J. Austral. Math. Soc. (Series A) 66 (1999), 18-31

ON THE VALUE DISTRIBUTION
OF ITERATED ENTIRE FUNCTIONS

ZHENG JIAN-HUA
(Received 2 March 1998; revised 24 August 1998)

Communicated by P. C. Fenton

Abstract

Let f be a transcendental entire function and denote the n-th iterate of f by f,. Forn > 2, we give an
explicit estimate of the number of periodic points of f with period n, that is, fix-points of f, which are
not fix-points of f; for1 <k < n.
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1. Introduction and results

We begin by introducing the following fundamental notation and definitions. Let f (z)
be a transcendental entire function. We denote by f,(z) the n-th iterate of f (z) which
is defined by fo(z) = z, f1(2) = f(2), fa(2) = f (fa-1(2)) = fa1(f (2)). A point
Zp 18 said to be a periodic point with period n if f,(z0) = zo but for 0 < k < n,
fx(z0) # z0. And according as the modulus of its multiplier, A = f,(z), satisfies
Al < 1, |A] = 1, or |} > 1, we classify the periodic point z, of period n into,
respectively, attracting, indifferent or repelling. We denote by p(f) the order of f (z);
by F a set on the positive real axis with finite logarithmic measure, not necessarily
the same at each occurrence; and by v(r, f ) the central index of the power series of f
expanded at z = 0. We shall use the standard notation of Nevanlinna theory, such as
T(r,f), N(r,f)and N(r, ) (see [7]).
The following is the main result of this paper.
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[2] Value distribution of iterated entire functions 19

THEOREM 1. Let f (z) be a transcendental entire function. Then for n > 2, there
exists an unbounded sequence of r such that either

1

(1) (1 —o(1)) 403

log M(r, fa) < N, ((e + Dr, f;) ,

n—2

or for every finite complex number a,

(1—0(1))n<rd, ! )<n_,,(r, ! ),
fn_a fn_z

where N, (r,1/(fn — 2)) is the counting function corresponding to the number
n,(r,1/(f. — 2)) of periodic points of f with period n, ignoring multiplicities, in
|z| <r, and d > (1/1500)2.

We remark that Theorem 1 gives an estimate of the number of periodic points of
period n of f and confirms the conjecture, posed by Baker ([8, Problem 2.20]) and
proved by Bergweiler [5], that for n > 2, there exist infinitely many periodic points of
period n. For references of the background of this subject we refer the reader to [2],
[3] and [5].

The method used in this paper, and which is in essence due to [5] and {11], enables
us to prove the following theorem.

THEOREM 2. Let f (2) be a transcendental entire function and P(z) a non-constant
polynomial. Then for n > 2, there exists an unbounded sequence of r such that

1 1
@) ¢ —0(1))§0—310gM(rd,fn) <N (r,f — P)’

where d > 1/1500.

We remark that under the assumption of p(f) < 1/2, Baker [2] showed that the
inequality

logM(r?, f,) < N (r, ) + O(log r)

n

holds for all sufficiently large r, where d depends on n and po(f), and d — 0, as
n — 0Q.

Finally, from the proof of the above theorems given below, we immediately deduce
the following theorem.
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THEOREM 3. Let f (z) and g(z) be two transcendental entire functions and P(z)
a non-constant polynomial. Assume that f (2) has a finite deficient value or a finite
asymptotic value. Then we have

1 _ 1
@logM(r,f(g)) <n (X, f—(g_)_——l-’_) + O(log ru(r, g))

3) <N (ex, jTg)lfF) + O(logrv(r, g)), r ¢ F,

where x =r + cr/v(r, g), c = 20(4 + ).

Note that each of the conditions which f (z) satisfies in Theorem 3 implies p(f ) >
1/2.

THEOREM 4. Let f (z), g(z) and P(z) be given as in Theorem 3. Assume that
p(f) < 1/2. Then there is a constant ¢ > 1 such that for all sufficiently large r, we
have

1 1
4) (1—o()=TC", f(g) <N (r, ——) :

a1 F@-P
where d = min{1/1085, ¢/(cos mp — &)}, in which ¢ > 0 is chosen sufficiently small
so thatcosmp — e > 0.

