QUASI-MULTIPLICATIVE MAPS ON BAER SEMIGROUPS

by C. S. JOHNSON, Jr*

(Received 30 June, 1970)

1. Introduction. A Baer semigroup is a semigroup S with 0 and 1 in which, for each $x \in S$, the left annihilator $L(x) = \{y \in S : yx = 0\}$ of x is a principal left ideal generated by an idempotent and the right annihilator $R(x) = \{y \in S : xy = 0\}$ of x is a principal right ideal generated by an idempotent. Baer semigroups are of interest because (see [5]) the left annihilators of the elements of a Baer semigroup S, $\mathscr{L}(S) = \{L(x) : x \in S\}$, form a bounded lattice and (see [4]) every bounded lattice arises in this manner. In this note we look at a type of map ϕ on a Baer semigroup S which has the property that $S\phi$ is a Baer semigroup. (The homomorphic image of a Baer semigroup is specialized to a Boolean algebra, this type of map generalizes Halmos's notion of a quantifier.

2. Quasi-multiplicative maps.

DEFINITION 1. A map ϕ of a semigroup S into itself is quasi-multiplicative if $((x\phi)y)\phi = (x(y\phi))\phi = (x\phi)(y\phi)$ for all $x, y \in S$.

THEOREM 2. If S is a Baer semigroup and $\phi: S \rightarrow S$ is a zero-preserving, idempotent, quasi-multiplicative map, then $S\phi$ is a subsemigroup of S and a Baer semigroup in its own right.

Proof. It is clear that $S\phi$ is a subsemigroup of S. If $x \in S$, let $(x\phi)^l$ be the idempotent that generates $L(x\phi)$, i.e., $L(x\phi) = S(x\phi)^l$. We claim that, in $S\phi$, we have $L(x\phi) = (S\phi)((x\phi)^l\phi)$, and that $(x\phi)^l\phi$ is an idempotent. From $((x\phi)^l\phi)(x\phi) = ((x\phi)^lx\phi)\phi = 0\phi = 0$ it follows that $(S\phi)((x\phi)^l\phi) \subseteq L(x\phi)$. It also follows that $(x\phi)^l\phi$ is idempotent, since $(y\phi)(x\phi) = 0 \Rightarrow y\phi = (y\phi)(x\phi)^l \Rightarrow y\phi = y\phi\phi = ((y\phi)(x\phi)^l)\phi = (y\phi)((x\phi)^l\phi)$. This last argument also shows that, in $S\phi$, $L(x\phi) \subseteq (S\phi)((x\phi)^l\phi)$. A dual argument shows that, in $S\phi$, we have $R(x\phi) = ((x\phi)^r\phi)(S\phi)$, where $(x\phi)^r$ is the idempotent that generates $R(x\phi)$ in S, and that $(x\phi)^r\phi$ is an idempotent.

We have as a corollary the following result from [1].

COROLLARY 3. If S is a Baer semigroup and $e = e^2 \in S$, then eSe is a Baer semigroup.

Proof. The map $x \mapsto exe$ is idempotent, zero-preserving and quasi-multiplicative.

REMARK. To see that a zero-preserving, idempotent, quasi-multiplicative map ϕ on a Baer semigroup S need not be of the form $x\phi = (1\phi)x(1\phi)$, notice that any map $\phi: S \to S$ such that range $\phi = \{0, 1\}, 0\phi = 0$, and $1\phi = 1$ is idempotent and quasi-multiplicative.

THEOREM 4. Any quasi-multiplicative map that preserves 1 is idempotent. If ϕ is any zero-preserving, idempotent, quasi-multiplicative map on a Baer semigroup S, then $\phi = \theta \psi$,

^{*} The results presented here were part of a thesis submitted to the University of Massachusetts. The research was supported by an NSF Traineeship.

C. S. JOHNSON, Jr

where there is an idempotent $e \in S$ such that $x\theta = exe$ and where ψ , considered as a map on $S\theta = eSe$, is zero-preserving, quasi-multiplicative and 1-preserving.

Proof. To see the first part, notice that $(x\phi)\phi = ((x\phi)1)\phi = (x\phi)(1\phi) = (x\phi)1 = x\phi$. For the second assertion let $e = 1\phi$. We have $(1\phi)(1\phi) = ((1\phi)1)\phi = 1\phi\phi = 1\phi$. Now let $\psi = \phi |_{eSe}$. ψ clearly preserves 1ϕ , which is the unit element of eSe. Finally, $((1\phi)x(1\phi))\phi = (1\phi)(x(1\phi))\phi = (1\phi)(x(\phi))\phi = (1(x\phi))\phi = (1(x\phi))\phi = x\phi\phi = x\phi$, which shows that $\phi = \theta\psi$ when $x\theta = exe$.

