VOL. 13 (1975), 101-115.

Projective metabelian nonfree groups

V.A. Artamonov

This paper is concerned with projective metabelian AA -groups, where A is the variety of all abelian groups, A_{n} - of all
 group. Since $A A \rightarrow A$ the group P / P^{\prime} is a free abelian group. Define rank $P=\operatorname{rank} P / P^{\prime}$. It is shown that for all numbers $r, n>1$, except $r=n=2$, there exists a projective nonfree A_{n}-group of rank r with $r+1$ generators.

1. Introduction

This paper is concerned with projective metabelian $A A_{n}$-groups, where A is the variety of all abelian groups, A_{n} - of all abelian groups of exponent n. Let P be a projective $\underset{\underbrace{}_{n}}{A_{n}}$-group. Since $\underset{\underline{A A}}{A_{n}} \supset \underline{\underline{A}}$, the group P / P^{\prime} is a free abelian group. Define rank $P=$ rank P / P^{\prime}. We show that if $r, n \geq 2$, except $r=n=2$, then there exists a projective nonfree $A A_{n}$-group of rank r with $r+1$ generators. On the other hand, Mclsaac [4] has proved that projective AA, -groups of rank 2 are free. It is not difficult to prove that projective $\underline{\underline{A A}}$-groups of rank 1 are free.

2. Preliminaries

Let $C_{r, n}$ be a direct product of r cyclic groups $\left\{x_{i}\right\}$ of the same

Received 28 April 1975. The author thanks Dr P.M. Neumann, Mr A.J. Mclsaac, and Professor A.L. Smel'kin for reading this paper and for useful discussions.
order n. Consider the group ring $Z C_{r, n}$. Let m be the augmentation ideal of $Z C_{r, n}$. For $y \in C_{r, n}$ define $n(y)=1+y+\ldots+y^{n-1}$.

PROPOSITION 1. If $N_{r, n}=\sum_{y \in C_{r, n}} y \in Z C_{r, n}$, then
$N_{r, n}=\prod_{i=1}^{r} n\left(x_{i}\right)$.
Proof. For all $x_{j}, 1 \leq j \leq r$, we have $x_{j} \prod_{i=1}^{p} n\left(x_{i}\right)=\prod_{i=1}^{p} n\left(x_{i}\right)$.
So $\prod_{i=1}^{r} n\left(x_{i}\right)=a N_{r, n}, \quad a \in Z$, since only $Z N_{r, n}$ satisfies this property. But $a N_{r, n} \equiv a n^{r}(\bmod m) \equiv \prod_{i=1}^{r} n(1)=n^{r}$ and, hence, $a=1$.

Consider now the augmentation epimorphism

$$
\varepsilon: Z C_{r, n} \rightarrow Z, \quad \varepsilon\left(x_{i}\right)=1, \quad \operatorname{ker} \varepsilon=m
$$

It induces an epimorphism

$$
\varepsilon^{\prime}: Z C_{r, n} /\left(N_{r, n}\right) \rightarrow \mathrm{Z} /\left(n^{r}\right)
$$

since $N \equiv n^{r}(\bmod m)$. In its turn ε^{\prime} induces a homomorphism of groups of units
(1)

$$
\varepsilon^{*}=\varepsilon_{r, n}:\left(Z C_{r, n} /\left(N_{r, n}\right)\right)^{*} \rightarrow\left(Z /\left(n^{2}\right)\right) *
$$

THEOREM 1. Let $r, n \geq 2$ except $r=n=2$. Then $\varepsilon_{r, n}$, from (1), is not an epimorphism.

Proof. Suppose that for $r-1$ the theorem is proved, and $K+\left(n^{r-1}\right) \in\left(Z / n^{r-1}\right) * \backslash \operatorname{Im} \varepsilon_{r-1, n}$. Then $K+\left(n^{r}\right) \in\left(Z / n^{r}\right) *$. Suppose $K+\left(n^{r}\right) \in \operatorname{Im} \varepsilon_{r, n} . \operatorname{Then} K \equiv f\left(x_{1}, \ldots, x_{r}\right)\left(\bmod \left(m, n^{r}\right)\right)$, where $f\left(x_{1}, \ldots, x_{r}\right) \in Z C_{r, n}$ and, for some $g\left(x_{1}, \ldots, x_{r}\right) \in Z C_{r, n}$,

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{r}\right) g\left(x_{1}, \ldots, x_{r}\right)=1+a N_{r, n}=1+a \prod_{i=1}^{r} n\left(x_{i}\right) \tag{2}
\end{equation*}
$$