2. Some results needed in proofs

First of all, let us establish a different form of Nevanlinna’s second fundamental
theorem. It is well-known that the second fundamental theorem of Nevanlinna can be
re-expressed as follows:

Let F(z) be meromorphic in |z| < R. If F(0) # 0, 1, 00 and F'(0) # 0, then for
0 < r < R, we have

—_— — 1 — 1 F’
T(r, F) <N(r,F)+N(r,F)+N(r, F—l)+m(r’F)

F’ FO)(F(0)—1)
&) +m<r,F 1)+10g‘———-—1!4_—,(0)—i—f—log2.

From (5) and by the same argument as in Yang [10, p. 64], we deduce the following
lemma.
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LEMMA 1. Let F(z) be meromorphic in |z| < R(< 00). If F(0) # 0, 1,00 and
F'(0) #£0, thenfor0 <r <R,

— — 1 — 1
T(r, F) <2 {N(R, F)+N (R, f) +N (R, F—_T)} +191

1
4log* |[F(0)| +2log* ———— + 12log* .
+4log™ [F(0)| +2log R|F’(0)|+ S —

We further deduce the following consequence of Lemma 1.
LEMMA 2. Let F(z) be holomorphic in |z] < R and let

1 1
N:=— R,— n R,_—"‘ )
"( F)“( F—l)

where 7i(R, *) denotes the number of distinct poles of * in |z| < R. Then for
0 < r < R, we have

20R
logM(r, F) <

R—r

80¢R 5R
2N log ——= 4+ 195 + 4log* | F(zo)| + 12log* —— ) ,
R—r R—-r

forall zyin |z] < (R — r)/5, except possibly for the points in the union (y) of certain
disks, the total sum of whose radii does not exceed (R — r)/20.

PROOF. Let a, (v = 1,..., N) be all the distinct zeros and distinct 1-points of
F(z)in |z{ < R. By the Boutroux-Cartan theorem, we have
N
R—-—r
6 — &y Nv = )
(6) ]J lz —a,| > u n=—s

except for the points in the union (y) of certain disks, the total sum of whose radii is
at most 2ep < (R — r)/20.

Letzy € (y)beapointin |z| < (R—r)/5, and in the annulus [ := {r+ %(R —-r) <
[z—2l <r+ %(R — r)}, we can find a circle |z — zo| = ¢ which does not intersect
with (y). We can do this because the distance between the inner and outer circles of
Iis(R—r)/5 > 4eu. Set

|F(w)| = max |F(z)|

and draw a segment Zow connecting z, and w. Then we can construct a curve L from
ZoWw by replacing the part of Zow in the interior of (y) by the corresponding boundary
arcs of the discs. Obviously, the length of L does not exceed

R-—r

10

< R.

3
r+§(R—r)+7r

https://doi.org/10.1017/51446788700036247 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036247

22 Zheng Jian-Hua [5]

We need to consider two cases.
Case(a). The inequality | F'(z)| < 1/R holds uniformly on L. Obviously,

/ F'(z)dz
L

Since {z : |z| < r} C {z: |z — 20| < t}, we have

|F(w)| < |F(z0)| +

logM(r, F) <logM(t, 20, F) < log* |F(z)| + log2.

Case(b). There exists a point z; on L such that | F'(z;)| = 1/R and | F'(2)| < 1/R
holds uniformly on L from z; to z;. If [F'(z)| = 1/R, we define z; = z5. Then

|F(z)] < |F(z0)| + 1.

Setyp = [w—zi|[+(R—r)/10,y; = [w—z;|+(R—r)/5and y, = |[w—z/|+2(R—-r)/5.
Itiseasytoseethat{z : [z —z| < y»} C{z:|z| < R}. Leta, (v=1,2,... ,Ny)
be all the distinct zeros and distinct 1-points of F(z) in [z — z;| < y». Since z; € (y),
from (6) it follows that

Ny N N
RN [l —al 2 (H\zl —av|> ( [T 1z -av|> > u",
v=1 v=1

v=N,+1

and further

N M
R—r Tl |21 — ay|
Thus we have

— 1 — 1 80eR
@) N )’2,21,; + N Vz,Zl,F_

)leogR .

