J. Austral. Math. Soc. (Series A) 66 (1999), 18-31

ON THE VALUE DISTRIBUTION OF ITERATED ENTIRE FUNCTIONS

ZHENG JIAN-HUA

(Received 2 March 1998; revised 24 August 1998)

Communicated by P. C. Fenton

Abstract

Let f be a transcendental entire function and denote the *n*-th iterate of f by f_n . For $n \ge 2$, we give an explicit estimate of the number of periodic points of f with period n, that is, fix-points of f_n which are not fix-points of f_k for $1 \le k < n$.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 30D05, 58F20. Keywords and phrases: entire function, iteration, periodic points.

1. Introduction and results

We begin by introducing the following fundamental notation and definitions. Let f(z) be a transcendental entire function. We denote by $f_n(z)$ the *n*-th iterate of f(z) which is defined by $f_0(z) = z$, $f_1(z) = f(z)$, $f_n(z) = f(f_{n-1}(z)) = f_{n-1}(f(z))$. A point z_0 is said to be a periodic point with period *n* if $f_n(z_0) = z_0$ but for 0 < k < n, $f_k(z_0) \neq z_0$. And according as the modulus of its multiplier, $\lambda = f'_n(z_0)$, satisfies $|\lambda| < 1$, $|\lambda| = 1$, or $|\lambda| > 1$, we classify the periodic point z_0 of period *n* into, respectively, attracting, indifferent or repelling. We denote by $\rho(f)$ the order of f(z); by *F* a set on the positive real axis with finite logarithmic measure, not necessarily the same at each occurrence; and by v(r, f) the central index of the power series of *f* expanded at z = 0. We shall use the standard notation of Nevanlinna theory, such as $T(r, f), \overline{N}(r, f)$ and N(r, f) (see [7]).

The following is the main result of this paper.

This work is supported by NSF of China.

^{© 1999} Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

THEOREM 1. Let f(z) be a transcendental entire function. Then for $n \ge 2$, there exists an unbounded sequence of r such that either

(1)
$$(1-o(1))\frac{1}{1403}\log M(r,f_n) < \overline{N_n}\left((e+1)r,\frac{1}{f_n-z}\right),$$

or for every finite complex number a,

$$(1-o(1))n\left(r^d,\frac{1}{f_n-a}\right)<\overline{n_n}\left(r,\frac{1}{f_n-z}\right),$$

where $\overline{N_n}$ $(r, 1/(f_n - z))$ is the counting function corresponding to the number $\overline{n_n}(r, 1/(f_n - z))$ of periodic points of f with period n, ignoring multiplicities, in $|z| \le r$, and $d \ge (1/1500)^2$.

We remark that Theorem 1 gives an estimate of the number of periodic points of period n of f and confirms the conjecture, posed by Baker ([8, Problem 2.20]) and proved by Bergweiler [5], that for $n \ge 2$, there exist infinitely many periodic points of period n. For references of the background of this subject we refer the reader to [2], [3] and [5].

The method used in this paper, and which is in essence due to [5] and [11], enables us to prove the following theorem.

THEOREM 2. Let f(z) be a transcendental entire function and P(z) a non-constant polynomial. Then for $n \ge 2$, there exists an unbounded sequence of r such that

(2)
$$(1 - o(1)) \frac{1}{1403} \log M(r^d, f_n) < N\left(r, \frac{1}{f_n - P}\right),$$

where $d \ge 1/1500$.

We remark that under the assumption of $\rho(f) < 1/2$, Baker [2] showed that the inequality

$$\log M(r^d, f_n) < N\left(r, \frac{1}{f_n - z}\right) + O(\log r)$$

holds for all sufficiently large r, where d depends on n and $\rho(f)$, and $d \to 0$, as $n \to \infty$.

Finally, from the proof of the above theorems given below, we immediately deduce the following theorem.

Zheng Jian-Hua

THEOREM 3. Let f(z) and g(z) be two transcendental entire functions and P(z) a non-constant polynomial. Assume that f(z) has a finite deficient value or a finite asymptotic value. Then we have

(3)

$$\frac{1}{1083}\log M(r, f(g)) < \overline{n}\left(\chi, \frac{1}{f(g) - P}\right) + O(\log rv(r, g))$$

$$\leq \overline{N}\left(e\chi, \frac{1}{f(g) - P}\right) + O(\log rv(r, g)), \ r \notin F,$$

where $\chi = r + cr/v(r, g)$, $c = 20(4 + \pi)$.

