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A PLESSNER DECOMPOSITION ALONG 
TRANSVERSE CURVES 

FRANK BEATROUS AND SONGYING LI 

A classical theorem of Plessner [6] asserts that any holomorphic 
function / on the unit disk partitions the unit circle, modulo a null set, 
into two disjoint pieces such that at each point of the first piece, / has a 
non-tangential limit, and at each point of the second piece, the cluster set 
of / in any Stolz angle is the entire plane. Higher dimensional versions of 
this result were first obtained by Calderon [2], who considered holomor
phic functions on Cartesian products of half-planes. In this setting, an 
exact analogue of the one-dimensional result is obtained, in which the 
circle is replaced by the distinguished boundary, and the Stolz angles are 
replaced by products of cones in the coordinate half-planes. The ideas of 
Calderon were further developed by Rudin [8, pp. 79-83], who considered 
holomorphic and invariant harmonic functions in the ball of Cn. In this 
case, the circle is replaced by the unit sphere, and the Stolz angles are 
replaced by the approach regions of Korânyi [4]. 

More recently, Ahern and Nagel [1] have obtained a Plessner decompo
sition for Hp functions, with p sufficiently large, on smoothly bounded 
domains in C", with respect to the arc-length measure along a transverse 
curve. In this case, the relevant approach regions allow tangential ap
proach in the complex tangential directions, but their precise shape 
depends on p. Their result may be viewed as a natural extension of the 
theorem of Nagel and Rudin [5] concerning boundary behavior of bound
ed holomorphic functions along transverse curves, since as p approaches 
oo, the approach regions fill out a Korânyi-Stein approach region. 

In this paper, we obtain Plessner decompositions along transverse 
curves for arbitrary holomorphic functions. A decomposition is obtained 
for each of a scale of approach regions which includes the approach 
regions used in [1], as well as the Korânyi-Stein approach regions. How
ever, in contrast to the results in [1] for Hp functions, we must restrict the 
approach to the boundary in the evaluation of limits in a way which is 
analogous to the restricted approach used by Nagel and Rudin [5] in their 
analysis of the behavior of bounded holomorphic functions along trans
verse curves. In fact, the theorem of Nagel and Rudin [5] is a special case 
of our main result (Theorem 1.1). 
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1244 F. BEATROUS AND S. LI 

The paper is organized as follows. In Section 1, we collect the necessary 
definitions and formulate our main theorem. The proof of the main 
result is given in Section 2. In Section 3, we show by example that the 
restricted approach alluded to in the preceding paragraph cannot be dis
pensed with. 

1. The main theorem. For clarity of exposition, we shall formulate and 
prove our main result for the unit ball in Cn, although it will be evident 
from the proof that the result remains valid, with obvious modifications of 
the relevant definitions, for domains in C" with C boundary. 

We begin with some notation. We will denote by B and S the unit ball 
and unit sphere respectively in Cn. In the plane, the unit disk and unit 
circle will be denoted by A and T respectively, and H will denote the upper 
half-plane. For any -q in T and a > 1, we denote by Ta(r)) the Stolz angle 
defined by 

ra(„) = {x e A: |X - „ | < ^(1 - |A|2) }. 

The half-plane analogue is defined similarly. For x0 G R and a > 0, we 
define 

r?(*o) = i(*>y) * H:\x- x0\ <ay). 
In the ball, the natural analogue to a Stolz angle is a Korânyi region, 
defined by 

Da(0 = [z e B: |1 - <z, £> | < ^(1 - | z | 2 ) j 

for any f e B and any a > 1. We will also need approach regions which 
mediate between the Korânyi regions and non-tangential regions. For any 
f e 5 , any a > 1, and 1 ^ y ^ 2, we define 

r„ ;Y(0 = {z e Da«): \z - (z, ?>?lr < a(l - | <z, £> |2) }, 

where ( , ) denotes the hermitian inner product of Cn. Thus, the region 
ra;1(f) is essentially conical, while Ta.2(0 = Da(Ç). In general, the re
gion r (f) is non-tangential in the complex normal direction, but, for 
y > 1, allows tangential approach of order y in the complex tangential 
directions. 