1

—r
From (7), and using Lemma 1 in the disk {|z — z;| < y»}, it follows that

log M(r, F) <log|F(w)| < log M(ys, 21, F)

+
< T 1z, F)
Y1 — Yo

20R 80eR
(21\”0g__e_-+-191+4log+|F(z,)|+12logJr V2 )
R—r Y2 — %

—-r
20R

R—r

80eR SR
IN log ——— + 195 + 4log* | F(zo)| + 12log* —— ) .
R—r R~—r

Thus Lemma 2 follows. |
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LEMMA 3. Ler g(z) be a transcendental entire function. Assume thatc > 0, K > 0
and n > 0. Suppose that |20l =r € F, |g(z0)| = nM(r, g) and |o| < K. Then there
exists a unique s such that {v(r, g)s — o| = o(l) and

8(z0€’) = g(20)€’,
and a function 1(2) defined and analytic on |z — 29| < cr/v(r, g), and satisfying
Iz (@)v(r, &) — 2mi| = o(1)
such that
g(ze™) = g(2).

Lemma 3 is in essence proved by using Wiman-Valiron theory [9] and was explicitly
developed by Bergweiler [4]. The following lemma is due to Clunie [6].

LEMMA 4. Let f (2) and g(2) be two transcendental entire functions. Then
M(r,f(g)) =M1 —-o0(1)M(r,8),f), r € F.

The following lemma is due to Baker [1]. It is often used in the proof of the main
theorem of Bergweiler [5], as well as in this paper.

LEMMA 5. Let f (z) be an entire function. For any B > A, if [f(z)| < R
in |z} < A, but |f(z)] > R on |z| = B, then there exists a simple curve I' in
{A < |z| < B} going around the origin once such that |[f (z)| = Ron T

By analyzing the proof of [2, Theorem 1], we are immediately able to prove the
following lemma.

LEMMA 6. Let F(2) be a transcendental entire function and P(Z) be a polynomial
with the first term a,,z™ (a, # 0). Assume that, for some o > 1 and some r satisfying

2|lan|r™ = |P()l, on |z|=1r",

there exists a simple closed curve I' C {r < |z| < r?} going around the origin once,
on which

|F(2)| = M > 2la,|r™.
Then

1
N (r", fj) > log(M —2|a,|r™) — O(logr).
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24 Zheng Jian-Hua 7
3. Proofs of theorems
We begin with the proof of Theorem 2. Put g = f,,_,, so that f (g) = f,.. Assume

that for sufficiently large r ¢ F, where F is the set arising from Lemmas 3 and 4, we
have

_ 1 1
(8) n(x,f(g) — P) = 1203 log M(r, f (),

where x =r + 2R, R =204 + m)r/v(r, g).
‘We want to prove the following

CLAM. In
9) e>M(r,g) < |w|l < e€M(r, g),

there exists a circle Ty : |w| = &, on which we have

1
1403

(10) (1 -o(D) log M(r, f (g)) < log|f (w)].

The same inequality still holds with f and g interchanged.

Now we choose a point zy on |z} = r such that

If (gt = M (r, f (8)) = M((1 — o(1))M(r, &), ),

then M(r, g) = |g(z0)| = (1 — o(1))M(r, g). Application of Lemma 3 to z, and g
implies the existence of an analytic function 7(z) defined in |z — | < R, where
R =20(4 + m)r/v(r, g), such that

(11) [t(@)v(r, g) —2mij < 1
and
(12) g(ze"™) = g(2).

Set k(z) = ze*@ and

_J@@)-PQR)

4 "= Pk =Py

in {z — 2o} < R. It is easy to prove that 4(z) is analytic in |z — zo| < R. Let (y) be
the union of exceptional disks, the total sum of whose radii does not exceed R/80,
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[8] Value distribution of iterated entire functions 25

the existence of which follows from Lemma 2, taking F = h, r = %R and the disk
Iz — 20|l < R.

