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Abstract

In this paper we investigate the boundedness on Hardy spaces for the higher order commutator T£m

generated by the BMO function b and fractional integral type operator Tx, and establish the boundedness
theorems for Vbm from H^m

qus to U2 and to H"2 (0 < p, < 1), and from HKa
q*£ to K<£"- and to

H K^P2, respectively, for certain ranges of a,pu qi,pi, qz and s.
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1. Introduction

Let T be a linear operator and b a BMO function. The higher order commutator

operators are defined as

W (*) = TOO - b(x))mf (•))(*), m = 0, 1, 2, . . . .

Obviously, Tbi0 = T, Tbj = [b, T] which is the commutator in [6], and

Tb,m = [b, Ti,m_i], m = 1,2,

Coifman, Rochberg and Weiss [6] stated that if T is a Calderon-Zygmund singular

integral operator, then TbA = [b, T] is bounded on Lp(Rn) for 1 < p < oo. Chanillo

[4] extended this result to the fractional integral. Subsequently, many authors have
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12 Shunchao Long andJian Wang [2]

studied the Lp -boundedness of the commutator Tbl — [b, T] (see, for example, [2,
3,10,22]) and the higher order commutators TKm, m = 0, 1, . . . , (see [8,12,15,23]).
The case 0 < p < 1 was also considered by many authors. When T is a Calderon-
Zygmund singular integral operator, Perez [21], Pluszynski [20] and Alvarez [1]
showed that [b, T] does not map Hp(Rn) into LP(R"). However, Perez [21] proved
that 7i,m maps the modified spaces / /^ '" (R") to L\W), Alvarez [1] obtained that
[b, T] maps H£\°°0(Rn) to / / ( IT) , and Long and Wang [15] proved that Tb,m maps
Hg£s(R") to V (R") and to H" (Rn). In this paper, we will extend these results to the
higher order commutators Tbm of fractional integral type operators Tz and consider
their boundedness from H^Jl-s(W) to LP2(Rn) and to HP2(Rn) for 0 <pi<l.

On the other hand, Herz type Hardy spaces were recently studied by many authors
(see [5,9,11,12,16-19]). The boundedness of some operators on Herz spaces and
Herz type Hardy spaces can be found in [11,12,14-17,19]. If T is a standard
Calderon-Zygmund operator, [b, T] is bounded on Herz space Ka

q
p (R") (or Ka

q
p(W))

for -n/q < a < n(l - l/q), but not for a > «(1 - l/q) (see [11,19]). It is not
bounded even from HK°-p-0(W) (or HKf-°(W)) into k^p(R") (or K°-p(Rn)) for
a > n(l - l/q). However, [b, T] is bounded from Hkq'

p0(Rn) (or HK°$-°(Rn))
into J^-'(R") (or K'-"(Rn)) for n(l - l / 9 ) < o < n(l - 1/?) + y (see [19]), just as
the cases involving the standard Hardy space H' (R") and the Lebesgue space L' (R").
Long and Wang [15] obtained the boundedness of the higher order commutators
Tbjn of the Calderon-Zygmund singular integral operators T from HK^l^iW1) (or
H Ka

q
p
b;

s
m{W)) into Ka

q
p(W) (or A^'flR")), and from / / ^ ( R - ) (or flJ^flK"))

into Hk°-P(R") (or HK^P(K")) for some ranges of p, ^, j and a. The boundedness
of higher order commutators of fractional integrals on Herz spaces was obtained for a
range of a in [ 12]. Here, we will also investigate the boundedness for the higher order
commutators Tb

x
m of the fractional integral type operators Tx from the Herz type Hardy

spaces Hk'ftiiW) (or HKa
qX(Rn)) to Herz spaces *£»(R") (or tf£"(R")) and

from / / / ^ ( R " ) (or HKa
q;

p
b\^(R")) to Hk%*(W) (or //Jf--«(R")) for certain

ranges of a, pit q\, pi, qi and s.

Let us introduce some definitions below.

