MULTIPLICATIVITY OF THE UNIFORM NORM AND INDEPENDENT FUNCTIONS

A. GUYAN ROBERTSON

It has long been known that there is a close connection between stochastic independence of continuous functions on an interval and space-filling curves [9]. In fact any two nonconstant continuous functions on [0, 1] which are independent relative to Lebesgue measure are the coordinate functions of a space filling curve. (The results of Steinhaus [9] have apparently been overlooked in more recent work in this area [3, 5, 6].)

The purpose of this note is to establish a connection with a multiplicative property for the uniform norm on function spaces. Only the uniform norm will be considered on $C(\Omega)$, the space of continuous real valued functions on a compact Hausdorff space Ω . If $f \in C(\Omega)$ then we define Q(f) to be the linear span of $\{1, f, f^2\}$, that is the space of quadratic polynomials in f. $\Omega(f)$ is known to play a role in the isometric theory of $C(\Omega)$. For example, if f separates points of Ω then Q(f) is a Korovkin set; so if φ is a contraction on $C(\Omega)$ which fixes Q(f) then φ is the identity map [1, 7, 8].

PROPOSITION 1. Let Ω be a compact Hausdorff space, let $f_j \in C(\Omega)$ (j = 1, 2)and define $\gamma: \Omega \to \mathbb{R}^2$ by $\gamma(t) = (f_1(t), f_2(t))$. The following statements are equivalent:

- (a) $\gamma(\Omega) = f_1(\Omega) \times f_2(\Omega)$,
- (b) $||g_1g_2|| = ||g_1|| ||g_2||$ for all $g_j \in Q(f_j) (j = 1, 2)$.

PROOF: (b) \Rightarrow (a). Let $(x_1, x_2) \in f_1(\Omega) \times f_2(\Omega)$. There exist quadratic polynomials p_j such that $p_j(x_j) = 1$ and $|p_j(x)| < 1$ for $x \in f_j(\Omega) \setminus \{x_j\}$. Let $g_j = p_j \circ f_j$, so that $g_j \in Q(f_j)$ (j = 1, 2).

By hypothesis, $1 = ||g_1|| ||g_2|| = ||g_1g_2||$. It follows that there is a point $t \in \Omega$ such that $|g_1(t)g_2(t)| = 1$, whence $f_1(t) = x_1$ and $f_2(t) = x_2$. This proves (a).

(a) \Rightarrow (b). Any quadratic polynomial p_j attains its maximum absolute value on $f_j(\Omega)$ at some point x_j . Our assumption implies that there is a point $t \in \Omega$ with $f_j(t) = x_j$ (j = 1, 2). Writing $g_j = p_j \circ f_j$ we see that $|g_1(t)g_2(t)|$ takes the value $||g_1|| ||g_2||$, and the result follows.

Received 19 October 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

REMARK. Simple examples show that the condition $||f_1f_2|| = ||f_1|| ||f_2||$ is not sufficient to imply (a).

We now show how independence of functions gives rise to the multiplicative property of the norm. A Borel measure μ on Ω is said to be *faithful* if $\mu(G) > 0$ for each nonempty open subset G of Ω . We refer to [2] for details on the notion of independence.

PROPOSITION 2. Let Ω be a compact Hausdorff space and μ a faithful Borel probability measure on Ω . Let f_1 and f_2 be functions on Ω that are μ -independent and such that $|f_1|$ and $|f_2|$ are lower semicontinuous. Then $||f_1f_2|| = ||f_1|| ||f_2||$.

PROOF: We may suppose that f_1 and f_2 are both nonzero.

