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Summary

A simple mathematical model of genic directional selection is developed to study frequency

changes of genetic marker alleles that are partially linked to a quantitative trait locus (QTL) under

artificial selection. The effects of population size, number of generations of artificial selection,

recombination between marker locus and QTL, and the strength of selection on the change in

allele frequency are analysed by the diffusion equation approach and by stimulation. Using these

results, we investigate the power of statistical tests for the detection of QTLs based on the

observation of significant marker allele frequency changes in selection experiments. The probability

of inferring the correct location of a QTL is also obtained.

1. Introduction

Artificial selection experiments usually reveal a con-

siderable amount of genetic variation that gives rise to

extreme phenotypes not usually found in natural

populations (Falconer & Mackay, 1996). The response

results from genotypic changes at quantitative trait

loci (QTLs) under selection. In conventional artificial

selection experiments, only the change in the popu-

lation mean of a trait is observed. Thus, it is difficult

fully to understand the genetic basis of the response to

selection. Recently, an experimental approach was

proposed to identify the number, locations and effects

of QTLs responsible for phenotype changes observed

in a population under artificial selection (Lebowitz et

al., 1987; Keightley & Bulfield, 1993; Keightley et al.,

1996). This approach followed earlier work by Garnett

& Falconer (1975). It is based on the observation of

allele frequency changes at genetic markers that are

assumed to be closely linked to the loci under selection.

The frequency of a selected allele will increase or

decrease depending on the phenotypic value of the

QTLand the direction of artificial selection. Therefore,

a QTL of sufficiently large effect can be detected by

frequency changes of marker alleles that significantly

deviate from the respective frequencies in the base

population. A systematic experimental approach
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based on this principle is now possible due to dense

maps of molecular genetic markers available in many

animals and plants.

For the experiments mentioned above, an ap-

propriate statistical method should be developed to

ensure that the observed frequency changes are due to

selection rather than random genetic drift. Keightley

et al. (1996) used a maximum likelihood method to

detect the effect of QTLs affecting mouse body weight.

Their method depends on extensive Monte Carlo

simulations of a specific selection experiment. Ollivier

et al. (1997) proposed a different statistical analysis to

estimate the average effect of a marker allele that is

completely associated with a QTL. In this paper, a

mathematical model of allele frequency changes in an

artificial selection experiment is developed to evaluate

the statistical power for detection and mapping of

QTLs. We compute the expected mean and variance

of the distribution of marker allele frequency changes

under the null hypothesis (genetic drift) and the

alternative hypothesis (directional selection). We

consider an artificial selection experiment in which the

base population is the F2 population of a cross

between two inbred lines having different phenotypic

values. Only one QTL is assumed to be linked to a

given marker. Selection is assumed to be unidirec-

tional.
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2. Theory

(i) Model

In a cross between two inbred lines, one line is

assumed to be homozygous for allele B at a selected

locus and allele M at a marker locus. In contrast to the

stimulation model of Keightley et al. (1996), we

consider only a single marker linked to the QTL.

The other line is homozygous for b and m at the

corresponding loci. The two loci are linked; the

recombination fraction is c. Artificial selection begins

with the F2 population from the cross between the

two inbred lines. In the F2 generation (t¯ 0), the

expected frequencies (x
"
, x

#
, x

$
and x

%
) of chromo-

somes BM, Bm, bM and bm are (1®c)}2, c}2, c}2 and

(1®c)}2, respectively. Therefore, the expected fre-

quency of allele B, p, and that of allele M, q, assume

the value p
!
¯ q

!
¯ 0±5 at t¯ 0. (In reality, the initial

frequency at t¯ 0 may deviate from 0±5 due to

sampling variance occurring from the F1 to the F2

generation. This will be taken into account later.) We

assume that effective (diploid) population size N is

constant throughout the selection experiment. For the

QTL, a genic selection model is considered, in which

individuals with genotype BB, Bb and bb have fitness

1­2s, 1­s and 1, respectively.