DEFINITION 1. L e t O < r < n , 0 < / < l , s e N U {0}, 1 < qx < q2 < oo
be such that l/q\ — l/q2 = r/n. Tz is said to be a (qu r;s, y)-fractional integral
type operator if TT is a bounded singular integral operator from Lq' (R") into Lq2(R")
with kernel K(x, y), which is C°° away from the origin and satisfies the following
conditions:

(i) rf (JC) = /„. K(x, y)f (y) dy, if x £ y;

(ii)
8<K(x,y) T< Q—-—— ,if|jc-y| > 2 | y - / | , where

~ * \x - y\»-T+'+y
is any multi-index and s = |f | = f, H h
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[3] The higher order commutators of the fractional integrals on Hardy spaces 13

Denote by [r] the integer part of the real number r. For 8 = (fa, ..., 6n) e

(N U {0})", * ' = xf' • • • **. and \B\ = fa + ••• + Bn. Let

\f(x)\"dx\ .

Denote by T* the conjugate operator of T.

DEFINITION 2. Let 0 < p < 1 < q < oo, p < q, [n(l/p - 1)] < s < oo. A

function a(x) is said to be a (p, q, s;b)-atom of order m if there exists a ball B for
which

(i) suppa c. B = B(x0, r) = {x : \x - xo\ < r};

(ii) NU.(»> < IBI1^"17";
(iii) /„. a(x)bl{x)xpdx = 0; |)3| < s, i = 0, 1 , . . . , m.

DEFINITION 3. Let 0 < p < 1 < q < oo, p < q, [n(l/p - 1)] < s < oo.

We define / 6 H^'S{W) if and only if f(x) = 5Z*€N ^*a*0O, where each at is a
(p,(7,s;&)-atomoforderm, ^ t 6 N |XtK < +oo, and

Obviously, f/6
1;">0(IRn) are the spaces / /^(K") which were introduced by Perez

in [21]. By the atomic decomposition theory of Coifman and Weiss [7,13,25], if
0 < p < l < < 7 < o o , p < q and [n(l/p — 1)] < s < oo, it is easy to see that
//™'J(R") = Hp(Rn), the classical Hardy spaces.

THEOREM 1.1. LetO < px < 1, \/p2 = \/px-r/n,Q <y <\,s > [n(l//?, —1)],
1 < ^i < oo, a«rf let Tx be a (q\, x;s, y)-fractional integral type operator (as in
Definition 1) and b G BMO. Ifn/(n — z + s + y) < p2 < +oo and 0 < T < n, then
rbm maps ^ " - J ( R " ) in/o

REMARK 1. Theorem 1.1 is equivalent to [21, Theorem 1.9] when r = 0, p\ =
p2 = 1, s = 0, gi = oo; and to [1, Theorem 1.5] when r = 0, w = l , 5 = 0 .

THEOREM 1.2. LetO < pi < 1, l / p 2 = l/pi—r/n.O <y <\,s > [n(l/pi-l)]t

\ < q\ < oo, a n J to T r i»e a (gi, r ; i , y)- fractional integral type operator and

b € BMO. Assume that (Tr)*(gLfi) = C (a constant), g,,p(.x) = bi(x)xfl, \B\ <s,i =

0, 1 m. Ifn/(n-x+s + y) < p2 < 1 andO <r < y, then Tx
bmmapsH^m

q>\W)

L e t B k = {x e R " :\x\< 2 " } , Ck = B k \ B k - U a n d Xk = Xc f o r k e l , w h e r e x c t

is the characteristic function of set Ck.

DEFINITION 4. Let 0 < a < oo, 0 < p < oo, 1 < q < oo. The Herz spaces are
defined by
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(a) tf*'(R") = {/ e L"loeW \ {0}) : \\f\\^(V) < +00} (homogeneous space),
where

(b) K°r(R") = Z.*(R") n k°-p(\k") (non-homogeneous space), and ||/ | |K,°'(R«) =

+ 11/11 *;•'«•)•

Obviously, k°/(Rn) = LP(R") = K0/(Kn) for all 0 < p < 00.

DEFINITION 5. Let - o o < a < oo, 0 < p < oo, l < < ? < o o a n d . s € N U {0}.