For f e S, a Ç-curve is a continuous map ^:(0, h) —> B such that 
iKO ""* f as t —> 0 + . If \p is any f-curve, we shall denote by \pv and \pT the 
normal and tangential components of \p, defined by 

UO = 0KO, Of and +T(t) = W) - ^(0. 
For 1 ^ y ^ 2, we shall say that a f-curve \p is of type y if for some a > 1 
we have \p(t) e Da(f) for z1 sufficiently small and if 
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PLESSNER DECOMPOSITION 1245 

\ut) r = o(i - i^o i2). 
If / is a function on B, and if J e S, we will say that / has a restricted 
y-limit at J if there is an L G C U {oo} such that lim f(\p(t) ) = L as 
/ —> 0 for every J -curve \p of type y. 

A C curve <p:—» S is called transverse if it has non-zero complex normal 
component at each point, i.e., if (q>'(t), <p(t) ) T̂  0 for all t e [a, b]. 

Our main result is 

1.1. THEOREM. Let q>:[a, b] —> S be a transverse curve of class C ' p 

for some p > 0, and let f be a holomorphic function on B. Then for each 
1 < y ^ 2, the interval [a, b] can be partitioned into disjoint measurable 
subsets E, F, and N such that 

(i) f(Ta.y(<p(x) ) ) is dense in Cfor every x e F and every a > 1; 
(ii) f has a restricted y-limit at <p(x) for every x e E\ 

(iii) N is a null set. 

It is natural to ask whether the restricted limit in item (ii) can be 
replaced by the limit of f(z) as z —» <p(x) in Tay(q)(x) ). Indeed, Ahern and 
Nagel [1] have shown that this is possible f o r / e Hp with p ^ 2(n — 1) 
and y _ 1 = 1/2 -f (n — l)/p. That this is not the case for arbitrary holo
morphic functions follows from an example of Nagel and Rudin [5] in the 
case y = 2. In Section 3, we will indicate how the example of [5] can be 
modified to apply to any rational value of y between 1 and 2. 

Before proceeding with the proof, we should note that we do not know 
whether the limits in item (ii) can be asserted to be finite. If the curve <p 
bounds a complex analytic curve, then it follows from the uniqueness 
theorem of Privalov [7] that the limit must be finite at almost every point 
of E. Also, if we impose growth conditions on / and additional smooth
ness on <p, then we can show that the limit must be finite for almost every 
x e E. More precisely, if | /(z) | ^ (1 — |z|2)~^ and <p is of class 
C ^ f l / + p for some p > 0, then the limit in (ii) must be finite for almost 
every x G E. This last assertion can be proved by realizing the curve as the 
boundary of an almost analytic disk. A detailed proof will be omitted. In 
general, we conjecture that a holomorphic function cannot have infinite 
non-tangential limit along a set of positive linear measure in a transverse 
curve. 

2. Proof of the main theorem. In addition to the regions Da(Ç) and 
ra;y(f) defined in Section 1, we must introduce another family of approach 
regions which will play a technical role in the proof, since we will need to 
control the rate of approach in the complex normal and complex tangen
tial directions separately. For any f G S, any a > 1, and any /? > 0, we 
define 

r„,|8;ytf) = {z e DJS): \z - (z, f)flY < j8(l - | <z, £> |2) }. 
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1246 F. BEATROUS AND S. LI 

Thus, the size of Taj.y(Ç) in the normal direction is controlled by a, while 
/} controls the size in the tangential directions. Note in particular that 

W O = ra;7tf). 
We will also need a notation for small neighborhoods of the boundary. 

For any e > 0 we define 

S(e) = {z e B\\ - \z\2 < €}. 