Put $x_{r}=1$ in (2). We have
$f\left(x_{1}, \ldots, x_{r_{-1}}, 1\right) g\left(x_{1}, \ldots, x_{r-1}, 1\right)=1+n a \prod_{i=1}^{r-1} n\left(x_{i}\right)=1+n a N_{r-1, n}$. So $f\left(x_{1}, \ldots, x_{r-1}, 1\right) \in\left(Z C_{r-1, n} / N_{r-1, n}\right)^{*}$,

$$
f\left(x_{1}, \ldots, x_{r-1}, 1\right) \equiv f\left(x_{1}, \ldots, x_{r}\right) \equiv K\left(\bmod \left(m, n^{r}\right)\right)
$$

and $K+\left(n^{r-1}\right) \in \operatorname{Im} \varepsilon_{r-1, n}$. This contradiction shows that $K+\left(n^{r}\right) \neq \operatorname{In} \varepsilon_{r-1, n}$.

This remark shows that we need only to prove that $\varepsilon_{3,2}$ and $\varepsilon_{2, n}$, $n>2$, are not epimorphisms.

LEMMA 1. $\varepsilon_{3,2}$ is not an epimorphism.
Proof. Let $A=A(x, y, z), B=B(x, y, z) \in \mathbb{Z} C_{3,2}$ and $A B=1+a N_{3,2}, a \in Z$. By Proposition $1, A(-1, y, z)$ is a unit in $\mathbf{Z} C_{2,2} \subset \mathbf{Z} C_{3,2}$. But all units in $Z C_{2,2}$ are trivial (see [2], Theorem 6). Since $\varepsilon_{3,2}$ maps trivial units into ± 1 we can assume that $A(-1, y, z)=B(-1, y, z)=1$. Then $x^{2}=y^{2}=z^{2}=1$ implies $A=1+(1+x)\left(a_{0}+a_{1} y+a_{2} z\right)$. So,

$$
A(x,-1, z)=\left(1+a_{0}-a_{1}\right)+x\left(a_{0}-a_{1}\right)+a_{2} z+a_{2} x z
$$

Again, by Higman's Theorem, two of the three numbers $1+a_{0}-a_{1}$, $a_{0}-a_{1}, a_{2}$ equal zero. But $1+a_{0}-a_{1} \neq a_{0}-a_{1}$. Hence $a_{2}=0$. Similarly, the consideration of $A(x, y,-1)$ implies $a_{1}=0$. Thus $A=1+a_{0}(1+x)$. The same argument shows $B=1+b_{0}(1+x)$. Hence $A B=1+\left(a_{0}+b_{0}+2 a_{0} b_{0}\right)(1+x)=1+a(1+x)(1+y)(1+z)$ and this implies $a_{0}+b_{0}+2 a_{0} b_{0}=0$. If $a_{0}=0$ then $b_{0}=0$ and $A=1, \varepsilon_{3,2}(A)=1$.

Otherwise $a_{0}=b_{0}=1$ and $A=-x, \varepsilon_{3,2}(A)=-1$. So, in all cases, $\operatorname{Im} \varepsilon_{3,2}=\{1,-1\} \neq\{1,3,5,-1\}=(Z / 8) *$. This proves Lemma 1 .

Suppose now $r=2, n>2, n=a b$. Then there is a natural epimorphism $f: Z C_{2, n} \rightarrow Z C_{2, b}$. It is clear that $f\left(n\left(x_{i}\right)\right)=a \cdot b\left(x_{i}\right)$; hence $f\left(N_{2, n}\right)=a^{2} N_{2, b}$. The epimorphism f induces a homomorphism rings $f^{\prime}: Z C_{2, n} / N_{2, n}+Z C_{2, b} / N_{2, b}$ and a homomorphism of groups $f^{*}:\left(\mathrm{ZC}_{2, n^{\prime}} / N_{2, n}\right)^{*} \rightarrow\left(\mathrm{Z} C_{2, b} / N_{2, b}\right)^{*}$. Let j be the natural homomorphism $j: Z / n^{2} \rightarrow Z / b^{2}, j\left(K+\left(n^{2}\right)\right)=K+\left(b^{2}\right)$.

LEMMA 2. The following diagram
is commutative.
The proof is trivial, since all homomorphisms are induced by ring homomorphisms and for ring generators x_{i} we have
$j^{*} \varepsilon_{2, n^{x}}=1+\left(b^{2}\right)=\varepsilon_{2, b^{*}} f_{i}$.
COROLLARY. If $\varepsilon_{2,4}$ is not epi, then $\varepsilon_{2,2}, K \geq 2$, is not epi either.