A function a(x) is said to be an mth order central HK — (a, q, ;fc)s-atom if a(x)

satisfies

(i) suppa c B(0, r) = [x € R" : |JC| < /•, r > 0};

(ii) ll«llz.,(R'.) < |S(0, r ) | - ^ " ;
(iii) /„. a(xW(x)xfi dx = 0, \fi\ < s, i = 0, 1 , . . . , m.

A function a(x) is said to be an mth order central HK — (a, q, ;fc)s-atom if a{x)

satisfies (ii), (iii) and

(i') suppa c B(0, r) = {x € R" : \x\ < r, r > 1}.

DEFINITION6. LetO < p < oo, 1 < q < oo,n(l-l/q) < a < ooands e NU{0}.

We define / € HKa
q
p
b
s
m{W) (or H Ka

q
p
b
s
m{R")) if and only if / ( * ) = Zkei^M

(or f(x) = ^t>0^*tf*C*)), where each ak is an m order central HK— (or HK—)

(a, q, ;fc),s-atom with the support Bk, £ t e Z \^k\p < +oo (or J2k>o Mp < +oo), and

If 0 < p < oo, 1 < q < oo, n(l — l/<?) < a < oo and 5 > [a - n(l - l/q)],

it is easy to see that Hk%£(W) = HK°-p(Rn), HK^iR") = HKa
q"{Rn) (see

[11,17] or [18,19]). For 0 < p < oo, HK°/(W) = HK°p
p(Rn) which are the

usual Hardy spaces / /P(K"). In particular, Hp(Rn) = LP(R") when p > 1. When
1 < <? < oo, -n/q < a < n(l - l/q) and 0 < p < oo, HK^(Rn) = K^"(Rn)

and HK«i>(\SLn) = AT«P(R") (see [11]).

T H E O R E M 1.3. L e r O < r < « , 5 e N u {0}, 0 < y < 1, 0 < p , < p 2 < oo,
1 < <7i < oo, l/q2 = l/qi — x/n, «(1 — \/q\) < a < s + y + n(l — l/qi), and let

b e BMO and T' be a (qt, r;s, y)-fractional integral type operator. Then Tbm maps

&W) into *--«(R") and HKa
q;

p
b\^(R") into AT«-«(R-), respectively.
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[5] The higher order commutators of the fractional integrals on Hardy spaces 15

REMARK 2. Theorem 3 is [19, Theorem 3.1] when r = 0, s = 0, m = 1.

THEOREM 1.4. Let ph p2, q\, q2, r, a, s, y, T and b be as in Theorem 1.3.
Assume that (TT)*(g^) = C, gup{x) = bi(x)xp, |/3| < s, i = 0, 1, 2 , . . . , m. Then
TZaW) maps HKa

q;
p^(Rn) into Hk°f>(R-) and HK°f;;s

m{W>) into HK"*(R"),
respectively.

Denote by BMO the space of measurable functions b such that

\b(x)-bB\dx < C\B\L
holds for all balls B, where bB = \B\ ' fB b(x)dx with a constant C independent
ofB.

Throughout this paper, C always means a constant independent of the main para-
meters involved, but which may be different from line to line. For any power exponent
p with 1 < p < oo, we denote the conjugate exponent p/(p — 1) by p'.

2. Proofs of the theorems

First we prove two lemmas.

LEMMA 2.1. Let 1 < q < oo, Tz be the (qi,r;s, y)-fractional integral type
operator defined as above and b(x) € BMO. If for i = 0, 1, . . . , m, a(x)b'(x) satisfy
s order vanishing moments with supp a C B with the center atx0 = 0 andx 6 (2B)C,
then

PROOF. Using the sth order vanishing moments of a(x)b'(x), / = 0, 1 , . . . , m, we
have

= / (b(x)-b(y))mK(x,y)a(y)dy

= f (b(x)-b(y))m(K(x,y)-P(x,y))a(y)dy,
K"

where P(x, v) is the (s — l)th order Taylor's expansion for £(* , y) as a function of y at
>> = 0. Again, using the 5th order vanishing moments of a(x)b'(x), i = 0, 1 , . . . , m,
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we have

