S001708950000149X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000149X