We begin by collecting a few lemmas summarizing some essentially 
well-known results in a form which will be convenient for our purposes. 

2.1. LEMMA. Let E be a measurable subset of T with positive arc-length 
measure, and let T]0 G T be a point of density for E. Then for any a, a0 > 1 
there is an e > 0 such that 

r„(,0) n {A G A:l - |A|2 < <} c ^ y i , ) . 

A proof of this result may be found in [9, pp. 201-202]. 
The next result is essentially the local Fatou theorem of Privalov [7]. 

2.2. LEMMA. Let E be a measurable subset ofR and let h, <x0 > 0. Let u be 
a bounded harmonic function on the open set 

D = y T"(x) n {x + iy e H: y < h}. 

Then for almost every x0 G 2s, the limit of u(x + (y) e;râfs a 5 i -h (y «/?-
proaches x0 in Ta (xQ) for every a > 0. 

This result is usually formulated for functions which are harmonic 
throughout H and bounded on D (see e.g., [9, p. 201]), but the proof 
remains valid for functions which are defined only on D. 

We will also need the lemma of Nagel and Rudin [5] on attaching al
most analytic disks to transverse curves. 

2.3. LEMMA. Let <p:[a, Z>] —» S be a transverse curve of class C €for some 
e > 0. There is an h > 0, and, letting Q = [a, b] X [0, h], there is a C 1 + e 

map <b:Q —> B such that <ï> is of class C°° on [a, b] X (0, h], and there is a 
positive constant M such that for all x, y G Q, 

(i) $(*, 0) = <Kx); 
(ii) 1 - |0(x, y) |2 ^ Mv; 

(Hi) |3$(x, y) | â M / ; 
(iv) For any fixed x G [a, b], the curve y I—> $(.x, j^) approaches <p(x) 

non-tangentially as y —» 0 . 

Our next result is an analogue of Lemma 2.1 for certain singular 
measures on the sphere. 

2.4. LEMMA. Let q>:[a, b] —> S be a C transverse curve, and let E be a 
measurable subset of [a, b]. Let x0 be a point of density for E, and let 
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f0 = <p(*o)- F°r any a-> ao > 1' any 1 < Y = 2, and any ft > 0 satisfying 
ft < a0 if y =£ 2, or ft < 1 / / y = 2, //zere w an e > 0 such that 

r«,fry(?o) n 5(£) c ^ u £ rao;Y(<p(x) ). 

Proof. We assume without loss of generality that x0 = 0 and f0 = 
<P(0) = ( 1 , 0 , . . . , 0). For z = ( z , , . . . , z„) e C", we will use the notation 
z' = (2, £0>$b = (zi> 0 , . . . , 0) and 2 " = z - z ' = (0, z2 , . . . , z„). For 
x G R near 0, we define 0 = 6(x) e { — ir, TT] by 

e,'0(.x) = (?(*), fp) 

K<p(*Uo>l' 

Clearly 6 is a C function of x for x near 0, and moreover, 

0'(O) = - i<»'(0) , ?0>. 

Since <p is transverse, the right hand side is non-zero, so by the Inverse 
Function Theorem, the map x H ^ ^ i s a C diffeomorphism of a neigh
borhood of 0 in R to a neighborhood of 1 in the unit circle. Letting Ë 
denote the image of E under this map, it follows that E is a set of positive 
measure in the unit circle, and that 1 is a point of density for E. In 
addition, since the map is a diffeomorphism, there is a constant Cx such 
that for x near 0, 

(2.5) W(x) - f0| tk Cx\e
l6{x) - 1|. 

Let «j = (1 — ft)a0/2 if y = 2, or ax = a0/4 if y < 2. By Lemma 2.1, 
there is an e} > 0 such that 

(2.6) r a( l) n {À G A:l - |A|2 < t,} c y r (i,). 