Note that each of the conditions which f(z) satisfies in Theorem 3 implies $\rho(f) \ge 1/2$.

THEOREM 4. Let f(z), g(z) and P(z) be given as in Theorem 3. Assume that $\rho(f) < 1/2$. Then there is a constant c > 1 such that for all sufficiently large r, we have

(4)
$$(1-o(1))\frac{1}{d}T(r^d, f(g)) < N\left(r, \frac{1}{f(g) - P}\right),$$

where $d = \min\{1/1085, c/(\cos \pi \rho - \varepsilon)\}$, in which $\varepsilon > 0$ is chosen sufficiently small so that $\cos \pi \rho - \varepsilon > 0$.

2. Some results needed in proofs

First of all, let us establish a different form of Nevanlinna's second fundamental theorem. It is well-known that the second fundamental theorem of Nevanlinna can be re-expressed as follows:

Let F(z) be meromorphic in $|z| \le R$. If $F(0) \ne 0, 1, \infty$ and $F'(0) \ne 0$, then for 0 < r < R, we have

(5)
$$T(r, F) < \overline{N}(r, F) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{F-1}\right) + m\left(r, \frac{F'}{F}\right) + m\left(r, \frac{F'}{F}\right) + m\left(r, \frac{F'}{F-1}\right) + \log\left|\frac{F(0)(F(0)-1)}{F'(0)}\right| + \log 2.$$

From (5) and by the same argument as in Yang [10, p. 64], we deduce the following lemma.

LEMMA 1. Let F(z) be meromorphic in $|z| \le R(<\infty)$. If $F(0) \ne 0, 1, \infty$ and $F'(0) \ne 0$, then for 0 < r < R,

$$T(r, F) < 2\left\{\overline{N}(R, F) + \overline{N}\left(R, \frac{1}{F}\right) + \overline{N}\left(R, \frac{1}{F-1}\right)\right\} + 191$$
$$+ 4\log^{+}|F(0)| + 2\log^{+}\frac{1}{R|F'(0)|} + 12\log^{+}\frac{R}{R-r}.$$

We further deduce the following consequence of Lemma 1.

LEMMA 2. Let F(z) be holomorphic in $|z| \leq R$ and let

$$N := \overline{n}\left(R, \frac{1}{F}\right) + \overline{n}\left(R, \frac{1}{F-1}\right),$$

where $\overline{n}(R, *)$ denotes the number of distinct poles of * in |z| < R. Then for 0 < r < R, we have

$$\log M(r, F) < \frac{20R}{R-r} \left(2N \log \frac{80eR}{R-r} + 195 + 4 \log^+ |F(z_0)| + 12 \log^+ \frac{5R}{R-r} \right),$$

for all z_0 in |z| < (R - r)/5, except possibly for the points in the union (γ) of certain disks, the total sum of whose radii does not exceed (R - r)/20.

PROOF. Let a_v (v = 1, ..., N) be all the distinct zeros and distinct 1-points of F(z) in |z| < R. By the Boutroux-Cartan theorem, we have

(6)
$$\prod_{v=1}^{N} |z - a_v| > \mu^N, \qquad \mu = \frac{R - r}{40e},$$

except for the points in the union (γ) of certain disks, the total sum of whose radii is at most $2e\mu < (R - r)/20$.

Let $z_0 \notin (\gamma)$ be a point in |z| < (R-r)/5, and in the annulus $I := \{r + \frac{2}{5}(R-r) \le |z - z_0| \le r + \frac{3}{5}(R-r)\}$, we can find a circle $|z - z_0| = t$ which does not intersect with (γ) . We can do this because the distance between the inner and outer circles of I is $(R - r)/5 > 4e\mu$. Set

$$|F(w)| = \max_{|z-z_0|=t} |F(z)|$$

and draw a segment $\overline{z_0w}$ connecting z_0 and w. Then we can construct a curve L from $\overline{z_0w}$ by replacing the part of $\overline{z_0w}$ in the interior of (γ) by the corresponding boundary arcs of the discs. Obviously, the length of L does not exceed

$$r+\frac{3}{5}(R-r)+\pi\frac{R-r}{10}< R.$$

We need to consider two cases.