The proof follows from Lemma 2, since j^{*} is epi.
LEMMA 3. $\varepsilon_{2,4}$ is not epi.
Proof. We shall show that $3+(16) \neq \operatorname{Im} \varepsilon_{2,4}$. Let $A=A(x, y)$, $B=B(x, y) \in Z C_{2,4}$, and $A B=1+c N_{2,4}, c \in Z ;$ put $x=-1$. Since $(1+x) \mid N_{2,4}$ we have in $Z C_{1,4}$,

$$
A(-1, y) B(-1, y)=1
$$

By Theorem 6 from [2], $Z C_{1,4}$ contains only trivial units, so, without loss of generality, we suppose $A(-1, y)=1$;
that is, $A(x, y)=1+(1+x) D(x, y)$ where $D(x, y)=E(x)+(1+y) J(x, y)$. By Theorem 6 from [2], $A(x,-1)=1+(1+x) E(x)$ is a trivial unit, $A(x,-1)= \pm x^{t}$. Thus $A(x, y)= \pm x^{t}(1+(1+x)(1+y) J(x, y))$. Let $J(x, y)=J_{1}(x)+y J_{2}(x)+\left(1+y^{2}\right) J_{3}(x, y)$. Then in $\mathrm{Z}[i] C_{1,4}$,
(2') $\pm x^{4-t_{A}} A(x, i)=1+(1+x)\left(J_{1}(x)-J_{2}(x)\right)+i(1+x)\left(J_{1}(x)+J_{2}(x)\right)$
is a unit. But $Q[i] C_{1,4}$ is isomorphic to the direct sum of four copies of Q[i] in which the generator of $C_{1,4}$ acts as a multiplication by $\pm 1, \pm i$. So, since all units of $Q[i]$ have finite order, the same is true by Theorem 5 from [2] for $Z[i] C_{1,4}$, and by Theorem 3 (see [2]) all units of $\mathrm{Z}[i] C_{1,4}$ are of the form $\pm x^{k}, \pm i x^{k}$. Hence, in (2^{\prime}), $J_{1}=J_{2}=0$, and $A(x, y)= \pm x^{t}\left[1+(1+x)(1+y)\left(1+y^{2}\right) J_{3}(x, y)\right]$. Similarly, $J_{3}(x, y)=\left(1+x^{2}\right) J_{4}$ and thus $A(x, y) \equiv \pm x^{t}\left(\bmod N_{2,4}\right), \varepsilon_{2,4}(A)= \pm 1$. Suppose now that $n=p^{k} d, k \geq 1, p$ an odd prime, and we have already proved that for all $z \in \operatorname{Im} \varepsilon_{2, p}$,

$$
\begin{equation*}
z^{2(p-1)^{2}}=1 \tag{3}
\end{equation*}
$$

Then $1+p d+\left(n^{2}\right) \notin \operatorname{Im} \varepsilon_{2, n}$. Indeed, if $1+p d+\left(n^{2}\right) \in \operatorname{Im} \varepsilon_{2, n}$, then by Lemma 2, $1+p d+\left(p^{2}\right) \in \operatorname{Im} \varepsilon_{2, p}$, so $\bmod p^{2}$,

$$
(1+p d)^{2(p-1)^{2}}-1 \equiv(1+2 p d)-1 \equiv 2 p d \equiv 0 ;
$$

this contradicts $(d, p)=(2, p)=1$. Thus, we need only prove (3). Let H be the group of all automorphisms of $\mathrm{Z}_{C_{2, p}}=\mathrm{Z}[x, y] /\left(x^{p}-1, y^{p}-1\right)$ leaving invariant the cyclic subgroups $\{x\},\{y\} \subset C_{2, p}$. It is clear that for $\alpha \in H, g \in Z C_{2, p}$,

$$
\varepsilon(\alpha(g))=\varepsilon(g)
$$

and $|H|=(p-1)^{2}$. Note that the element $N=N_{2, p}$ is H-invariant;
that is, for all $\alpha \in H$,

$$
\alpha(N)=N .
$$

LEMMA 4. Let $A \in Z C_{2, p}$ be H-invariant, $B \in Z C_{2, p}$. If $A B \equiv 1(\bmod N)$ then B is H-invariant.

Proof. If $A B=1+a N, a \in Z$, then

$$
0=\alpha(1+\alpha N)-(1+a N)=A[\alpha(B)-B], \alpha \in H .
$$

Since A is invertible $\bmod N$,

$$
\alpha(B)=B+b N, \quad b \in \mathbb{Z},
$$

and, by induction, $\alpha^{k}(B)=B+k b N$. But for some $k \geq 1$ we have $\alpha^{k}=1$, so $k b N=0$ and $b=0$.

LEMMA 5. Let $c \in Z C_{2, p}$ and c be H-invariant. Then $C=c_{0}+c_{1} p(x)+c_{2} p(y)+c_{3} p(x) p(y)$ where $c_{i} \in Z$.