For w satisfying (9) we can write w = ¢°g(z), where |[Re o| < 3, |Im o} < 7.
From Lemma 3, we can find a unique s such that v(r, g)s = o + o(1) and g(z€’) =
g(z9)e’ = w. Put u = z¢’, then
(4+m)r R

v(r, g) T 20

It is obvious that the mapping w = e” g(zo) maps the segment

lu— 2zl =rle’ — 1] <

L ={w: argw =0 and e>M(r, g) < |w] < &M(r, g)}

into a segment which contains the segment

8 8
L, = {or: arg g(zo) + Im o = 6 and -3 <Reo < 5]
and that L, is mapped by u = zp¢*, v(r, g)s = o + o(1), into a curve L3, the diameter
of which is at least R/30. And therefore we can find a circle I'y : |w| = &, in

{e>M(r, g) < |w| < &M (r, g)} which is such that u corresponding to w on I'y is not
contained in (y).
Obviously, by (11), a simple calculation implies that

{z:lz—2l<R}YC{z: lzl <r+R}
and
(k(z): lz—zl <RYC{z: |zl <r+2R =x}.
Thus it follows from (12) and (13) that

i 1 1
n R’ 7h n R’ 7— n R’ ’_-— S_ 9——— .
R A G e B G )
By applying Lemma 2 to h(z) in |z — 25! < R, for u & (y) satisfying |u — z5| <
(R — 3R)/5 = R/20, we have

3
log |h(z0)| < log M (ZR, 20, h)

20R 1 80eR
———{2n| x, 1 195 + 4log* |h
< __%R{n(x f(g)—P)OgR—3R+ +4log™ |h(uw)]

4

SR
121og*
Ficloe R——%R}

< 1083n (x ) + O(1) 4+ 3201log™ |h(u)|.

"fe)—-P
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On the other hand, from (13) it follows that

log [h(z)| > log M(r, f (g)) — O(log ru(r, 8)).

Hence, by (13) we have

log M (r, f (g)) < 1083n <X ) + O(log ru(r, g)) + 320log™ |h(w)|

1
"f(@—P
(14 < 1083n (x, ————1———> + O(log ru(r, g)) + 3201og™ |f (w)|,

f—-P

and further from (8)

r:(EIOgM(r,f(g)) < log" |f (w)| + O(log ru(r, g)),
on ['g. Thus the claim is proved.
Now choose a ¢t ¢ F in the interval ((M(r, £)/2)"/1%, (M(r, f)/2)7), where
q = %(1/1403 + 1/1425). Then from the claim, with alternation of f and g, and
the fact that log M (r, g) is convex with respect to log r, we have on I'y : |w| = §, C
{e?M(r, f) < |lw| < EM(r, f)}

1
log{g(w)| = (1 — o(1)) 1403 log M(r, g(f))
i
= (1 —-o(1)) 1403 logM(M(r, f)/2, 8)

> logM(t, g) + 3,

so that

lgw)| > &€M(1,8) > &.

On the other hand, obviously for jw| < t*, « = 29/30, we have

lg(w)l < e M1, 8) <&.

Then there exists a simple curve ' C {1* < |w| < &} C {1* < |w| < ') = { <
lw] < 5%}, ¢ = *, which goes around the origin once and on which |g(w)| = &,.
Applying the claim once more implies that

1
1403

(15) log* |f (g(w)l > (1 — o(1)) log M (¢, f(g)), onT.

Then by Lemma 6, we get (2).
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[10] Value distribution of iterated entire functions 27

If for an unbounded sequence of r € F, (8) does not hold, it is easy to deduce (2)
from the convexity of log M (r, g) with respect to log r and the fact that

1 — 1
X, 7 5N<ex,—>-
( f(g)—P> f—-P
Thus the proof of Theorem 2 is complete.