Case(a). The inequality |F'(z)| < 1/R holds uniformly on L. Obviously,

$$|F(w)| \leq |F(z_0)| + \left| \int_L F'(z) dz \right|.$$

Since $\{z : |z| < r\} \subset \{z : |z - z_0| < t\}$, we have

$$\log M(r, F) \le \log M(t, z_0, F) \le \log^+ |F(z_0)| + \log 2.$$

Case(b). There exists a point z_1 on L such that $|F'(z_1)| = 1/R$ and |F'(z)| < 1/R holds uniformly on L from z_0 to z_1 . If $|F'(z_0)| \ge 1/R$, we define $z_1 = z_0$. Then

$$|F(z_1)| \le |F(z_0)| + 1.$$

Set $\gamma_0 = |w-z_1| + (R-r)/10$, $\gamma_1 = |w-z_1| + (R-r)/5$ and $\gamma_2 = |w-z_1| + 2(R-r)/5$. It is easy to see that $\{z : |z-z_1| \le \gamma_2\} \subset \{z : |z| < R\}$. Let a_v $(v = 1, 2, ..., N_1)$ be all the distinct zeros and distinct 1-points of F(z) in $|z-z_1| \le \gamma_2$. Since $z_1 \notin (\gamma)$, from (6) it follows that

$$(2R)^{N-N_1}\prod_{\nu=1}^{N_1}|z_1-a_{\nu}|\geq \left(\prod_{\nu=1}^{N_1}|z_1-a_{\nu}|\right)\left(\prod_{\nu=N_1+1}^{N}|z_1-a_{\nu}|\right)>\mu^N,$$

and further

$$\left(\frac{80eR}{R-r}\right)^N \ge \prod_{v=1}^{N_1} \frac{R}{|z_1 - a_v|}$$

Thus we have

(7)
$$\overline{N}\left(\gamma_2, z_1, \frac{1}{F}\right) + \overline{N}\left(\gamma_2, z_1, \frac{1}{F-1}\right) \leq N \log \frac{80eR}{R-r}.$$

From (7), and using Lemma 1 in the disk $\{|z - z_1| < \gamma_2\}$, it follows that

$$\log M(r, F) \leq \log |F(w)| \leq \log M(\gamma_0, z_1, F)$$

$$\leq \frac{\gamma_1 + \gamma_0}{\gamma_1 - \gamma_0} T(\gamma_1, z_1, F)$$

$$\leq \frac{20R}{R - r} \left(2N \log \frac{80eR}{R - r} + 191 + 4 \log^+ |F(z_1)| + 12 \log^+ \frac{\gamma_2}{\gamma_2 - \gamma_1} \right)$$

$$\leq \frac{20R}{R - r} \left(2N \log \frac{80eR}{R - r} + 195 + 4 \log^+ |F(z_0)| + 12 \log^+ \frac{5R}{R - r} \right).$$

Thus Lemma 2 follows.

LEMMA 3. Let g(z) be a transcendental entire function. Assume that c > 0, K > 0and $\eta > 0$. Suppose that $|z_0| = r \notin F$, $|g(z_0)| \ge \eta M(r, g)$ and $|\sigma| < K$. Then there exists a unique s such that $|v(r, g)s - \sigma| = o(1)$ and

$$g(z_0e^s)=g(z_0)e^{\sigma},$$

and a function $\tau(z)$ defined and analytic on $|z - z_0| \leq cr/v(r, g)$, and satisfying

$$|\tau(z)v(r,g) - 2\pi i| = o(1)$$

such that

$$g(ze^{\tau(z)}) = g(z).$$

Lemma 3 is in essence proved by using Wiman-Valiron theory [9] and was explicitly developed by Bergweiler [4]. The following lemma is due to Clunie [6].

LEMMA 4. Let f(z) and g(z) be two transcendental entire functions. Then

$$M(r, f(g)) = M((1 - o(1))M(r, g), f), r \notin F.$$

The following lemma is due to Baker [1]. It is often used in the proof of the main theorem of Bergweiler [5], as well as in this paper.

LEMMA 5. Let f(z) be an entire function. For any B > A, if |f(z)| < Rin |z| < A, but |f(z)| > R on |z| = B, then there exists a simple curve Γ in $\{A \le |z| < B\}$ going around the origin once such that |f(z)| = R on Γ

By analyzing the proof of [2, Theorem 1], we are immediately able to prove the following lemma.