Let z G ra^ ;y(f0) Pi S(e), where € > 0 will be chosen below, depending 
on the curve <p, the set E, and on the parameters a, a0, y, and ft. Then 

1 - |z,|2 = 1 - |z|2 + | z ' f 

< 1 - |z|2 + (/?(l - |z,|2))2/*. 

In the case y = 2, we have assumed that ft < 1, so we obtain 

(2.7a) 1 - |z,|2 < y ~ 0 - \z\2) if y = 2. 

On the other hand, since (1 - |z,|2)2 ^ a(\ - \z\2) for z e Z>a(f0), we 
have 

1 - |z,|2 = 1 - |z|2 + fi2/\ae)u"-m(l - |z,|2), 

so if y < 2, then for any p > 1 we can choose € sufficiently small, depend
ing on a, y, and p, that 

https://doi.org/10.4153/CJM-1988-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-053-1


1248 F. BEATROUS AND S. LI 

(2.7b) 1 - IzJ2 < p(l - |z|2) if y < 2, 

and in particular we may choose p < min{a0/)8, 2}. In either case, it 
follows for suitably small e, depending on a, y, and cl5 that 1 — \zx\ < Cj. 
Moreover, the fact that z e Z>a(f0) implies trivially that zx e Ta(l), so it 
follows from (2.6) that there is an TJ e E such that z, e Ta (17). Note also 
by (2.7a, b) that zl5 and hence % may be made as near as we please to 1 
by choosing c sufficiently small. Thus, if e is sufficiently small, there is 
a unique x e (a, b) near 0 such that TJ = el ^x\ Letting f = <p(x), we 
claim that 

(2.8) z e rao;y(0. 

To prove (2.8), we first show that z e Da(f). We have 

(2.9) ii - <z ,oi ^ u - Z,F,I + \(z", m 

s n - z,iji + if, - rji + iz"i i n 
= iz, -7,1 + (i - if,D + iz"iiri 
^ \Zx -7,1 + (i - if,i2) + iz"iin 
= u, - 7,1 + i n 2 + \z"\ i n . 

By (2.5), we have 

in s if - J0I s eh - ii. 

But since Zj G Ta(l) n Ta (TJ), it follows from the triangle inequality that 

(2.10) IT, - 1 | < 1 ± 3 ( 1 - k l |2) 

and so we have 

in^^ic.o-iz,!2). 
Thus, in view of the fact that z e Ta p.y(Ç0) and z, e Ta (TJ), it follows from 
(2.9) that 

|i - <z, o l < | d - k,l2) 

+ C2(l - |z,|2)2 + C3(l - |z,|2)1 + 1/1r, 

where C2 and C3 are constants depending on the curve <p and on the 
parameters a, a0, /?, and y. By appealing to (2.7a) or (2.7b), depending on 
whether y = 2 or y < 2, we obtain 

|1 - <Z, O I < C4(^ + C2£
2 + C3£

1/Y)(l " |Z|2), 
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where C4 = 1/(1 — /?) if y = 2, and C4 = 2 if y < 2. Thus, if € is suitably 
small, it follows from our choice of a{ that |1 — (z, f) | < (a0/2)(l — |z|2), 
SO Z G A,o(0-

In the case y = 2, the proof of (2.8) is complete, since Ta .2(f) = Z>„ (f). 
To complete the proof of (2.8) in the case 1 < y < 2, we must estimate 
\z - <z, f)f|. By (2.5), (2.10), and the definition of ro>/8;y(f0), 

\z - (z, f>f| ê |z - <z, f0>f0| + 2 |f - f0| 

<(j8(l - | Z 1 | 2 ) ) 1 / * + 2C,|T, - 1| 

^(P(l - |z , |2)) , / Y + C,(ct + a,)(l " N 2 ) . 