Proof. Let $C=\sum_{i, j=0}^{p-1} a_{i j} x^{i} y^{j}$. For each $i, l \leq i \leq p-1$, we have an automorphism $\beta \in H$ such that $\beta(x)=x^{i}, \beta(y)=y$. Since C is invariant, $a_{i j}=a_{1 j}, 1 \leq i \leq p-1$. The same is true for j. This proves Lemma 5.

LEMMA 6. If $z \in \operatorname{Im} \varepsilon_{2, p}$, then $z^{2(p-1)^{2}}=1$.
Proof. Since for all $A \in Z C_{2, p}, \alpha \in H, \quad \varepsilon(\alpha(A))=\varepsilon(A)$ and $|H|=(p-1)^{2}$, we need only prove that for H-invariant A, invertible $\bmod N$,

$$
\varepsilon_{2, p}(A+(N))= \pm 1 .
$$

By Lemma 4, for H-invariant $B \in Z C_{2, p}$,

$$
A B=I+a N, \quad a \in Z .
$$

By Lemma 5 we can assume $A=a_{0}+a_{1} p(x)+a_{2} p(y)$, $B=b_{0}+b_{1} p(x)+b_{2} p(y)$. Note that $p(x)^{2}=p \cdot p(x)$; so in $Z c_{2, p}$,

$$
\begin{aligned}
A B=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}+p a_{1} b_{1}\right) p(x) & +p(y)\left(a_{0} b_{2}+a_{2} b_{0}+p a_{2} b_{2}\right)+ \\
& +p(x) p(y)\left(a_{1} b_{2}+a_{2} b_{1}\right)=1+a p(x) p(y)
\end{aligned}
$$

which implies $a_{0} b_{1}+a_{1} b_{0}+p a_{1} b_{1}=a_{0} b_{2}+a_{2} b_{0}+p a_{2} b_{2}=0, \quad a_{0} b_{0}=1$. Hence $a_{0}=b_{0}= \pm 1, b_{1}= \pm a_{1}\left(\pm 1+p b_{1}\right)$, and

$$
\left|b_{1}\right| \geq\left|p b_{1} \pm 1\right| \geq p\left|b_{1}\right|-1 \geq 2\left|b_{1}\right|
$$

since $p \geq 3$. Thus $b_{1}=a_{1}=0$. Similarly $a_{2}=b_{2}=0$. Hence, finally, $A= \pm 1$. This completes the proof of Theorem 1.

THEOREM 2. Let the numbers r, n be as in Theorem 1. Then there exists a projective nonfree $Z C_{r, n}$-module T of rank r with epimorphism $Z: T \rightarrow m$ (the augmentation ideal of $Z C_{r, n}$) such that
(i) for some projective ideal $J \triangleleft Z C_{r, n}$ the module $M=J \oplus T$ is free of rank $r+1$,
(ii) if Z is trivially extended to M, so that $Z(J)=0$. and if ρ is a projection of M onto T, then for some basis w_{0}, \ldots, w_{r} of M,

$$
\begin{array}{ll}
\rho\left(w_{0}\right) \in m T, & Z\left(w_{0}\right)=0, \\
\rho\left(w_{i}\right) \equiv w_{i}(\bmod m T), & Z\left(w_{i}\right)=x_{i}-1, \quad I \leq i \leq r .
\end{array}
$$

Proof. Let $k \in Z$ and $k+\left(n^{r}\right) \in\left(Z / n^{r}\right) * \backslash \operatorname{Im} \varepsilon_{r, n}$. Then $(k, n)=1$ and for some $k^{\prime}, m \in Z$,

$$
\begin{equation*}
k k^{\prime}=1+m n^{r} . \tag{4}
\end{equation*}
$$

By results from [6] the ideals $r=(k, N), J=\left(k^{\prime}, N\right)$, where $N=N_{r, n}$, are projective nonfree $Z C_{r, n}$-modules of rank 1 . There exists an isomorphism

$$
\begin{gathered}
f:\left(Z C_{r, n}\right)^{2} \rightarrow J \oplus I \\
f(1,0)=\left(k u^{\prime}-m v^{\prime}, u\right), \quad f(0,1)=\left(m n^{r} u^{\prime}-m k^{\prime} v^{\prime}, k^{\prime} u-m v\right)
\end{gathered}
$$

where $u^{\prime}=k^{\prime}, v^{\prime}=N \in J, u=k, v=N \in I$. Take in $\left(Z c_{r, n}\right)^{2}$ a new basis $e_{0}=k(1,0)-(0,1), e_{1}=(1,0)$. Then by (4),

$$
\begin{equation*}
f_{0}=f\left(e_{0}\right)=\left(u^{\prime}, m v\right), f_{1}=f\left(e_{1}\right)=\left(k u^{\prime}-m v^{\prime}, u\right) . \tag{4.}
\end{equation*}
$$