LEMMA 6. Let F(z) be a transcendental entire function and P(z) be a polynomial with the first term $a_m z^m$ ($a_m \neq 0$). Assume that, for some $\sigma > 1$ and some r satisfying

$$2|a_m|r^{m\sigma} \ge |P(z)|, \quad on \quad |z| = r^{\sigma},$$

there exists a simple closed curve $\Gamma \subset \{r < |z| < r^{\sigma}\}$ going around the origin once, on which

$$|F(z)| \ge M > 2|a_m|r^{m\sigma}.$$

Then

$$N\left(r^{\sigma},\frac{1}{f-P}\right) > \log(M-2|a_m|r^{m\sigma}) - O(\log r).$$

3. Proofs of theorems

We begin with the proof of Theorem 2. Put $g = f_{n-1}$, so that $f(g) = f_n$. Assume that for sufficiently large $r \notin F$, where F is the set arising from Lemmas 3 and 4, we have

(8)
$$\overline{n}\left(\chi,\frac{1}{f(g)-P}\right) \leq \frac{1}{1403}\log M(r,f(g)),$$

where $\chi = r + 2R$, $R = 20(4 + \pi)r/v(r, g)$.

We want to prove the following

CLAIM. In

(9)
$$e^{-3}M(r,g) \le |w| \le e^{3}M(r,g),$$

there exists a circle Γ_0 : $|w| = \xi_r$ on which we have

(10)
$$(1 - o(1))\frac{1}{1403}\log M(r, f(g)) \le \log |f(w)|.$$

The same inequality still holds with f and g interchanged.

Now we choose a point z_0 on |z| = r such that

$$|f(g(z_0))| = M(r, f(g)) = M((1 - o(1))M(r, g), f),$$

then $M(r, g) \ge |g(z_0)| \ge (1 - o(1))M(r, g)$. Application of Lemma 3 to z_0 and g implies the existence of an analytic function $\tau(z)$ defined in $|z - z_0| \le R$, where $R = 20(4 + \pi)r/v(r, g)$, such that

(11)
$$|\tau(z)v(r,g) - 2\pi i| < 1$$

and

(12)
$$g(ze^{\tau(z)}) = g(z).$$

Set $k(z) = ze^{\tau(z)}$ and

(13)
$$h(z) = \frac{f(g(z)) - P(z)}{P(k(z)) - P(z)},$$

in $|z - z_0| \le R$. It is easy to prove that h(z) is analytic in $|z - z_0| \le R$. Let (γ) be the union of exceptional disks, the total sum of whose radii does not exceed R/80,

the existence of which follows from Lemma 2, taking F = h, $r = \frac{3}{4}R$ and the disk $|z - z_0| < R$.

For w satisfying (9) we can write $w = e^{\sigma}g(z_0)$, where $|\operatorname{Re} \sigma| \leq 3$, $|\operatorname{Im} \sigma| \leq \pi$. From Lemma 3, we can find a unique s such that $v(r, g)s = \sigma + o(1)$ and $g(z_0e^s) = g(z_0)e^{\sigma} = w$. Put $u = z_0e^s$, then

$$|u - z_0| = r|e^s - 1| \le \frac{(4 + \pi)r}{v(r, g)} = \frac{R}{20}$$

It is obvious that the mapping $w = e^{\sigma}g(z_0)$ maps the segment

$$L_1 = \{w : \arg w = \theta \text{ and } e^{-3}M(r, g) \le |w| \le e^3M(r, g)\}$$

into a segment which contains the segment

$$L_2 = \left\{ \sigma : \arg g(z_0) + \operatorname{Im} \sigma = \theta \text{ and } -\frac{8}{3} \leq \operatorname{Re} \sigma \leq \frac{8}{3} \right\},\$$

and that L_2 is mapped by $u = z_0 e^s$, $v(r, g)s = \sigma + o(1)$, into a curve L_3 , the diameter of which is at least R/30. And therefore we can find a circle Γ_0 : $|w| = \xi_r$ in $\{e^{-3}M(r, g) \le |w| \le e^3M(r, g)\}$ which is such that u corresponding to w on Γ_0 is not contained in (γ) .