Thus, by (2.7b), we obtain 

\z ~ (z, M\ <((pP)l,y + pCx(a + a , ) e ' - , / i r ) ( l - \z\2)U\ 

Since p was chosen so that pfi < a0, it follows that, for suitably small e, 

V - <z,M\ <(«o0 - kl2))1/Y 

=i(«0(l - I (z, 0 |2) ) u \ 
and so (2.8), and hence Lemma 2.4, is proved. 

2.11. LEMMA. Let <p:[a, b] -^ S be a transverse curve of class C p for 
some p > 0, and let <b:Q —> B be as in Lemma 2.3. There are anhx > 0 and 
an a > 1 such that, letting Qx = [a, b] X [0, /zj, we have 

*[lf(x) n g,] c ra;1(<p(x)) 

Pra?/. Writing À = JC -h />, we have that (8$/8X)(JC + 0/) = 0 for all 
x e [a, 6], so it follows that 

Q(x + i » = v(x0) + v'(x0)(* ~ xo + z » + °( I (* ~ xo) + iy\ ) 

uniformly for x0 e [a, 6]. From this it follows immediately that 

|1 - <$(* + i » , <p(x0) > I ^ C|JC - x0 + />| 

and 

|*(JC + iy) ~ (<&(X + J » , <JP(X0) >cp(x0) I ^ C\X - XQ + /> | , 

where C is a constant depending on <p. Thus, if JC + iy is constrained to lie 
in T^(x0), we obtain 

|1 - <0(x + / » , <p(x0)>| ^ 2Cy 

and 

|0(x + i » - (0(x + / » , <p(x0) >(x 0 ) | ^ 2Cv, 

and the lemma follows from item (ii) of Lemma 2.3. 
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We will need an elementary gradient estimate. 

2.12. LEMMA. Let 1 < al < a2, and let 0 < e, < e2. There is a con
stant C = C(ah a2, Cj, €2) such that if f is a holomorphic function on 
Ta2j(0

 n S(e2) satisfying sup | / | ë M, f/ie/i 

|v/(z)| ^ CM(i - kl2)"1 ™ rfli;1(f) n s(Cl). 

Proof It follows easily from the definitions that there is a constant C , 
depending on a{, a2, cls and c2, such that for each z e Ta ;1(f) Pi S(eiX the 
ball about z of radius C'(l — |z| ) is contained in Ta . j(f) n 5'(€2). 
Thus, the required inequality follows from Cauchy Estimates for / . 

We are now prepared to begin the proof of Theorem 1.1. Let {A} be a 
sequence containing all complex numbers with rational coordinates, and 
let A, be the disk about À, of radius 1//. For each /', let E, be the set 
consisting of all x G [a, b] such that for some a > 1 and some e > 0, the 
image off on Tay(<p(x) ) Pi S(e) does not meet A . S ince / i s continuous on 
B, each E- is Borel measurable, and the set F = [a, b]\UEj clearly satisfies 
condition (i) of Theorem 1.1. Thus, to complete the proof, it suffices to 
show that for every j , the function / has a restricted y-limit at cp(x) for 
almost every JC G £.. We therefore fix j \ and let E' = Ej, A' = Xy, and 
A' = A, 

We can further decompose Ef into a countable union of sets E'k, where 
E'k consists of all x G E' such that / omits A' on Tl/k.y(q>(x) ) Pi S(\/k). 
Then, once again, it follows that each E'k is measurable, and it suffices 
to show that, for each k, the required limit exists at <p(x) for almost every 
x <= Ek. Thus, Theorem 1.1 follows from 

2.13. PROPOSITION. Let <p:[a, b]-+ S be a transverse curve of class c 3 / 2 + p 

for some p > 0, let e0 > 0, a0 > 1,1 < y = 2, and let E be a measurable 
subset of [a, b]. Let f be a holomorphic function on the open set 

D = UE Tao.y(<p(x) ) n 5(€0) 

such thatf(D) Pi A0 = 0for some non-empty open set A0 in C. Then f has a 
restricted y-limit at <p(x) for almost every x e E. 