In [6] Swan noticed that $I=(k, N)$ is given by generators u, v and relations

$$
\begin{equation*}
N u=k v, x v=v, \text { for all } x \in C_{r, n} . \tag{4"}
\end{equation*}
$$

Thus, if $Z: I \rightarrow m$ is any homomorphism, then $k Z(v)=N Z(u)=0$ by Proposition 1 , since $Z(u)=\sum a_{i}\left(x_{i}-1\right)$. So, by (4"), all homomorphisms $Z: I \rightarrow m$ are uniquely determinded by $Z(u)$, and since $Z C_{r, n} u \simeq Z C_{r, n}$ there is no restriction on $Z(u)$.

Now take $T=I \oplus \mathrm{Z} C_{r, n} f_{2} \oplus \ldots \oplus \mathrm{Z} C_{r, n} f_{r}$.
LEMMA 7. T is a projective nonfree $\mathbb{Z}_{r, n}$-module of rank r.
Proof. If $T \simeq\left(Z C_{r, n}\right)^{r}$, then since Krull-dim $Z C_{r, n}=1$ (see [1], p. 600) by the 'cancellation' theorem ([1], p. 184), $I \oplus Z C_{r, n}=\left(Z C_{r, n}\right)^{2}$. But GL $\left(2, Z C_{r, n}\right)$ acts transitively on the set of all unimodular vectors in $Z C_{r, n}$. So $I \simeq Z C_{r, n}$ (see [3], p. 286). This contradicts $I \neq Z C_{r, n}$.

LEMMA 8. Let

$$
\begin{aligned}
& A_{0}=-m n^{r-1} n(x)+k k^{\prime} x+(y-1), \\
& A_{1}=k^{\prime} m n^{r-1} n(x)-k^{\prime} m n^{r} x-k^{\prime}(y-1), \\
& A_{3}=x-1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { (i) } A_{0} \equiv I(\bmod m), A_{2}, A_{3} \in m \\
& \text { (ii) }\left(m n^{r} A_{0}+k A_{1}\right)(x-1)+A_{2}(y-1)=0,
\end{aligned}
$$

(iii) the ideal $L=\left(A_{0}, A_{1}, A_{2}\right)=Z C_{r, n}$.

Proof. Since $A_{i} \equiv A_{i}(1,1)(\bmod m)$, (4) implies
$A_{0}(1,1)=-m n^{r}+k k^{\prime}=1, A_{1}(1,1)=k^{\prime} m n^{r}-k^{\prime} m n^{r}=0, A_{2}(1,1)=0$. Thus (i) is proved.

Now $n(x)(x-1)=0$, so
$\left[m n^{r} A_{0}+k A_{1}\right](x-1)+A_{2}(y-1)=$
$=\left[m n^{r}\left(k k^{\prime} x+(y-1)\right)+k\left(-k^{\prime} m n^{r} x-k^{\prime}(y-1)\right)\right](x-1)+(x-1)(y-1)=0$.
Since $L \ni x-1$ by $(i), A_{0} \equiv 1+(y-1) \equiv Y(\bmod L)$ and $1 \in L$.
LEMMA 9. There exists $A \in \mathrm{GL}\left(3, Z C_{2, n}, m\right)$ such that the first row of A is A_{0}, A_{1}, A_{2}.

Proof. Since Krull-dim $Z C_{r, n}=1$ by results of Chapter 5 of [1], there exists $C \in \operatorname{GL}\left(3, Z C_{r, n}\right)$ with the first row $c_{00}=A_{0}, c_{01}=A_{1}$, $c_{02}=A_{2}$. But $A_{0} \equiv 1(\bmod m)$, so, applying elementary transformations to C, we can suppose $c_{10}, c_{20} \in m$. Now mod m,

$$
C \equiv C_{0}=\left(\begin{array}{lll}
i & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}(2, Z),
$$

and we can take A to be $A=C_{0}^{-1} C \in \operatorname{GL}\left(3, Z C_{r, n}, m\right)$.
Note that

$$
\left|\begin{array}{cc}
k^{\prime} & m n^{r} \\
1 & k
\end{array}\right|=1,
$$

so

$$
B=\left(\begin{array}{ccccc}
A & \vdots & 0 \\
\cdots \cdots \cdots l_{1} & & \\
0 & & \ddots & \\
& & & 1
\end{array}\right)\left(\begin{array}{ccccc}
k^{\prime} & m n^{r} & 0 \\
1 & k & 0 & 0 & 0 \\
0 & 0 & 1 & & \\
\cdots \cdots \cdots \cdots \cdots 1_{1} & & \\
0 & & \ddots & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}\left(r+1, \mathrm{Z} C_{r, n}\right)
$$

where A is from Lemma 9. Put $W_{i}=B^{-1} f_{i}, i=0, \ldots, r$, and define $Z\left(W_{0}\right)=0, ~ Z\left(W_{i}\right)=x_{i}-1, i=1, \ldots, r$. We need to prove that $\mathcal{Z}(J)=0$ and W_{0}, \ldots, W_{r} satisfy $(i i)$ from Theorem 2.