Obviously, by (11), a simple calculation implies that

$$\{z: |z - z_0| < R\} \subset \{z: |z| < r + R\}$$

and

$$\{k(z): |z-z_0| < R\} \subset \{z: |z| < r+2R = \chi\}.$$

Thus it follows from (12) and (13) that

$$\overline{n}(R, z_0, h) + \overline{n}\left(R, z_0, \frac{1}{h}\right) + \overline{n}\left(R, z_0, \frac{1}{h-1}\right) \leq \overline{n}\left(\chi, \frac{1}{f(g)-P}\right).$$

By applying Lemma 2 to h(z) in $|z - z_0| < R$, for $u \notin (\gamma)$ satisfying $|u - z_0| < (R - \frac{3}{4}R)/5 = R/20$, we have

$$\begin{split} \log |h(z_0)| &\leq \log M\left(\frac{3}{4}R, z_0, h\right) \\ &< \frac{20R}{R - \frac{3}{4}R} \left\{ 2\overline{n} \left(\chi, \frac{1}{f(g) - P}\right) \log \frac{80eR}{R - \frac{3}{4}R} + 195 + 4\log^+ |h(u)| \right. \\ &+ 12\log^+ \frac{5R}{R - \frac{3}{4}R} \right\} \\ &< 1083\overline{n} \left(\chi, \frac{1}{f(g) - P}\right) + O(1) + 320\log^+ |h(u)|. \end{split}$$

On the other hand, from (13) it follows that

$$\log |h(z_0)| > \log M(r, f(g)) - O(\log rv(r, g)).$$

Hence, by (13) we have

$$\log M(r, f(g)) \le 1083\overline{n} \left(\chi, \frac{1}{f(g) - P} \right) + O(\log rv(r, g)) + 320\log^{+}|h(u)|$$
(14)
$$\le 1083\overline{n} \left(\chi, \frac{1}{f(g) - P} \right) + O(\log rv(r, g)) + 320\log^{+}|f(w)|,$$

and further from (8)

$$\frac{1}{1403}\log M(r, f(g)) \le \log^+ |f(w)| + O(\log rv(r, g)).$$

on Γ_0 . Thus the claim is proved.

Now choose a $t \notin F$ in the interval $((M(r, f)/2)^{1/1425}, (M(r, f)/2)^q)$, where $q = \frac{1}{2}(1/1403 + 1/1425)$. Then from the claim, with alternation of f and g, and the fact that $\log M(r, g)$ is convex with respect to $\log r$, we have on $\Gamma_0 : |w| = \xi_r \subset \{e^{-3}M(r, f) \leq |w| \leq e^3M(r, f)\}$

$$\log |g(w)| \ge (1 - o(1)) \frac{1}{1403} \log M(r, g(f))$$

$$\ge (1 - o(1)) \frac{1}{1403} \log M(M(r, f)/2, g)$$

$$> \log M(t, g) + 3,$$

so that

$$|g(w)| > e^{3}M(t,g) \geq \xi_{t}.$$

On the other hand, obviously for $|w| < t^{\alpha}$, $\alpha = 29/30$, we have

$$|g(w)| < e^{-3}M(t,g) \leq \xi_t.$$

Then there exists a simple curve $\Gamma \subset \{t^{\alpha} < |w| < \xi_r\} \subset \{t^{\alpha} \le |w| < t^{1450}\} = \{\tilde{t} \le |w| < \tilde{t}^{1500}\}, \tilde{t} = t^{\alpha}$, which goes around the origin once and on which $|g(w)| = \xi_t$. Applying the claim once more implies that

(15)
$$\log^+ |f(g(w))| \ge (1 - o(1)) \frac{1}{1403} \log M(t, f(g)), \text{ on } \Gamma.$$

Then by Lemma 6, we get (2).

If for an unbounded sequence of $r \notin F$, (8) does not hold, it is easy to deduce (2) from the convexity of log M(r, g) with respect to log r and the fact that

$$\overline{n}\left(\chi,\frac{1}{f(g)-P}\right) \leq \overline{N}\left(e\chi,\frac{1}{f(g)-P}\right)$$

Thus the proof of Theorem 2 is complete.