(ii) Diffusion approximation

To analyse the effects of selection and drift on the

trajectory of the marker allele, we use a diffusion

equation method. To obtain an expression for the

drift coefficient of the diffusion equation, we begin by

considering the first moment of the frequency of the

selected allele. Using equation (5.2.18) from Crow &

Kimura (1970), the change in allele frequency from

one generation to the next is

∆p
t
¯

sp(1®p)

1­2sp
E

sp(1®p)

1­2sp
!

.

This approximation is valid only as long as the

frequency of B stays reasonably close to p
!
. With

p
!
¯ 0±5, the solution in the continuous time ap-

proximation becomes

p
t
¯

1

1­e−s«t
, with s«¯

s

1­s
. (1)

To obtain the change in the first moment of the

marker allele frequency, we introduce the variables

Q and R to denote the proportions of M in those

chromosomes containing B and b, respectively. Then,

x
"
, x

#
, x

$
and x

%
and x

%
are rewritten as pQ, p(1®Q),

(1®p)R and (1®p) (1®R), respectively (Maynard

Smith & Haigh, 1974). Furthermore, q
t
¯ p

t
Q

t
­

(1®p
t
)R

t
and Q

!
¯1®c and R

!
¯ c. It follows from

Maynard Smith & Haigh (1974) that

dQ
t

dt
¯ c(1®p

t
) (R

t
®Q

t
),

dR
t

dt
¯ cp

t
(Q

t
®R

t
),

and

Q
t
®R

t
¯ (Q

!
®R

!
) e−ct ¯ (1®2c) e−ct.

It follows from these equations that

dq
t

dt
¯ (1®2c)

dp
t

dt
e−ct. (2)

Using (1) and (2), we approximate the q
t
process by

a one-dimensional diffusion, such that the diffusion

coefficient is given by σ#(q, t)¯ q(I®q)}2N and the

drift coefficient µ(q, t) by the right-hand side of (2).

Note that the drift coefficient is time-dependent. This

takes into account that the underlying process is

higher-dimensional because the marker locus is linked

to the QTL under consideration. The assumptions

made here ignore stochastic fluctuations in the

variables which have been eliminated by this reduction

procedure, i.e. the frequency of the selected allele and

linkage disequilibrium. The validity of these assump-

tions is examined by simulation (see below). Second-

order approximations that take stochastic fluctuations

into account are difficult to treat mathematically (but

for an example in which second-order approximations

could be obtained in the diffusion equation of the

reduced system see Stephan et al., 1999).

(iii) Moments of q
t

Combining (1) and (2) leads to the first moment

q
t
E 0±5­(1®2c) 0 e−ct

1­e−s«t
®0±5­& t

!

e−cτ

1­e−s«τ
dτ1 . (3)

This is the expected frequency of M at generation t

given it was 0±5 at t¯ 0. The second moment of q
t
is

computed using the equation

d

dt
E

t
( f )¯E

t 0µ(q, t)
d

dq
f­"

#
σ#(q, t)

d #

dq#

f1 , (4)

where f¯ q# (Stephan et al., 1992). To solve this

differential equation we have to make the additional

assumption that p
t
changes in a linear fashion with

time about p
!
¯ 0±5 (instead of (1)). Thus,

dp
t

dt
E

s«
4

.
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This assumption is valid as long as st is in the order of

1. Then, µ(q, t) becomes independent of q or p, and

depends only on t. Next we define

H(t)¯& t

!

(1®2c)
dpτ

dτ
e−cτdτ.

Then,

E
t
(q)¯ q

!
­H(t), (5)

and

dE
t
(q#)

dt
¯E

t (dq

dt

d(q#)

dq
­

1

2

q(1®q)

2N

d #(q#)

dq#
*

¯ 2
dH(t)

dt
E

t
(q)­

1

2N
(E

t
(q)®E

t
(q#))

¯ 02 dH(t)

dt
­

1

2N1 (q
!
­H(t))®

1

2N
E

t
(q#).

The solution of this differential equation is

E
t
(q#)¯ e−

t

#NE
!
(q#)­

1®e−
t

#N

2

­H(t)­2e−
t

#N& t

!

e
τ

#N

dH(τ)

dτ
H(τ) dτ.