Now we are in position to prove Theorem 3. Conversely, suppose that for r ¢ F,
we have

_ 1 1
(16) n (x, @)= P) = Jog3 log M (r. f (8)) — Olog ru(r, &)) — 320log ),

where O(log rv(r, g)) is the quantity occurring in (14). By the same argument as in
the proof of the claim , from (14) and (16), we can prove that there exists a circle
Iy : lw| = &, on which we have

(17) logr < log|f (w)].

In fact, first of all, we deduce (14), and by (16) deduce (17). Obviously for any finite
number a, it follows from (17) that for sufficiently large r

1
log |f (w) —al| > 1, thatis, m{&,, =0,
f—a

where |w| = &,, so §(a, f) = 0 and it is easy to see from (17) that f has no finite
asymptotic values, which is a contradiction. Thus (16) does not hold, and Theorem 3
follows.

Before proving Theorem 4, we need a well-known result on transcendental entire
function with order less than 1/2.

LEMMA 7. [1, p. 131, formula (25)]. Let € > O be a given number and h(z) an
entire function of order p < 1/2. Then there exists a constant ¢ > 1 such that, for all
sufficiently large R, the interval (R, R¢) contains an Ry with

M(Ro, k) > (M (Ro, B)} ™7™,

where m(Ry, h) denotes the minimum modulus of h(w) on |w| = R,.

Now we prove Theorem 4. Let ¢ > & > 0 be sufficiently small such that
costp—¢&>0.Putp = (cosmp —€)~!, po = (cosTp — &) ~'. By the convexity of
log M(r, g) as a function of log r, we have

M(r*, g) = (€M(r, ).
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Application of Lemma 7 to &, and g implies the existence of ¢ > 1 which is such that
the interval (7, r) contains an R, such that on |z} = R,

1g(@)| = m(Ro, §) = M(Ro, 8)'"°
> M@, g)'P > e M(r, g)

> &,.

On the other hand, it is obvious that |g(z)] < M(r'™%,g) < eM(r,g) <&, in
lz| < r'™®, where § is a sufficiently small positive number. Then it follows from
Lemma 5 that there exists a curve I' C {r'~? < |z] < r®} which contains the origin
in its interior and on which |g(z)| = &,.

If for r ¢ F, (16) with 320cp(degP + 1)logr instead of 320logr does not
hold, then (4) immediately follows. Now we assume such (16) holds, then we have
(17) with cp(degP + 1) logr instead of logr on |w| = &, that is, log* |f (w)| >
cp(deg P + 1)logr, |w| = &,. Then on I" we have

log® |f (g(z)| = cp(deg P + 1) logr > log(|P(2)| + 1 + a),
where a is a complex number such that N(r, 1/(f (g) — a)) = (1 — o(1))T(r, f (g)).

By Rouché’s theorem, we deduce that f (g) — P has as many zeros as f (g) — a does
in the interior of I", and therefore for all sufficiently large r > r,

1 1 1
C’P’— Fv_— = Fv—
"(’ f(g)—P>Zn< f(g)—P) "( f(g)—a)
>n<r1_5 ——l )
— ’f(g)_a 9

where n(T", ) is the number of poles of * in intI". Further for r > r,

N(r"’, ! )> i N(rl"s,—1 )
f@—-P)  1-4 f@) —a

=(- o(l))%nr”,f(g)),

since for arbitrary positive s,

"n(r, 1 " n(r, 1
f”( *)dt=—f 2 e = Ine o+ o).
o t S Jr [ s

By choosing a smaller ¢ than the one in the above, we deduce (4). Thus Theorem 4
follows.
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Finally, we prove Theorem 1. For 0 < k < n and arbitrarily large K, we have

logM(r, f,) = logM (%M Gr, fn_k) ,fk)

> logM (((e + )N, fi)
> (1 - o())K T((e + Dr, fo),

and hence

Kk —Z

N ((e+ Dr, 7 ! ) < T{e+ Dr, fi) + O(logr)
= o(logM(r, f,)).