Let $\varepsilon > 0$ and let $V_j = \{t \in \Omega : |f_j(t)| > ||f_j|| - \varepsilon\}$. Then $\mu(V_j) > 0$, since V_j is a nonempty open set (j = 1, 2). By independence of $|f_1|$ and $|f_2|$, we have

$$\mu(V_1 \cap V_2) = \mu(V_1)\mu(V_2) > 0.$$

In particular $V_1 \cap V_2 \neq \emptyset$. It follows that there exists $t \in \Omega$ such that $|f_j(t)| > ||f_j|| - \varepsilon$ (j = 1, 2). Therefore $||f_1 f_2|| > (||f_1|| - \varepsilon)(||f_2|| - \varepsilon)$. Since $\varepsilon > 0$ was arbitrary this proves the result.

Now if we suppose that f_1 , $f_2 \in C[0, 1]$ are independent relative to Lebesgue measure then the same is true for quadratic polynomials in f_1 and f_2 , so Proposition 2 shows that condition (b) of Proposition 1 is satisfied. Thus if f_1 and f_2 are nonconstant then $\gamma[0, 1] = f_1[0, 1] \times f_2[0, 1]$ is a rectangle in \mathbb{R}^2 . (Note that the result of [3] is a simple consequence of this fact.) Peano's original space-filling curve arises in this way [9, 6]. In fact [6] gives a detailed proof that the *n*-dimensional version of Peano's curve is measure preserving and hence has independent coordinate functions.

The step from independent coordinate functions to measure preserving mappings is often a small one.

PROPOSITION 3. Let $f, g \in C[0, 1]$ be independent and have continuous distribution functions F, G respectively. Then the function $\varphi(t) = (F(f(t)), G(g(t)))$ defines a continuous measure preserving transformation of [0, 1] onto $[0, 1] \times [0, 1]$.

PROOF: $F \circ f$ and $G \circ g$ are uniformly distributed over [0, 1], by [2, p.169 Exercise 14.4], and they are also independent since f and g are. The result follows easily.

In conclusion we recall that space filling curves arise naturally in functional analysis whenever we have a Hilbert space embedded isometrically in C[0, 1], [4, 10]. It is therefore interesting to note that the multiplicative norm condition fails in this case.

PROPOSITION 4. Let $H \subset C[0, 1]$ be a real Hilbert space, and let $f, g \in H$ be linearly independent. Then ||fg|| < ||f|| ||g||.

PROOF: The proof of [4] shows that if there is a point $t_0 \in [0, 1]$ such that $|f(t_0)| = ||f||$ and $|g(t_0)| = ||g||$ then f and g must be linearly dependent.

REFERENCES

- D. Amir and Z. Ziegler, 'Korovkin shadows and Korovkin systems in C(S)-spaces', J. Math. Anal. Appl. 62 (1978), 640-675.
- [2] P. Billingsley, Probability and Measure (Wiley-Interscience, 1979).
- [3] A.P. Bosznay, 'A remark on a paper of B.R. Gelbaum', Z. Wahrscheinlichkeitstheorie verw. Gebiete 43 (1978), 353-355.
- [4] W.F. Donoghue Jr., 'Continuous function spaces isometric to Hilbert space', Proc. Amer. Math. Soc. 8 (1957), 1-2.
- B.R. Gelbaum, 'Independence of events and random variables', Z. Wahrscheinlichkeitstheorie verw. Gebiete 36 (1976), 333-343.
- [6] S.C. Milne, 'Peano curves and smoothness of functions', Adv. in Math. 35 (1980), 129-157.
- [7] W.M. Priestley, 'A noncommutative Korovkin theorem', J. Approx. Theory 16 (1976), 251-260.
- [8] A.G. Robertson, 'A Korovkin theorem for Schwarz maps on C^{*}-algebras', Math. Z. 156 (1977), 205-207.
- [9] H. Steinhaus, 'La courbe de Peano et les fonctions indépendantes', C.R. Acad. Sci. Paris 202 (1936), 1961-1963.
- [10] D.T. Yost, 'Space filling curves and universal normed spaces', Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 (1984), 39-42.

University of Edinburgh Department of Mathematics King's Buildings Mayfield Road Edinburgh EH9 3JZ Scotland