LEMMA 10. $Z(J)=0$.
Proof. Since $Z(J)=Z C_{r, n^{\prime}} Z^{\left(u^{\prime}\right)}$, we need to prove, by (4^{\prime}), that $\tau\left(f_{0}\right)=0$. But $f_{0}=b_{00} W_{0}+b_{01} W_{1}+b_{02} W_{2}$, $Z\left(f_{0}\right)=\left(A_{0} m n^{r}+A_{1} k\right)(x-1)+A_{2}(y-1)=0$ by (ii) from Lemma 8.

LEMMA 11. If ρ is a projection $\rho: M \rightarrow T$, then $\rho\left(W_{0}\right) \in m T$, $\rho\left(W_{i}\right) \equiv W_{i}(\bmod m M), \quad i=1, \ldots, r$.

Proof. Since $A \in \mathrm{GL}\left(3, \mathrm{Z} C_{r, n}, m\right)$ and $W_{i} \equiv f_{i}=\rho\left(f_{i}\right)(\bmod m M)$, $2 \leq i \leq r$, without loss of generality we suppose $A=1, r=2$. Then

$$
B^{-1}=\left(\begin{array}{cccc}
k & -m n^{r} \vdots & & \\
-1 & k^{\prime} & \vdots & 0 \\
\cdots \cdots & \cdots 氵_{1} & & \\
0 & & \ddots & \\
\cdots & & & 1
\end{array}\right)
$$

$$
\begin{aligned}
& W_{0}=k f_{0}-m n^{r} f_{1}, W_{1}=-f_{0}+k^{\prime} f_{1} . \text { By }(4),\left(4^{\prime}\right), \\
& \rho\left(W_{0}\right)=k m v-m n^{r} u=m\left(N-n^{r}\right) u \in m u, \\
& W_{1}-\rho\left(W_{1}\right)=\left(-u^{\prime},-m v\right)+k^{\prime}\left(k u^{\prime}-m v^{\prime}, u\right)+(0, m v)-k^{\prime}(0, u)= \\
& =m\left(\left(N-n^{r}\right) u^{\prime}, 0\right) \in m J .
\end{aligned}
$$

This completes the proof of Theorem 2.

3. Projective $\underline{\underline{A A}}_{n}$-groups

Let P be a projective $\xlongequal[\underline{A A}]{n}$-group. As we have already noticed in the introduction, rank $P=\operatorname{rank} P / P^{\prime}$.

THEOREM 3. Let $r, n \geq 2$ except $r=n=2$. Then there exist projective nonfree $\xlongequal[\rightarrow 2]{A A}$-groups of rank r with $r+1$ generators.

Proof. Let $Z C_{r, n}=Z\left[x_{1}, \ldots, x_{r}\right] /\left(x_{i}^{n}-1, i=1, \ldots, r\right)$ with
augmentation ideal $m, Z C_{r+1, n}=Z\left[x_{0}, \ldots, x_{r}\right] /\left(x_{i}^{n}-1, i=0, \ldots, r\right)$ with augmentation ideal m_{0}, and T, τ, J, W_{i} from Theorem 2. Let

$$
S=Z C_{r+1}, n^{W_{0}} \oplus \ldots \oplus Z C_{r+1}, n^{W_{r}}
$$

Define $\tau_{0}: S \rightarrow m_{0}$ by $\tau_{0}\left(W_{i}\right)=x_{i}-1$.
In [5] it is shown that the group F of matrices

$$
\left(\begin{array}{ll}
a & 0 \\
b & 1
\end{array}\right), \quad a \in C_{r+1, n}, \quad b \in S, \quad a-1=\downarrow(b)
$$

is a free A_{n}-group with $r+1$ free generators

$$
z_{i}=\left(\begin{array}{ll}
x_{i} & 0 \\
W_{i} & 1
\end{array}\right)
$$

Note that for $t_{i}=\left(\begin{array}{ll}a_{i} & 0 \\ b_{i} & 1\end{array}\right) \in F$,

$$
\begin{align*}
& t_{1} t_{2}=\left(\begin{array}{cc}
a_{1} a_{2} & 0 \\
a_{2} b_{1}+b_{2} & 1
\end{array}\right), \\
& t_{1}^{-1}=\left(\begin{array}{cc}
a_{1}^{-1} & 0 \\
-a_{1}^{-1} b_{1} & 1
\end{array}\right) \tag{5}\\
& t_{1}^{2}=\left(\begin{array}{cc}
a_{1} & 0 \\
a_{2} b_{1}-\left(a_{1}-1\right) b_{2} & 1
\end{array}\right), \quad t_{1}^{n}=\left(\begin{array}{cc}
1 & 0 \\
n\left(a_{1}\right) b_{1} & 1
\end{array}\right)
\end{align*}
$$