Proof First, note that, by replacing f by \/(f — \0), with X0
 G ^ o » w e 

may assume that / is bounded on D. 
For each positive integer j and a > 1, let Ej consist of those points 

x e E such that 

It follows from Lemma 2.4 that E\UjEj is a null set for every a > 1, 
since almost every point of E is a point of density. Thus, it is enough to 
show that there is an a > 1 such that for every positive integer y, the 
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function / has a restricted y-limit for almost every x G E". Let a be so 
large that Lemma 2.11 applies. Since y > 1, it is clear that there is an 
€ > 0 such that 

r2 a ; 1(0 n S(t) c T2aA/2.y(0 for all ? e S, 

so, by Lemma 2.12, there is, for each j , an e > 0 such that 

|V/(z)| ^ const.(l - k l 2 ) " 1 

for 

z G U{i; ;1(<p(x)):x G Eja} n 5(e). 

Let O denote the mapping of Lemma 2.3. By Lemmas 2.3 and 2.11, it 
follows that, for sufficiently small h > 0, 

(2.14) |3 ( / o *) (*+ i » | ^ |V/(*(x + i » ) | |3*(JC + iy) | 

g consul - I*(JC + z » i y y / 2 + p 

for 

^ const. y~V2"rp 

x -f /> G D' = (a, b) X (0, h) n U{rf(jc): x G £ 2 a } . 

(It is here that the hypothesis that <p is of class C 3 / 2 + p is used.) Let g be the 
function on C defined by 

g(X) = (3/3X)(/ o <D(X) ) if A G D\ 

and g(X) = 0 otherwise. It follows from (2.14) that g G Z/(C) for 
p < 2/(1 — 2p), and so the function 

u(x + (y) - — / ^ dX A d\ 
2m JCX - (x + i » 

is Lipschitz of order ô for 0 < 5 < 2p. Moreover, the function / o $ — w is 
holomorphic on Z>', and since w is continuous on the entire plane, the 
boundary behavior o f / o 0 along E-a is determined by that o f / o O — 
w. But by applying Lemma 2.2 to the intersection of EJa with relatively 
compact subintervals of (a, b), we conclude that f o $ — u has a 
non-tangential limit at almost every point of E.a, and hence the same is 
true o f / o O. In particular, it follows that 

lim / ($ (* , j;) ) 
r-»o+ 

exists for almost every x G E-a. But since E\U-E:a is a null set, it fol
lows that the above limit exists for almost every x G E. 

The proof can now be completed using an argument of Cirka [3]. Let 
x G E be a point of density such that lim>;_^0+ f($(x + *>) ) exists. 
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Let f = <p(x), and let ^:(0, h) —> B be any f-curve of type y. Then there is a 
non-negative function a such that o(t) —> 0 as / —» 0 + and such that 

hMO I ^ o(0(i - W2)1/y-
Let a > 2 be sufficiently large that i//(/) e Z)a/2(?) when / is near 0. By 
Lemma 2.4, there is an e > 0 such that 

r«,l/2;y(n H 5(6) C £>. 

We also choose € sufficiently small that o(t) < 1/2 whenever \pv(0
 G ^(c). 

If w is any unit vector orthogonal to f, then for any X e r a / 2 ( l ) , it 
follows that 

\$ + wu e ra>1/2;ytf) 

for every complex number w with 

M Y < (i/2)(i - IAI2). 