Now we are in position to prove Theorem 3. Conversely, suppose that for $r \notin F$, we have

(16)
$$\overline{n}\left(\chi, \frac{1}{f(g) - P}\right) \le \frac{1}{1083}(\log M(r, f(g)) - O(\log rv(r, g)) - 320\log r),$$

where $O(\log rv(r, g))$ is the quantity occurring in (14). By the same argument as in the proof of the claim, from (14) and (16), we can prove that there exists a circle $\Gamma_0: |w| = \xi_r$ on which we have

(17)
$$\log r \le \log |f(w)|.$$

In fact, first of all, we deduce (14), and by (16) deduce (17). Obviously for any finite number a, it follows from (17) that for sufficiently large r

$$\log |f(w) - a| > 1$$
, that is, $m\left(\xi_r, \frac{1}{f - a}\right) = 0$,

where $|w| = \xi_r$, so $\delta(a, f) = 0$ and it is easy to see from (17) that f has no finite asymptotic values, which is a contradiction. Thus (16) does not hold, and Theorem 3 follows.

Before proving Theorem 4, we need a well-known result on transcendental entire function with order less than 1/2.

LEMMA 7. [1, p. 131, formula (25)]. Let $\varepsilon > 0$ be a given number and h(z) an entire function of order $\rho < 1/2$. Then there exists a constant c > 1 such that, for all sufficiently large R, the interval (R, R^c) contains an R_0 with

$$\tilde{m}(R_0,h) > \{M(R_0,h)\}^{-\varepsilon + \cos \pi \rho},$$

where $\tilde{m}(R_0, h)$ denotes the minimum modulus of h(w) on $|w| = R_0$.

Now we prove Theorem 4. Let $\varepsilon > \varepsilon_0 > 0$ be sufficiently small such that $\cos \pi \rho - \varepsilon > 0$. Put $p = (\cos \pi \rho - \varepsilon)^{-1}$, $p_0 = (\cos \pi \rho - \varepsilon_0)^{-1}$. By the convexity of $\log M(r, g)$ as a function of $\log r$, we have

$$M(r^p,g) \ge (e^3 M(r,g))^{p_0}$$

Zheng Jian-Hua

Application of Lemma 7 to ε_0 and g implies the existence of c > 1 which is such that the interval (r^p, r^{cp}) contains an R_0 such that on $|z| = R_0$,

$$|g(z)| \ge \tilde{m}(R_0, g) \ge M(R_0, g)^{1/p_0}$$

$$\ge M(r^p, g)^{1/p_0} \ge e^3 M(r, g)$$

$$> \xi_r.$$

On the other hand, it is obvious that $|g(z)| < M(r^{1-\delta}, g) < e^{-3}M(r, g) \le \xi_r$ in $|z| < r^{1-\delta}$, where δ is a sufficiently small positive number. Then it follows from Lemma 5 that there exists a curve $\Gamma \subset \{r^{1-\delta} \le |z| < r^{cp}\}$ which contains the origin in its interior and on which $|g(z)| = \xi_r$.

If for $r \notin F$, (16) with $320cp(\deg P + 1)\log r$ instead of $320\log r$ does not hold, then (4) immediately follows. Now we assume such (16) holds, then we have (17) with $cp(\deg P + 1)\log r$ instead of $\log r$ on $|w| = \xi_r$, that is, $\log^+ |f(w)| \ge cp(\deg P + 1)\log r$, $|w| = \xi_r$. Then on Γ we have

$$\log^+ |f(g(z))| \ge cp(\deg P + 1)\log r > \log(|P(z)| + 1 + a),$$

where a is a complex number such that N(r, 1/(f(g) - a)) = (1 - o(1))T(r, f(g)). By Rouché's theorem, we deduce that f(g) - P has as many zeros as f(g) - a does in the interior of Γ , and therefore for all sufficiently large $r \ge r_0$,

$$n\left(r^{cp}, \frac{1}{f(g) - P}\right) \ge n\left(\Gamma, \frac{1}{f(g) - P}\right) = n\left(\Gamma, \frac{1}{f(g) - a}\right)$$
$$\ge n\left(r^{1-\delta}, \frac{1}{f(g) - a}\right),$$

where $n(\Gamma, *)$ is the number of poles of * in int Γ . Further for $r \ge r_0$,

$$N\left(r^{cp}, \frac{1}{f(g) - P}\right) \ge \frac{cp}{1 - \delta} N\left(r^{1 - \delta}, \frac{1}{f(g) - a}\right)$$
$$= (1 - o(1))\frac{cp}{1 - \delta} T(r^{1 - \delta}, f(g)),$$

since for arbitrary positive s,

$$\int_{r_0}^r \frac{n(t^s, *)}{t} dt = \frac{1}{s} \int_{r_0}^r \frac{n(t^s, *)}{t^s} dt^s = \frac{1}{s} N(r^s, *) + O(1).$$

By choosing a smaller ε than the one in the above, we deduce (4). Thus Theorem 4 follows.