Let φ be an endomorphism of F,

$$
\varphi\left(z_{i}\right)=\left(\begin{array}{cc}
a_{i} & 0 \\
\Phi W_{i} & 1
\end{array}\right), \quad \Phi=\Phi\left(x_{0}, \ldots, x_{r}\right) \in M a^{t}\left(r+1, Z C_{r+1}, n\right)
$$

LEMMA 12. If

$$
z=\left(\begin{array}{ccc}
a\left(x_{0}, \ldots, x_{r}\right) & 0 \\
\sum b_{i}\left(x_{0}, \ldots, x_{r}\right) w_{i} & 1
\end{array}\right),
$$

then

$$
\varphi(z)=\left(\begin{array}{ccc}
a\left(a_{0}, \ldots, a_{r}\right) & 0 \tag{6}\\
\sum b_{i}\left(a_{0}, \ldots, a_{r}\right) \Phi W_{i} & 1
\end{array}\right] .
$$

The proof is trivial, since (6) is valid for z_{0}, \ldots, z_{p}, and if (6) is valid for t_{1}, t_{2}, then, by (5), it is valid for $t_{1} t_{2}, t_{1}^{-1}$.

LEMMA 13. Let φ be an endomorphism of F such that

$$
\varphi\left(z_{0}\right)=\left(\begin{array}{cc}
1 & 0 \\
\Phi W_{0} & 1
\end{array}\right), \quad \varphi\left(z_{i}\right)=\left(\begin{array}{cc}
x_{i} & 0 \\
\Phi W_{i} & 1
\end{array}\right), \quad i=1, \ldots, r
$$

Then

$$
U=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
\sum b_{i} W_{i} & 1
\end{array}\right\} \in F \right\rvert\, b_{i} \in\left(x_{0}-1\right)\right\} \triangleleft F
$$

and $U \subseteq \operatorname{ker} \varphi$.
Proof. By (5), $U \triangleleft F$ and by (6), $U \subseteq \operatorname{ker} \varphi$, since $a_{0}=1$, $b_{i}\left(1, x_{1}, \ldots, x_{p}\right)=1$.

Now we can prove the theorem. We have $M \subset S$. Let ρ be the projection $\rho: M \rightarrow T, \rho=\left(\rho_{i, j}\right)$. By (ii) from Theorem 2, $\rho_{i 0}=\sum_{j=1}^{r} \alpha_{i j}\left(x_{j}-1\right)$. Define

$$
\Phi_{i j}= \begin{cases}\rho_{i 0} & , j=0 \tag{7}\\ \rho_{i j-\alpha}, \\ i j\left(x_{0}-1\right), & j \geq 1\end{cases}
$$

Then

$$
\begin{equation*}
\Phi_{i j} \equiv \rho_{i j}\left(\bmod \left(x_{0}-1\right)\right), \quad \Phi=\left(\Phi_{i j}\right) . \tag{7}
\end{equation*}
$$

Put
(7")

$$
\varphi\left(z_{i}\right)= \begin{cases}\left(\begin{array}{cc}
1 & 0 \\
\Phi W_{0} & 1
\end{array}\right), & i=0, \\
\left(\begin{array}{ll}
x_{i} & 0 \\
\Phi W_{i} & 1
\end{array}\right), & i \geq 1 .\end{cases}
$$

LEMMA 14. $\varphi\left(z_{i}\right) \in F$.
Proof.

$$
\begin{array}{r}
\tau_{0}\left(\Phi W_{0}\right)=\sum_{j=0}^{r} \Phi_{0 j}\left(x_{j}-1\right)=\sum_{j=1}^{r} \alpha_{0 j}\left(x_{j}-1\right)\left(x_{0}-1\right)+\sum_{j=1}^{r}\left(\rho_{0 j}-\alpha_{0 j}\left(x_{0}-1\right)\right)\left(x_{j}-1\right)= \\
=\sum_{j=1}^{r} \rho_{0 j}\left(x_{j}-1\right)=\ell\left(\rho\left(W_{0}\right)\right)=乙\left(W_{0}\right)=0
\end{array}
$$