^ - b(y)ra(y)dy

-b{y))ma{y)dy,
\ nv nv i

lfl=J

where y0 is a point on the line segment connecting y and 0. Thus, by (ii) in Definition 1,

and since y0 € B,y e B, |£| = s, ||a||L.(oi.) < \B\l/«'\\a\\LHU") and

1/9'
\b(y) - bB\m\a(y)\dy < ||a||W(R., ( / \b(x) - bB\m"'dy '

R"

we have

\Kma(x)\ <

\b{y)-bB\m\a{y)\dy\

LEMMA 2.2. Let q > 0, m 6 N U (0), fi = B(0, r). Tften

\x\sdx
:-\4B

"1' ig\-(("-*+s+y)q-s-")/>> \ Vy _i_

y=2

PROOF.

00

\b(x) - bB\mq dx

;=2
q^y X,,. w.) - *.r
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[7] The higher order commutators of the fractional integrals on Hardy spaces 17

When mq > 1, we have

B \ /=0

j \ m q

+Ir)» A+,

<c\\b\\Zo + c(
\ <=o /

= co + wwbwZo-
When 0 < mq < 1, by Holder's inequality, we have

c

mq

/ mq

< CO" + l)m*II

When mq = 0,

hLmx) -b-rdx=c-
Thus, we have finished the proof of Lemma 2.2. •

PROOF OF THEOREM 1.1. We need to prove that there exists a constant C such that
for each function/ in H£'m

quS(Rn),

where qu q2 are as in Definition 1, that is, 1 < qx < q2 < 00 such that l/qi — l/q2 =
x/n{= l/pi — l/p2). By a standard argument, it is enough to show that there exists a
constant C independent of a such that || T£ma \\ Ln (Rn) < C for each (p\,q\,s; fc)-atom
a of order m.

To prove this, without loss of generality, we may suppose that supp a c B with
center at the origin. Then

I \Tlma{x)rdx = ( [ + [ ) \Tlma{x)r-dx

= 1 + 11.
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18 Shunchao Long and Jian Wang [8]

By the boundedness of Tb\m from L9'(R") into L«(R") and Holder's inequality, we
have

P2

For II, using Lemma 2.1 (9 = <7i), Lemma 2.2 (<5 = 0, q = p2) and ||a||L«i(R») <

\b(x)-bB\™ f \\b\\
X

dx+L.\J^'""dx)
7 = 2

since n/(n — T + s + y) < p2. This concludes the proof of Theorem 1.1. •

PROOF OF THEOREM 1.2. By the atom-molecule theory of Coifman and Weiss (see
[7,13,25]) we need only to prove that there exists a constant C such that for each
(pi,q\, s; 6)-atom a of order m, T£ma is a (p2, q2, s, e)-molecule, that is,

(i) \x\"dTZma(x)eL<»(R»);
00 Nft(7;» = H^flii^llur^flU)!!^., = c < oo;

where s > s0 = [n(l/p2 — 1)].

i - r + y
> e > max { - , 1

n p2

((s — x + y)/n > \/p2 - 1 since p2 > n/(n - r + s + y)), c = 1 — l/p>2 + e.
d = 1 - 1/̂ 2 + e, 0 < pi < 1, 0 < y < 1, 5 > 0, 1/^ - l/g2 = r/n.

Let supp a C B with the center at the origin. By the boundedness of T£m from
L"(R") into L«(R"). we have l l ^ a l l ^ ^ , < C||6||^0||a||,,,(Rn). Let

/ \xrd\rbma(x)\^dx = ( I + f ) \xrd\rbma{x)r dx

= 1+11.
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[9] The higher order commutators of the fractional integrals on Hardy spaces 19

For I, by the L?(R")-boundedness of 7£m and ||a||L»1(R.) < \B\l/qi-i/Pl, we have

For II, by Lemma 2.1 and Lemma 2.2 (q = q2, 8 = q2nd), we have

n < C\ RWU+yy/n+qz/q', II „II92

(f !&(»)-»,!«" r M&,(f ! & ( » ) - » , ! « " Jxi r

ll | / } l ? - < > ) ' ? 2 \ V ;

BM0\li\ llalli.«l(R»)>

since q2(n — T + s + y) — q2nd — n — q2(s + y — x — ns) > 0.
Thus,

Ill < Q

We have proved (i) and (ii). By [TT)*{g^) = C, \B\ < s, i = 0, 1, 2 , . . . , m, and the
vanishing moments of a, (iii) is obvious.