Using (5) and E
!
(q#)¯ q#

!
¯ "

%
, we have

Var(q
t
)¯E

t
(q#)®²E

t
(q)´#

¯
1®e−

t

#N

4
­2e−

t

#N& t

!

e
τ

#N

dH(τ)

dτ
H(τ) dτ®H(t)#.

(6)

To further evaluate this equation, we use the re-

lationship

H(t)E
s«(1®2c)

4c
(1®e−ct).

If c is much larger than 1}2N,

& t

!

e
τ

#N

dH(τ)

dτ
H(τ) dτE

s«#(1®2c)#

16c & t

!

(1®e−cτ) e(
"

#N
−c) τ dτ

E
s«#(1®2c)#

16c & t

!

(e−cτ®e−#c
τ) dτ

¯
s«#(1®2c)#

32c#
(1®e−ct)#.

Therefore,

Var(q
t
)E

1®e−
t

#N

4

®
s«#(1®2c)#

16
(1®e−

t

#N) 01®e−ct

c 1#. (7a)

If s¯ 0 or c¯ 0±5, the right-hand side is reduced

to (1®e−
t

#N)}4, which has also been obtained by

other methods (Crow & Kimura, 1970, p. 328). To

incorporate the sampling variance occurring between

the F1 and F2 generations, we replace t in the right-

hand side of (7a) with t­1. This is only an

approximation because there is no deterministic

change in the frequency of B between the F1 and F2

generations. Then,

Var(q
t
)E

1®e−
t+"

#N

4

®
s«#(1®2c)#

16
(1®e−

t+"

#N) 01®e−c(t+")

c 1#. (7b)

(iv) Statistical test of marker frequency change

If we assume that q
t
is normally distributed, we can

calculate the type I and type II errors of hypothesis

testing:

H
!
:s¯ 0 or c¯ 0±5, H

"
:s1 0 and c1 0±5.

Under H
!
, q

t
is normally distributed with mean,

µ
!
¯ 0±5, and variance

σ
!

#¯
1®e−

t+"

#N

4
.

Under H
"
, the mean, µ

"
, and variance, σ#

"
, are given by

(3) and (7b). Thus, the power of rejecting H
!
is given

by the probability

P[rq
t
®µ

!
r" zα/#

σ
!
]

¯P 9Z"
µ
!
­zα/#

σ
!
®µ

"

σ
"

or Z!
µ
!
®zα/#

σ
!
®µ

"

σ
"

: ,
(8)

where ZCN(0,1), α¯probability of type I error.

(v) Frequency difference of selected and marker loci

When s" 0, p
t
becomes greater than q

t
on average.

But due to random genetic drift, there is a certain

probability that q
t
will instead become greater than p

t
.

If one genetic marker is completely linked with a QTL

and another one with recombination fraction c, the

location of the QTL will be correctly inferred only

when p
t
" q

t
. Therefore, the probability P[p

t
" q

t
] for

a given c can be a useful measure of the precision of

QTL mapping. Thus we investigate the distribution of

y¯ p
t
®q

t
¯x

#
®x

$
at generation t. The mean, E(y)

¯E(p
t
)®E(q

t
), is given by (1) and (3). To obtain the

variance of y, we again use (4). In this case, f¯ y#, and

y is assumed to follow a one-dimensional diffusion.

Because simulation indicated that the variance of y

does not change much by s as long as st is of the order
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of 1, we obtain the variance for the case s¯ 0. Then,

as the drift parameter becomes zero,

d

dt
E

t
(y#)¯E

t 0"#σ#(y, t)
d #

dy#

y#1 ,
where

σ#(y, t)¯V*(x
#
®x

$
)¯V*(x

#
)­V*(x

$
)

®2Co�*(x
#
,x

$
)

¯
x
#
(1®x

#
)

2N
­

x
$
(1®x

$
)

2N
®2 0®x

#
x
$

2N 1
¯

x
#
­x

$
®y#

2N
.

V* and Co�* represent the sampling variance and

covariance at each generation, given by the multi-

nomial distribution. Then, (4) becomes

dE
t
(y#)

dt
¯

1

2N
E

t
(x

#
­x

$
)®

1

2N
E

t
(y#).