since $Z($ ger $\rho)=Z(J)=0$. Similarly for $i \geq 1$,

$$
\begin{array}{r}
\tau_{0}\left(\Phi W_{i}\right)=\sum_{j=0}^{r} \Phi_{i j}\left(x_{j}-1\right)=\sum_{j=1}^{r} \alpha_{i j}\left(x_{j}-1\right)\left(x_{0}-1\right)+\sum_{j=1}^{r}\left[\rho_{i j}-\alpha_{i j}\left(x_{0}-1\right)\right]\left(x_{j}-1\right)= \\
=\sum_{j=1}^{r} \rho_{i j}\left(x_{j}-1\right)=\imath\left(\rho\left(W_{i}\right)\right)=\imath\left(W_{i}\right)=x_{i}-1 .
\end{array}
$$

Thus $\varphi \in$ end F.
LEMMA 15. Let $\pi=\varphi^{2}$; then $\pi^{2}=\pi$.
Proof. We have

$$
\varphi\left(z_{0}\right)=\left(\begin{array}{cc}
1 & 0 \\
\rho\left(W_{0}\right)+\left(x_{0}-1\right) y_{0} & 1
\end{array}\right), \varphi\left(z_{i}\right)=\left(\begin{array}{cc}
x_{i} & 0 \\
\rho\left(W_{i}\right)+\left(x_{0}-1\right) y_{i} & 1
\end{array}\right),
$$

where $y_{i} \in M \subset S$. Then by (6), (7'), (5), and $\rho^{2}=\rho$ we have $\varphi^{2}\left(z_{i}\right) \equiv \varphi\left(z_{i}\right)(\bmod U)$ where U is a normal subgroup from Lemma 13. Hence $\pi\left(z_{i}\right)=\varphi^{2}\left(z_{i}\right)=\varphi\left(z_{i}\right) u_{i}, \quad u_{i} \in U \subseteq \operatorname{ker} \varphi$ and

$$
\pi^{2}\left(z_{i}\right)=\varphi^{4}\left(z_{i}\right)=\varphi^{3}\left(z_{i}\right)=\varphi^{2}\left(z_{i} u_{i}\right)=\varphi^{2}\left(z_{i}\right)=\pi\left(z_{i}\right)
$$

Put $P=\operatorname{Im} \pi$. Then P is a projective $\underline{\underline{A A}}_{n}$-group with $r+1$ generators.

LEMMA 16. rank $P=r$.
Proof. Let

$$
G=\left\{\left\{\begin{array}{ll}
1 & 0 \\
g & 1
\end{array}\right\} \in F\right\}
$$

Then, by (5) and (6), G is a verbal subgroup of F corresponding to the variety A_{n}. By ($7^{\prime \prime}$), $P / P \cap G$ is a free $Z /(n)$-module of rank r. But $\boldsymbol{r}=\operatorname{rank} P / P \cap G=\operatorname{rank} P / P^{\prime}=\operatorname{rank} P$.

Suppose that P is a free $A A_{n}$-group. Since every automorphism of P / P^{\prime} can be lifted to an automorphism of P (see [5]) we can choose in P free generators t_{1}, \ldots, t_{r} such that in F,

$$
t_{i}=\left(\begin{array}{ll}
x_{i} & 0 \\
g_{i} & 1
\end{array}\right), \quad g_{i} \in S
$$

Let $g_{i}=g_{i}^{\prime}+\left(x_{0}-1\right) g_{i}^{\prime \prime}$, where $g_{i}^{\prime} \in M, g_{i}^{\prime \prime} \in S$. Since $\pi\left(t_{i}\right)=t_{i}$, (6), (7^{\prime}), ($7^{\prime \prime}$) imply $g_{1}^{\prime}, \ldots, g_{p}^{\prime} \in T$, and, by (5), the submodule generated by $g_{1}^{\prime}, \ldots, g_{r}^{\prime}$ coincides with T. So the projective $Z C_{r, n}{ }^{-}$ module T of rank r has r generators. Then T is free. This contradiction shows that T is not free.

References

[1] Hyman Bass, Algebraic K-theory (Benjamin, New York, Amsterdam, 1968).
[2] Graham Higman, "The units of group-rings", Proc. London Math. Soc. (2) 46 (1940), 231-248.
[3] David Lissner, "Matrices over polynomial rings", Trans. Amer. Math. Soc. 98 (1961), 285-305.
[4] A.J. Mclsaac, "The freeness of some projective metabelian groups", Bull. Austral. Math. Soc. (to appear).
[5] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[6] Richard G. Swan, "Periodic resolutions for finite groups", Ann. of Math. (2) 72 (1960), 267-291.

Department of Mechanics and Mathematics,
Moscow State University,
Moscow,
USSR;
Department of Mathematics,
Bedford College,
University of London,
London,
England.