This concludes the proof of Theorem 1.2. •

PROOF OF THEOREM 1.3. L e t / e HK";P^W), that i s , / ( x ) = £*!_<„ ^ a , (*),

where each â  is an w-order dyadic central HK — (a, q\\ ^^-atom with support BJy

and ||/ \\Hk;x^ ~ (ZT-oo h I")'7"'- Then-

V

,P\IPI

V=-oo

oo / k-2

2kap' I
k=—oo \j=—oo

oo / oo

c y 2tep

= /l + /2.
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For /2, by the

Shunchao Long and Jian Wang

")-boundedness of T£m and Holder's inequality, we have

k i ~ m y

0 / 00 \ P'

k=-oo

(
*=-oo \=k-\

00 00

C\\b\'£o

oo / oo

2(k~i)p'a\*-j I"

?(*-J)PI<»/2II

if 0 < p, < 1

t=-oo V=*-l
/ 00 \P\lp\

x ( y ^ 2(k~j)p><a/21

oo ; + l

_/'= — 00

00

A = — 0 0

j + l

1̂" E

if 1 < p\ < 00

if 0 < p{ < 1

if 1 < Pi < oo
j—~oo k=—oo

00

That is, /2 < CWbW^oWf W^^n-^y For /,, since

k-i

[10]

and/Ct \b(x) -bBk\^
mdx < \Bk\\\b\\Z0 < C2k"(k -j)\\b\\l%0, fork > j , we have

_ * - l o y I II"J lli.«i(R")
1 Ov.-*) — DBk\ . I \K J / ll^llflMO i

——;— r- dx + I —— ——— dx
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[11] The higher order commutators of the fractional integrals on Hardy spaces 21

< C2'^s+Y)qi+nqi~'"ll^q^~^a91 2~k(n~x+s+Y^'n x 2kn(k — i)qim\\b\\qim

= c2{i~ms+Y+n)q2~'"lllqx)2~ic"l2{k -j

Hence

P\

< •

k=-oo V=-oo
oo k-1

c\\b\\pzBz
k=-ooj = -oo

00 / k-1

C\\b\\p
Btf0

k=-oo v=-oo

£ (k-jr'2<j-k»n+s+Y-"^-a)'" \kj r if o < Pl < 1

2<J-k)in+s+y-n/qi-a)Pl/2\Xj\Pl\
/

x ( l ^ - o o ^ -j)mP\2<J-k)(n+s+y-n/i<-a)P'</2Yl'P' if 1 < Pi < oo

00 00

X ) l^l" E (jt-;)m/7l20-*)(''+i+>'-n/l7 |-a)/71 if 0 < p, < 1

if 1 < Pl < oo

j=-oo
oo

C\\b\\p
B%0 J^ \\j\p> Yl 2(J-k)(n+s+Y-n/q'-a)>"/2

j=—oo k=j+2
oo

for / > a + n/9l -n-s. That is, /, < >r,
Thus, we have proved the case of homogeneous spaces of Theorem 1.3 The proof

of the non-homogeneous case is similar to that of homogeneous case. This concludes
the proof of Theorem 1.3. •

PROOF OF THEOREM 1.4. By the atom-molecule theory of Hk°-p(Rn) (see [18,
Theorem 2.5]), we need only to prove that there exists a constant C such that for each
dyadic central m-order HK-(a, qi;b)-atom Ok with support Bk, T£mak is a dyadic
central (a, q2, s, e)t-molecule, that is,

0) l |7 ;> 4 | | W ( R n ) <2- i a ;
(ii) N{rbmak) = ||7?inat||^(ll.)|||*|»rf7?111fl4(jc)||{.;^.) = C < oo;

(»0 fu.TZ.mak(x)x>>dx=O,\p\<s,
where s > [a + n(l/qi — 1)], (s + y — r)/n > £ > max{i/«, a/n+ \/qx — 1} (since
(s + y - x)/n > a/n + \/qx - 1), c = 1 - \/qx - a/n + s,d =1- l/q2 + £.