Therefore,

E
t
(y#)¯ e−

t

#NE
!
(y#)­

e−
t

#N

2N & t

!

e
τ

#NEτ(x
#
­x

$
) dτ.

Using E
!
(y#)¯ 0 and E

t
(y)¯ 0 for s¯ 0,

Var(y)¯E
t
(y#)®(E

t
(y))#

¯
e−

t

#N

2N & t

!

e
τ

#NEτ(x
#
­x

$
) dτ. (9)

Then, using

dx
#

dt
¯

dx
$

dt
¯ cD

t
,

where

D
t
¯ (x

"
x
%
®x

#
x
$
)
t
¯D

!
e−ct,

E
t
(x

#
­x

$
)¯E

!
(x

#
­x

$
)­2D

!
(1®e−ct)

¯ c­
1®2c

2
(1®e−ct).

Together with (9), this leads to

Var(y)¯
e−

t

#N

2N & t

!

e
τ

#N (c­1®2c

2
(1®e−cτ)* dτ

¯ "

#
(1®e−

t

#N)®
1®2c

2(1®2Nc)
(e( "

#N
−c) t®1). (10a)

Then, as with (7b), sampling drift between the F1 and

F2 generations can be incorporated by replacing t

with t­1. Therefore,

Var(y)¯σ#
y
¯ "

#
(1®e−

t+"

#N)

®
1®2c

2(1®2Nc)
(e( "

#N
−c) (t+")®1). (10b)

We also assume that y is approximately normally

distributed. Then, the probability that p
t
is larger than

q
t
is

P[p
t
" q

t
]¯P[y" 0]EP 9Z"®

E(y)

σ
y

: , (11)

where ZCN(0,1).

3. Simulation

Simulation of artificial selection experiments was

performed to test the accuracy of our analytic

approximations. In each generation, each of N

individuals has two arrays (chromosomes) on which L

loci are located. The first locus is the selected locus

and the other L®1 loci are marker loci. At the

beginning of the simulation, all N individuals are

heterozygous at all loci (F1 population). Then, the

next generation (F2, t¯ 0) is created by sampling N

pairs of parents with replacement. One gamete is

generated from each pair of F1 parents, allowing

recombination to occur with probability c between

adjacent loci. In subsequent generations the prob-

ability of being chosen as a parent is proportional to

the fitness of the individual, namely, 1­2s, 1­s and

1 for an individual having genotype BB, Bb and bb,

respectively, at the first locus. This simulation pro-

cedure is identical to the fertility selection approxi-

mation of Keightley et al. (1996), except that we use 2s

for the fitness difference between two homozygotes

instead of s. In the tth generation the frequency of B

at the selected locus and that of M at a marker locus

are recorded. The distributions of p
t

and q
t

values

were obtained by repeating this simulation 10000

times for each parameter set. The program was

written in C and run on a PowerMac.

We evaluated the accuracy of our approximate

formulas by comparing the numerical solution with

the simulation results (Table 1). The approixmations

are good as long as allele frequencies have not

changed more than 0±25. But the solution for σ
y

was

rather inaccurate with small Nc (N¯100, c¯ 0±0196).

The weak dependence of σ
y

on s is seen in the

simulation.

Tables 2, 3 and Fig. 1 show the power of the

statistical test where the presence of a QTL is

confirmed by a significant change in the allele

frequency of a linked marker. The distribution of q
t

under the null hypothesis is assumed to be normal

with mean 0±5 and variance σ#

!
. Then, we used a two-

sided test with a 99% confidence level. Due to the

restrictions of the mathematical models we have, the

number of generations was adjusted so that st is less

than 1±5. When s is large, the allele frequency and the

power will increase rapidly and remain close to 1±0
after a relatively small number of generations. We are
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Table 1. Comparison of analytic solutions and simulation results

s¯ 0±02, t¯ 20 s¯ 0±06, t¯ 20 s¯ 0±14, t¯ 9 s¯ 0±22, t¯ 4

Theorya Simul.b Theory Simul. Theory Simul. Theory Simul.