Finally, we prove Theorem 1. For 0 < k < n and arbitrarily large K, we have

$$\log M(r, f_n) \ge \log M\left(\frac{1}{2}M\left(\frac{1}{4}r, f_{n-k}\right), f_k\right)$$
$$\ge \log M\left(\left((e+1)r\right)^{K+1}, f_k\right)$$
$$\ge (1-o(1))KT((e+1)r, f_k),$$

and hence

$$N\left((e+1)r, \frac{1}{f_k - z}\right) \le T((e+1)r, f_k) + O(\log r)$$
$$= o(\log M(r, f_n)).$$

On the other hand, it is easy to see that

$$\overline{N_n}\left(r,\frac{1}{f_n-z}\right) \geq \overline{N}\left(r,\frac{1}{f_n-z}\right) - \sum_{k=1}^{n-1} \overline{N}\left(r,\frac{1}{f_k-z}\right).$$

Set $g = f_{n-1}$, so that $f(g) = f_n$. Therefore, if (8) does not hold for some unbounded sequence of $r \notin F$, then we easily deduce that

$$\overline{N_n}\left((e+1)r, \frac{1}{f_n - z}\right) \ge (1 - o(1))\frac{1}{1403}\log M(r, f_n).$$

This is (1). Now, we can assume that for all $r \notin F$, we have (8) and further deduce the claim. By the same argument as in the proof of Theorem 2, we can find a simple curve $\Gamma \subset \{\tilde{t} \le |w| < \tilde{t}^{1500}\}$ going around the origin once and on which (15) holds. Then the argument of Lemma 5 implies the existence of a simple curve $\Gamma_0 \subset \{\tilde{t}^{1/1406} \le |w| < \tilde{t}^{1500}\}$ which surrounds the origin once and on which |f(g(z))| = M(R, f(g)), where $R = \tilde{t}^\beta \notin F$, $1/1406 \le \beta < 1/1403$. Define $G_0 = \operatorname{int} \Gamma_0$, $G_1 = g(G_0)$, $G_2 = f(G_1)$ and $\Gamma_j = \partial G_j$ ($0 \le j \le 2$). Obviously, by the Maximum Principle, all the G_j are simply connected and all the Γ_j are simple curves and surround the origin once. Assume that g(z) (respectively, f(z)) describes p_1 (respectively, p_2) times the curve Γ_1 (respectively, Γ_2) as z describes the Γ_0 (respectively, Γ_1) once. Then f(g) has $P_2 = p_1 p_2$ zeros in G_0 . By Rouché's theorem, f(g(z)) - z also has P_2 zeros in G_0 . From the main ideas in Bergweiler [5], by a little modification of his proof, we can prove that

(18)
$$\overline{P_2} = (1 - o(1))P_2,$$

where $\overline{P_2}$ denotes the number of distinct zeros of f(g(z)) - z in G_0 . For completeness, we shall give the proof of (18). First of all, we want to prove that

(19)
$$\overline{f_j(G_0)} \subset G_1, \ 0 \le j < n-1.$$

It is obvious that G_1 is a domain and contains the origin. By the maximum principle, $\overline{f_j(G_0)} \subset \{|w| \leq M(\tilde{t}^{1500}, f_j)\}, 0 \leq j < n-1$. Since on Γ_0 , $|f(g(z))| = M(R, f(g)) \geq M(\frac{1}{2}M(R, g), f)$, we have that $|g(z)| \geq M(\tilde{t}^{1500}, f_j), 0 \leq j < n-1$, on Γ_0 , noting that f is transcendental. Thus (19) follows from $\Gamma_1 \subset g(\Gamma_0) \subset \{M(\tilde{t}^{1500}, f_j) < |w|\}, 0 \leq j < n-1$.