(i) By the L^R^-boundedness of T£m, we have

< C\\b\rBM02-k°.
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22 Shunchao Long and Jian Wang [ 12]

(ii)

f ixr'lT^adxW'dx = ( f + I ) \xrnd\rbmak{x)\^dx

= i + n.

For I, by the L9(ir)-boundedness of T£m, we have

For II, by Lemma 2.1 and Lemma 2.2 (<5 = q2nd), we have

/ / • \b(x)-bBt\«- dx ( c \\bWSSo d

ll
00

1' N V/ -i- j\92

I I 9 2
il

since (5 + y — r — en)^2 > 0. Therefore,
dkid-"w-cld) = C.

(iii) By (Tz)*(gie) = C, |/J| < 5, i = 0, 1 , . . . , m, and the vanishing moments of ak,
the vanishing moments of T£mak are obvious.

Thus, we have proved the case of homogeneous spaces of Theorem 1.4. The proof
of the non-homogeneous case is similar to that of homogeneous case. This conclude
the proof of Theorem 1.4. •

3. Fractional integrals

Let 0 < r < n, we define the fractional integrals of T by

The proof of the boundedness of TT from L1" (Kn) into L^CR") for 1 < qx < q2 < 00
such that l/<7i — l/q2 = x/n can be found in [24]. Thus, the fractional integrals Tx

as above satisfy the condition in Definition 1 for y = 1 and any s > 0. Hence, as the
special case of Theorems 1.1-1.4, we have the following corollaries.
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[13] The higher order commutators of the fractional integrals on Hardy spaces 23

COROLLARY 3.1. Let 0 < p, < 1, \/p2 = l/pi - x/n, s > [n(l/pi - 1)],
1 < q\ < 00, and let Tz be a fractional integral operator (as above) and b e BMO.
Ifn/(n - x + s + 1) < p2 < +00 andO < x < n, then Tb

r
m maps H^m

quS(Rn) into
L^(Rn).

The case pi = 1 and m = 0 of Corollary 3.1 was proved by Stein and Weiss.

COROLLARY 3.2. Let 0 < px < 1, l/p2 = l/pi - x/n, s > [n(l/pt - 1)],
1 < q\ < 00, and let TT be a fractional integral operator and b € BMO. Assume that
{TxY{bi{x)x^) = C, \p\ < s, i = 0, 1 m. Ifn/(n - x + s + 1) < p2 < 1 and
0 < x < 1, then T£m maps H^m

quS(Rn) into HP2(Rn).

The case 0 < p\ < p2 < 1 and m = 0 of Corollary 3.2 was proved by Taibleson
and Weiss [25].

COROLLARY 3.3. Let 0 < r < n, s > 0, 0 < px < p2 < oo, 1 < qx < oo,

\/q2 = 1/g, - r/n, n(l - \/qx) < a < s + 1 + n(l - l/qx), and let Tz be a
fractional integral and b e BMO. Then Tbm maps HK^£(W) into K^P2(Rn) and
/ / ^ ^ ( R " ) into K°fi(.Rn), respectively. '

COROLLARY 3.4. Letpi, p2, qu q2, x, a, s, Tr and b be as in Corollary 3.3. Assume
that (mb'Mxl*) = C, III <s,i = 0,l,...,m. Then Tbm maps HKa

q^m(W)
into HKa

q^(W) and HKa
q;

p
b\^(Rn) into H^P2(R"), respectively.

The case m = 0 of Corollary 3.3 and Corollary 3.4 can be found in [14,18].
The case m = 1 of Corollary 3.3 can be found in [19].
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