N¯100 q
t

0±5770 0±5715 0±7056 0±6990 0±7222 0±7168 0±6599 0±6572
d¯ 2 cM σ

"
0±1558 0±1540 0±1395 0±1382 0±0932 0±0935 0±0716 0±0727

σ
y

0±0800 0±1016 0±0800 0±0968 0±0451 0±0526 0±0276 0±0310

N¯ 550 q
t

0±5770 0±5762 0±7056 0±7057 0±7222 0±7210 0±6599 0±6599
d¯ 2 cM σ

"
0±0678 0±0675 0±0607 0±0597 0±0402 0±0398 0±0307 0±0310

σ
y

0±0432 0±0436 0±0432 0±0418 0±0233 0±0227 0±0135 0±0131

N¯ 250 q
t

0±5433 0±5421 0±6168 0±6173 0±6588 0±6605 0±6280 0±6293
d¯ 8 cM σ

"
0±1010 0±1003 0±0980 0±0974 0±0654 0±0658 0±0472 0±0473

σ
y

0±1064 0±1066 0±1064 0±1008 0±0618 0±0586 0±0374 0±0359

N¯ 250 q
t

0±5968 0±5936 0±7561 0±7501 0±7512 0±7468 0±6729 0±6698
d¯ 0 cMc σ

"
0±0992 0±0981 0±0816 0±0805 0±0555 0±0555 0±0445 0±0449

a The numerical solutions of (3), (7b) and (10b) for q
t
, σ

"
and σ

y
, respectively.

b The observed values of q
t
, σ

"
and σ

y
averaged over 10000 simulations for each parameter set.

c For σ
"
, c¯10−& was used in (7b) ; σ

y
is not applicable.

Table 2. Power of QTL detection: effect of recombination (N¯ 250, α¯ 0±01)

s¯ 0±02 t¯ 20 s¯ 0±06 t¯ 20 s¯ 0±1 t¯15 s¯ 0±18 t¯ 6 s¯ 0±22 t¯ 4

da Theoryb Simul.c Theory Simul. Theory Simul. Theory Simul. Theory Simul.

0 cM 0±048 0±037 0±473 0±475 0±866 0±832 0±893 0±874 0±840 0±819
2 cM 0±033 0±026 0±266 0±266 0±613 0±608 0±793 0±783 0±754 0±743
4 cM 0±024 0±018 0±160 0±156 0±413 0±422 0±682 0±674 0±664 0±661

8 cM 0±017 0±013 0±071 0±065 0±197 0±204 0±474 0±490 0±494 0±506
16 cM 0±012 0±010 0±027 0±025 0±064 0±063 0±217 0±231 0±258 0±280

a Map distance (in centimorgans) between the QTL and the marker, using Haldane’s map function.
b The power of rejecting H

!
(s¯ 0 or c¯ 0±5), given by (8).

c The proportion of simulation results that yielded q
t
" 0±5­2±58σ

!
or q

t
! 0±5®2±58σ

!
, out of 10000 replicates.

Table 3. Power of QTL detection: effect of population size (d¯ 2 cM, α¯ 0±01)

s¯ 0±02 t¯ 20 s¯ 0±06 t¯ 20 s¯ 0±1 t¯15 s¯ 0±14 t¯ 9 s¯ 0±22 t¯ 4

N Theorya Simul.b Theory Simul. Theory Simul. Theory Simul. Theory Simul.

100 0±018 — 0±074 0±049 0±164 0±156 0±251 0±258 0±275 0±275
250 0±033 0±026 0±266 0±266 0±613 0±608 0±753 0±752 0±754 0±754
550 0±070 0±064 0±679 0±689 0±975 0±966 0±993 0±991 0±992 0±990

1000 0±138 0±141 0±949 0±948 1±000 1±000 1±000 1±000 1±000 1±000

a The power of rejecting H
!

(s¯ 0 or c¯ 0±5), given by (8).
b The proportion of simulation results that yielded q

t
" 0±5­2±58σ

!
or q

t
! 0±5®2±58σ

!
, out of 10000 replicates.

less interested in QTLs of this strong effect because

they are expected to be detected by other simple

experimental designs.