Applying the Schwarz Lemma to the function 

» H / ( À f - Wu) -f(\Ç) 

yields 

|/(A£ - wu) - f(M)\ ^ 2X + XhlM(\ - | A | V 1 / Y k l 

where M is an upper bound for | / | on Ta 1/2;Y(f)- I n particular, taking 

X = (ip(0> 0 a n d WU = WO» w e obtain 

(2.15) |/0KO ) - / ( W O ) I ^ 21 + , /^Ma(0 

and so lim,_>0+ /(i/>(0 ) exists if and only if l im^0+ f(^v(t) ) exists, in 
which case the two limits have the same value. In particular, applying 
(2.15) to the curve \p(t) = 0(JC + it) gives that 

lim / ( <0(x + , » , 0 0 
v->0+ 

exists. Let D = {À G A:Àf G D ) and let g be the bounded holomorphic 
function on D defined by g(X) = f(XÇ). Then 

r t t(l) n {1 - | À | 2 < € } c 5 , 

and the curve \p(t) = (0(x, /), f) approaches 1 in r a / 2 ( l ) n 5 . It thus 
follows from a theorem of Lindelôf that g has a limit at 1 in Ta,(l) n 5 for 
every 1 < a' < a. But since we are free to choose a as large as we please, it 
follows that g has a non-tangential limit L at 1. Thus, if i//(0 is any f-curve 
such that \pv(0 approaches f non-tangentially, then 

lim MXO ) = lim / ( ( M ) , Of) = *<• 
*->o+ /->o+ 

In particular, if \p is of type y, then it follows from (2.15) that 
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lim /GKO ) = L, 

and the proof is complete. 

3. Counterexamples. In this section, we show by example that, at least 
when y is rational, Theorem 1.1 does not admit a sharper formulation 
in which restricted y-limits are replaced by limits in ra.y(J). In the case 
y = 2, this follows from an example of Nagel and Rudin [5] of a bounded 
holomorphic function on the ball in C2 which does not have admissible 
limits at any point along the transverse curve 

*!->,,(*) = (ei*9 0). 

Here we show how the example of Nagel and Rudin can be modified to 
produce, for any rational number y with 1 ^ y ^ 2, a holomorphic 
function f(z, w) on the ball B in C2 which is bounded on Tay(<p(x) ) for 
every x and every a > 0, but which does not have a limit as (z, w) —> <p(x) 
in Tay(q)(x) ) for any x e [0, 277) and any a > 1. 

For each positive integer k, let nk = (A:!)2, and for z e A, let 

00 

g(z) = 2 (nk - nk„x)z
nK 

k = 2 

For k ^ 2, we have 

nk 

(nk - nk_})\zr < 2 \z\J9 

SO 

0 0 J j 

(3.1) \g(z)\ ^ 2 \Z\J = -*±-
7 = 1 1 - \Z\ 

Let y be any rational number in [0, 1], and write y = pi q with p 
and q positive integers. We define a holomorphic function on B by 
/(z, w) = w/7g(z)'7. For each positive integer k, let rk = 1 — 1/%, and 
let 

Then r£* increases to Me as /c —» 00, so for A: = 2 

1 ^ ( ^ ) 1 M « * -«/C-.V22 

- 4 - $T 
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Also, 

k-\ k-\ 

2 hj(rke
lx) < 2 (rij - /!,•_,) = nk-\ ~ *\ < nk+x 

j = 2 j = 2 

and 

< 14' - -H* 
DO 

< 2 t/!)2«-A 
7 = ^+1 

so it follows that 

l u / /c2 ^ y = r + i ' 

Since the series 2 0'!) e 7 converges, it follows that, for sufficiently 
large /c, 

Now let a > 1 be arbitrary, and fix c e (0, a). Letting 

z, = rke'x and w, = (c(l - r2
k))

y\ 

one easily checks that 

(zk> wk) G ra;Y(<pO) ) for every x e [0, 2m\ 

provided that k is sufficiently large. Moreover, it follows from (3.2) that 

I/»'..-*)I * ($)')• 

so, in view of the fact that / (z , 0) = 0 for all z e A, it follows that /(z , w) 
does not have a limit as (z, w) —> <p(x) in ray(<p(x) ). On the other hand, it 
follows from (3.1) that / is bounded on ra;y(<p(jc) ) for every x e [0, 277) 
and every a > 1, so the advertised properties o f / are established. 
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