Let $z_0 \in G_0$ be a zero of f(g(z)) - z with multiplicity m + 1. Then we have that $f'_n(z_0) = 1$ and z_0 is a periodic point with period $k \le n$. Let p be the smallest positive integer such that $(f'_k(z_0))^p = 1$, and further $kp \le n$, and let $m_1 + 1$ be the multiplicity of the zero z_0 of $f_{kp}(z) - z$. Then it is easy to see that s = n/(kp) is a positive integer, and $f_n = (f_{kp})_s$, and therefore $m = m_1$. By a result of Fatou (see [5, Lemma 6]), it follows that there exist m/p cycles of Leau domains, each of which contains at least one singularity of the inverse function of f, and which are in G_1 , by [5, Lemma 8] and (19). Therefore G_1 contains at least m/p critical points of f, for from the claim it is easy to see that f has no asymptotic values. However, f has at most $p_2 - 1$ critical points in G_1 . Hence we have

$$P_2 - \overline{P_2} \leq \sum km = \sum kp \frac{m}{p} \leq n(p_2 - 1),$$

where \sum is taken over all the zeros of f(g(z)) - z in G_0 . This implies (18), since $p_1 \to \infty$, as $r \to \infty$.

By $(P_2)_j$ we denote the number of zeros of $f_j(z) - z$ in G_0 . Obviously, it follows from $|f_n(z)| = M(R, f_n)$ on Γ_0 that $|f_j(z)| > |z|$ $(0 \le j \le n - 1)$ on Γ_0 , and hence $(P_2)_j$ is equal to the number of zeros of $f_j(z)$ in G_0 , that is, the winding number of $f_j(\Gamma_0)$ around the origin. Obviously, $(P_2)_j \le (P_2)_{n-1} = p_2$. Since

$$(1 - o(1))P_2 \le \overline{P_2} \le \overline{(P_2)_n} + \sum_{j=1}^{n-1} (P_2)_j \le \overline{(P_2)_n} + (n-1)p_2,$$

we have

$$\overline{(P_2)_n} \ge (1 - o(1))P_2,$$

where $\overline{(P_2)_n}$ denotes the number of distinct periodic points of period *n* of f(z) in G_0 , and further we have for arbitrary $a \in G_0$

$$\overline{n_n}\left(R^{\nu}, \frac{1}{f_n - z}\right) \ge \overline{n_n}\left(\Gamma_0, \frac{1}{f_n - z}\right) \ge (1 - o(1))n\left(\Gamma_0, \frac{1}{f_n - z}\right)$$
$$= (1 - o(1))n\left(\Gamma_0, \frac{1}{f_n - a}\right) \ge (1 - o(1))n\left(R, \frac{1}{f_n - a}\right),$$

where $v = 1500^2$, and $\overline{n_n}(\Gamma_0, 1/(f_n - z))$ is the number of distinct periodic points of period *n* of *f* in int Γ_0 .

Thus Theorem 1 follows.

References

- [1] I. N. Baker, 'Zusammensetzungen ganzer Funktionen', Math. Z. 69 (1958), 121-163.
- [2] ——, 'Fixpoints and iterates of entire functions', Math. Z. 71 (1959), 146-153.
- [3] —, 'Some entire functions with fixpoints of every order', J. Austral. Math. Soc. (Series A) 1 (1959/1960), 203-209.
- [4] W. Bergweiler, 'On proof of a conjecture of Gross concerning fix-points', *Math. Z.* 204 (1990), 381-390.
- [5] ——, 'Periodic points of entire functions: Proof of a conjecture of Baker', Complex Variables Theory Appl. 17 (1991), 57–72.
- [6] J. Clunie, 'The composition of entire and meromorphic functions', in: Math. essays dedicated to A. J. Macintyre (ed. H. Shankar) (Athens, Ohio, 1970) pp. 75–92.
- [7] W. K. Hayman, *Meromorphic functions* (Clarendon Press, Oxford, 1964).
- [8] -----, Research problems in function theory (Athlone Press, London, 1967).
- [9] G. Valiron, 'Sur la dérivée des fonctions algébroides', Bull. Soc. Math. France 59 (1929), 17-39.
- [10] L. Yang, New researches on value distribution theory, (in Chinese) (Science Press, 1982).
- [11] J. H. Zheng and C. C. Yang, 'Further results on fix-points and zeros of entire functions', Trans. Amer. Math. Soc. (1) 347 (1995), 37-50.

Department of Applied Mathematics Tsing Hua University Beijing, 100084 P. R. China e-mail: jzheng@math.tsinghua.edu.cn