REMARK. It is shown in [1] that $\mathcal{L}(eSe)$ is isomorphic to the set of fixed points of a certain map on $\mathcal{L}(S)$.

3. Quasi-multiplicative residuated maps on a Boolean algebra. A Boolean algebra, considered as a semigroup with respect to the meet operation, is a Baer semigroup. In this lattice context the condition in Definition 1 becomes $(x \wedge y\phi)\phi = x\phi \wedge y\phi$. A map ϕ on a Boolean algebra L which has this property and which is zero-preserving and increasing $(x \leq x\phi \text{ for all } x \in L)$ is what Halmos calls [3, p. 220] a quantifier. Quantifiers were studied in the more general context of an orthomodular lattice by M. F. Janowitz in [6]. It turns out that quantifiers are residuated maps and that there is a notion of adjoint available for residuated maps on a Boolean algebra (or any other involution partially ordered set). On using this adjoint, it follows from Theorem 3 of [3] that the quantifiers on a Boolean algebra are precisely the increasing projections (ϕ being a projection if $\phi = \phi^2 = \phi^*$). We shall use this adjoint to characterize quasi-multiplicative residuated maps on a Boolean algebra.

A map ϕ of a lattice L into itself is *residuated* if the inverse image of a principal ideal is again a principal ideal or, equivalently, if ϕ is isotone and there is another isotone map ϕ^+ (called a *residual* map) of L into itself such that $x\phi^+\phi \leq x \leq x\phi\phi^+$ for all $x \in L$. Residuated maps are join homomorphisms and preserve the lattice zero if it has one. The semigroup of residuated maps on a lattice L will be denoted by S(L). Under the pointwise partial order, S(L) is a join semilattice with, for ϕ , $\psi \in S(L)$, $\phi \lor \psi$ and $(\phi \lor \psi)^+$ given by $x(\phi \lor \psi) = x\phi \lor x\psi$ and $x(\phi \lor \psi)^+ = x\phi^+ \land x\psi^+$.

LEMMA 5. If L is a Boolean algebra and $\phi \in S(L)$, then ϕ^* , given by $x\phi^* = (x'\phi^+)'$ for all $x \in L$, is residuated and the map $\phi \to \phi^*$ is a semigroup involution on S(L).

Proof. This follows from Lemma 22 of [5].

LEMMA 6. Let L be a Boolean algebra. An isotone map $\phi : L \to L$ is residuated if and only if there exists an isotone map $\psi : L \to L$ such that, for each $x \in L$,

(i) $(x\phi)'\psi \leq x'$, (ii) $(x\psi)'\phi \leq x'$.

If such a ψ exists, it is unique and equals ϕ^* .

Proof. This follows from a proof on p. 651 of [2].

COROLLARY 7. If L is a Boolean algebra and $\phi, \psi \in S(L)$, then $(\phi \lor \psi)^* = \phi^* \lor \psi^*$.

Proof. $(x(\phi \lor \psi))'(\phi^* \lor \psi^*) = (x\phi' \land x\psi')(\phi^* \lor \psi^*) = (x\phi' \land x\psi')\phi^* \lor (x\phi' \land x\psi')\psi^* \leq x\phi'\phi^* \lor x\psi'\psi^* \leq x'$ and similarly $(x(\phi^* \lor \psi^*))'(\phi \lor \psi) \leq x'$.

LEMMA 8. A quasi-multiplicative residuated map ϕ on a lattice L is zero-preserving (if L has a zero) and is idempotent.

Proof. Since ϕ is residuated, it preserves the zero and joins; ϕ is idempotent since $x\phi\phi = (x\phi \land (x \lor x\phi))\phi = x\phi \land (x \lor x\phi)\phi = x\phi \land (x\phi \lor x\phi\phi) = x\phi$.

LEMMA 9. If L is a Boolean algebra and $\phi \in S(L)$, then ϕ is quasi-multiplicative if $\phi^2 \leq \phi$ and $\phi \phi^* \leq \phi$.

Proof. Notice first that $y\phi\phi^* \leq y\phi \Rightarrow ((y\phi)'\phi^+)' \leq y\phi \Rightarrow (y\phi)' \leq (y\phi)'\phi^+ \Rightarrow (y\phi)'\phi \leq (y\phi)'\phi \leq (y\phi)'\phi \neq (y\phi)'\phi)'$. Notice also that, since $x\phi \leq (x \lor (y\phi)')\phi = [(x \land y\phi) \lor (y\phi)']\phi = (x \land y\phi)\phi \lor (y\phi)'\phi$, we have $x\phi \land ((y\phi)'\phi)' \leq (x \land y\phi)\phi$. Now $x\phi \land y\phi \leq x\phi \land ((y\phi)'\phi)' \leq (x \land y\phi)\phi$. On the other hand, $(x \land y\phi)\phi \leq x\phi$ and $(x \land y\phi)\phi \leq y\phi\phi \leq y\phi$; so $(x \land y\phi)\phi \leq x\phi \land y\phi$. This shows that $(x \land y\phi)\phi = x\phi \land y\phi$.