On the other hand, it is easy to see that

—_ 1 — 1 L 1
N"(r’fn—Z) ZN<r,fn_z)—;N(r,fk_Z)'

Set g = f,_,, so that f (g) = f,. Therefore, if (8) does not hold for some unbounded
sequence of r ¢ F, then we easily deduce that

1
1403

A ((e+ D)r, ) > (1-o0(1)) log M(r, f,).

n

This is (1). Now, we can assume that for all » € F, we have (8) and further
deduce the claim. By the same argument as in the proof of Theorem 2, we can
find a simple curve I' C {f < |w| < 1'"®} going around the origin once and on
which (15) holds. Then the argument of Lemma 5 implies the existence of a simple
curve Iy C {f'/"% < |Jw| < %%} which surrounds the origin once and on which
If (8(2)] = M(R,f(g)), where R = t# ¢ F, 1/1406 < B < 1/1403. Define
Go = intly, G, = g(Gy), G, = f(G)) and ['; = 9G; (0 < j < 2). Obviously,
by the Maximum Principle, all the G; are simply connected and all the I'; are simple
curves and surround the origin once. Assume that g(z) (respectively, f (z)) describes
p1 (respectively, p,;) times the curve I'; (respectively, I';) as z describes the Iy
(respectively, I'y) once. Then f (g) has P, = p,p, zeros in Gy. By Rouché’s theorem,
f (g(2)) — z also has P, zeros in Gy. From the main ideas in Bergweiler [5], by a little
modification of his proof, we can prove that

(18) Py=(1-o(1)P,,

where P, denotes the number of distinct zeros of f (g(2))—z in Gy. For completeness,
we shall give the proof of (18). First of all, we want to prove that

(19) Gy CG,0<j<n—1
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It is obvious that G, is a domain and contains the origin. By the maximum prin-
ciple, f;(Go) C {lw] < M@, f;)}, 0 < j < n— 1. Since on Ty, |f (g(2)| =
M(R, f(g)) 2 MGM(R, g), f), we have that |g(z)| = M({#™®,f;),0<j <n—1,
on 'y, noting that f is transcendental. Thus (19) follows from I'y ¢ g(I'y) C
M@EP, f)) <wl},0<j <n—1.

Let zp € Gy be a zero of f (g(z)) — z with multiplicity m + 1. Then we have that
f.(z0) = 1 and z, is a periodic point with period k < n. Let p be the smallest positive
integer such that (f(z))” = 1, and further kp < n, and let m, + 1 be the multiplicity
of the zero zy of fy,(z) —z. Thenitis easy to see that s = n/(kp) is a positive integer,
and f, = (fi)s, and therefore m = m,. By a result of Fatou (see [5, Lemma 6]), it
follows that there exist m/p cycles of Leau domains, each of which contains at least
one singularity of the inverse function of f, and which are in Gy, by [5, Lemma 8]
and (19). Therefore G, contains at least m/p critical points of f, for from the claim it
is easy to see that f has no asymptotic values. However, f has at most p, — 1 critical
points in G,. Hence we have

P=Pis Y km=3 kpo <n(pr= D),

where ) _ is taken over all the zeros of f (g(z)) — z in G,. This implies (18), since
p1 — 00,as r — 00.

By (P,); we denote the number of zeros of f;(z) — z in Gy. Obviously, it follows
from |f,(z)] = M(R, f,) on g that |f; (z)| > |z] (0 < j <n —1)onT,, and hence
(P,); is equal to the number of zeros of f;(z) in Gy, that is, the winding number of
f; (Ty) around the origin. Obviously, (P;); < (P;),-) = p,. Since

n—1

(A= o())P, < P, < (P, + Y (Py); < (P, + (n— Dpy,

j=1

we have

(P)a = (1 —o(1) Py,

where (P,), denotes the number of distinct periodic points of period n of f (z) in G,
and further we have for arbitrary a € G,

1 1 1
n. | R?, >n, R > (1 —o(1 ,
" ( fn-z)>" (F" fn—z>>( ol ”"(F" fn—z>

! 1
=1 -o()n (Fo, 7o a) > (1 —o())n (R, 7o a) ,

where v = 15007, and 7, (T, 1/(f.» — z)) is the number of distinct periodic points of
period n of f in int [',.
Thus Theorem 1 follows.
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