LEMMA 10. If L is a Boolean algebra and $\phi \in S(L)$ is quasi-multiplicative, then $\psi \in S(L)$, given by $x\psi = x\phi \wedge (0\phi^+)'$, is a projection.

Proof. $\psi \in S(L)$ since it is the composition of two residuated maps. (In a Boolean algebra $x \mapsto x \wedge e$ is residuated with $x \mapsto x \vee e'$ as its residual.) To show that $\psi = \psi^*$ it will suffice, by Lemma 6, to show that $(x\psi)'\psi \leq x'$ for all $x \in L$. Now $(x\psi)'\psi = (x\phi \wedge (0\phi^+)')'\phi \wedge (0\phi^+)' = ((x\phi)' \vee 0\phi^+)\phi \wedge (0\phi^+)' = (x\phi)'\phi \wedge (0\phi^+)';$ so we have $(x\psi)'\psi \leq x' \Leftrightarrow (x\phi)'\phi \wedge (0\phi^+)' \leq x' \Leftrightarrow (x\phi)'\phi \wedge (0\phi^+)' \wedge x = 0 \Leftrightarrow (x\phi)'\phi \wedge x \leq 0\phi^+ \Leftrightarrow ((x\phi)'\phi \wedge x)\phi = 0$. But $((x\phi)'\phi \wedge x)\phi = (x\phi)'\phi \wedge x\phi = ((x\phi)' \wedge x\phi)\phi = 0\phi = 0;$ so we have $\psi = \psi^*$. To show that $\psi^2 = \psi$ it will be sufficient to show that $\psi^2 \leq \psi$, for then we shall have $\psi\psi^* = \psi^2 \leq \psi$, making ψ quasi-multiplicative by Lemma 9 and hence idempotent by Lemma 8. But $x\psi\psi = (x\phi \wedge (0\phi^+)')\phi \wedge (0\phi^+)' \leq x\phi\phi \wedge (0\phi^+)' = x\psi \wedge (0\phi^+)' = x\psi$. This completes the proof.

REMARK. The converse of Lemma 10 is false. Consider an 8-element Boolean algebra with atoms a, b, and c. The map ψ_a given by

$$x\psi_a = \begin{cases} 0 & \text{if } x \leq a, \\ x \lor a & \text{if } x \leq a \end{cases}$$

is residuated with ψ_a^+ given by

$$x\psi_a^+ = \begin{cases} x & \text{if } a \leq x, \\ a & \text{if } a \leq x. \end{cases}$$

The map ψ_a is not quasi-multiplicative, since $(c' \wedge b'\psi_a)\psi_a = a\psi_a = 0$, whereas $c'\psi_a \wedge b'\psi_a = c' \wedge b' = a$. However,

$$x\psi_a \wedge (0\psi_a^+)' = x\psi_a \wedge a' = \begin{cases} 0 \wedge a' & \text{if } x \leq a, \\ (x \lor a) \wedge a' & \text{if } x \leq a \end{cases} = \begin{cases} x \wedge a' & \text{if } x \leq a, \\ x \wedge a' & \text{if } x \leq a \end{cases} = x \wedge a';$$

so ψ is a projection.

THEOREM 11. Let L be a Boolean algebra and $\phi \in S(L)$. The following are equivalent.

(a) ϕ is quasi-multiplicative.

(b) $\phi = \phi_1 \lor \phi_2$, where ϕ_1 , $\phi_2 \in S(L)$, ϕ_1 is a projection, $\phi_1 \phi_2 = \phi_2$, $\phi_2 \phi_1 = 0$, and $\phi_2 \phi_2^* \leq \phi_1$.

(c) $\phi^2 \leq \phi$ and $\phi \phi^* \leq \phi$.

Proof. (a) \Rightarrow (b). Let ϕ_1 and ϕ_2 be given by $x\phi_1 = x\phi \wedge (0\phi^+)'$ and $x\phi_2 = x\phi \wedge 0\phi^+$. It is clear that $x\phi = x\phi_1 \vee x\phi_2$ for all $x \in L$; $\phi_1, \phi_2 \in S(L)$ since they are compositions of residuated maps. ϕ_1 is a projection by Lemma 10.

 $\phi_1 \phi_2 = \phi_2 \text{ since } x\phi_2 = x\phi \wedge 0\phi^+ = (x\phi)\phi \wedge 0\phi^+ = [(x\phi \wedge 0\phi^+) \vee (x\phi \wedge (0\phi^+)')]\phi \wedge 0\phi^+$ = $[(x\phi \wedge 0\phi^+)\phi \vee (x\phi \wedge (0\phi^+)')\phi] \wedge 0\phi^+ = (x\phi \wedge (0\phi^+)')\phi \wedge 0\phi^+ = x\phi_1\phi_2 \text{ for all } x \in L.$ $\phi_2\phi_1 = 0 \text{ since } x\phi_2\phi_1 = (x\phi \wedge 0\phi^+)\phi \wedge (0\phi^+)' \leq 0\phi^+\phi = 0 \text{ for all } x \in L.$

Notice that ϕ_2^+ is given by $x\phi_2^+ = (x \vee (0\phi^+)')\phi^+$. Thus $x\phi_2\phi_2^* = (x\phi \wedge 0\phi^+)\phi_2^* = ((x\phi \wedge 0\phi^+)'\phi_2^+)' = (((x\phi)' \vee (0\phi^+)')\phi^+)'$. We thus have $x\phi_2\phi_2^* \leq ((0\phi^+)'\phi^+)'$ and $x\phi_2\phi_2^* \leq ((x\phi)'\phi^+)'$. Now $0\phi^+\phi = 0 \leq (0\phi^+)' \Rightarrow 0\phi^+ \leq (0\phi^+)'\phi^+ \Rightarrow ((0\phi^+)'\phi^+)' \leq (0\phi^+)' \Rightarrow x\phi_2\phi_2^* \leq (0\phi^+)'$. In addition, $(x\phi)'\phi \wedge x\phi = ((x\phi)' \wedge x\phi)\phi = 0 \Rightarrow (x\phi)'\phi \leq (x\phi)' \Rightarrow (x\phi)'\phi^+ \Rightarrow ((x\phi)'\phi^+)' \leq x\phi \Rightarrow x\phi_2\phi_2^* \leq x\phi$. This shows that $x\phi_2\phi_2^* \leq x\phi \wedge (0\phi^+)' = x\phi_1$ for all $x \in L$, and so $\phi_2\phi_2^* \leq \phi_1$.

(b) \Rightarrow (c). Suppose that $\phi = \phi_1 \lor \phi_2$, where ϕ_1 and ϕ_2 are as in (b). Then $x\phi^2 = (x\phi_1 \lor x\phi_2)(\phi_1 \lor \phi_2) = x\phi_1\phi_1 \lor x\phi_2\phi_1 \lor x\phi_1\phi_2 \lor x\phi_2\phi_2$. Since $\phi_1\phi_1 = \phi_1$, $\phi_2\phi_1 = 0$, $\phi_1\phi_2 = \phi_2$ and $\phi_2\phi_2 = \phi_2\phi_1\phi_2 = 0$, we have $x\phi^2 = x\phi_1 \lor x\phi_2 = x\phi$. By Corollary 7 we have that $(\phi_1 \lor \phi_2)^* = \phi_1^* \lor \phi_2^*$. Thus $x\phi\phi^* = (x\phi_1 \lor x\phi_2)(\phi_1^* \lor \phi_2^*) = x\phi_1\phi_1^* \lor x\phi_2\phi_1^* \lor x\phi_1\phi_2^* \lor x\phi_2\phi_2^*$. Since $\phi_1\phi_1^* = \phi_1$, $\phi_2\phi_1^* = \phi_2\phi_1 = 0$, $\phi_1\phi_2^* = (\phi_2\phi_1^*)^* = (\phi_2\phi_1)^* = 0^* = 0$, and $\phi_2\phi_2^* \le \phi_1$, we have $x\phi\phi^* \le x\phi_1 \le x\phi_1 \lor x\phi_2 = x\phi$. Thus $\phi\phi^* \le \phi$. (c) \Rightarrow (a). This is Lemma 9.

The author is grateful to Professor M. F. Janowitz for his generous help and guidance.

REFERENCES

1. T. S. Blyth and M. F. Janowitz, On decreasing Baer semigroups, Bull. Soc. Roy. Sci. Liège 38 (1969), 414-423.

2. D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.

3. P. R. Halmos, Algebraic logic I, monadic Boolean algebras, Compositio Math. 12 (1955), 217-249.

4. M. F. Janowitz, A semigroup approach to lattices, Canad. J. Math. 18 (1966), 1212-1223.

5. M. F. Janowitz, Baer semigroups, Duke Math. J. 32 (1965), 85-95.

6. M. F. Janowitz, Quantifiers and orthomodular lattices, Pacific J. Math. 13 (1963), 1241-1249.

7. B. J. Thorne, A-P congruences on Baer semigroups, Pacific J. Math. 28 (1969), 681-698.

UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS 01002