As expected, the power increases with increasing s,

increasing N, decreasing c and increasing t. But with

small s (0±02), improving the other parameter values

does not substantially increase the power. The degree

of power decline with increasing genetic distance

depends on the number of generations (Table 2), since

recombination between the selected and the marker

locus increases with time. The power increases with t

(Fig. 1) because q
t
increases faster than σ

!
. However,

the rate of increase declines as the number of

generations increases, because the allele frequency

change of the selected locus slows down and the

linkage disequilibrium between QTL and marker

locus disappears.

We also checked whether the assumption of a

normal distribution is valid for q
t
. We measured the

proportions of simulation runs corresponding to the
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Fig. 1. The power and precision of QTL mapping with increasing number of generations, for N¯ 250, s¯ 0±1,
c¯ 0±0196 (2 cM). Lower squares represent the power of test observed in the simulations (averaged over 10000
replicates). The analytic solution is shown by the lower line produced by (8). Upper squares and line represent the
simulation and analytic result (equation (11)) of P[p

t
" q

t
], respectively.

Table 4. Precision of QTL mapping (P[p
t
" q

t
])

d¯ 2 cM d¯ 4 cM d¯ 8 cM d¯16 cM

N s t Theorya Simul.b Theory Simul. Theory Simul. Theory Simul.

550 0±02 20 0±676 0±660 0±723 0±712 0±769 0±752 0±804 0±798
550 0±06 20 0±879 0±875 0±936 0±939 0±971 0±976 0±987 0±992
100 0±1 15 0±767 0±687 0±802 0±768 0±850 0±844 0±890 0±900
250 0±1 15 0±835 0±819 0±894 0±900 0±943 0±952 0±971 0±982

1000 0±1 15 0±965 0±973 0±992 0±996 0±999 1±000 1±000 1±000
250 0±22 4 0±748 0±700 0±816 0±786 0±886 0±887 0±941 0±930

a Probability given by (11).
b Proportion of simulation results that yielded p

t
" q

t
, out of 5000 replicates.

two tails of the empirical distribution of q
t
(P[rX®

E(q
t
)r" zα/#

σW
"
], where X is the random variable

following the empirical distribution, and E(q
t
) and σW

"

are the estimates of mean and standard deviation of

the distribution, respectively. The result shows that

the distribution has a slightly longer tail toward 0±5,

and this skewness becomes greater as N becomes

smaller (data not shown). However, the deviation

from normality cannot be serious since the analytic

solution for power agrees very well with the simulation

results (Fig. 1).

We investigated the probability P[p
t
" q

t
] as a

measure of the precision of QTL mapping (see Section

4). This is the probability that the location of a QTL

is correctly inferred when one marker is completely

linked to the QTL and another marker is linked with

recombination fraction c. Table 4 shows that this

probability increases with increasing c, increasing s

and increasing N. P[p
t
" q

t
] also increases with

increasing number of generations (Fig. 1), because of

increased recombination between QTL and marker

locus. The approximate solution for this probability,

equation (11), generally overestimates P[p
t
" q

t
]. The

empirical distribution of y obtained by simulation has

a longer tail towards large values (s" 0), especially

when the recombination fraction is small. This

skewness causes the overestimation of our analytic

solution.

4. Discussion

By assuming that changes in marker allele frequency

follow a normal distribution and that only one selected

locus is linked to the marker, we could apply the result

of our diffusion approximation to the calculation of

the power of detecting a QTL in an artificial selection
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experiment. Thus one can use our approximate

formulas to determine the population size, the number

of generations and the density of markers for the

detection of a QTL of a desired effect. It is important

to compare the efficiency of this approach with

conventional QTL mapping methods, which test the

marker–phenotype correlation in F2 or backcross

populations (Lander & Botstein, 1989). Although the

extensive evaluation of the power and efficiency of

QTL mapping methods is beyond the scope of this

paper, we can make a comparison with a simplified F2

design. For example, Soller et al. (1976) examined the

power of experimental designs in crosses between

inbred lines. They calculated that, with complete

linkage between a marker and a QTL, 1050 F2

offspring are required to detect a QTL having a

proportionate effect, 2a}σ¯ 0±282 (2a¯ expected

phenotypic difference between two homozygote

classes, σ¯phenotypic standard deviation within a

class), when type I error (α)¯ 0±05 and type II error

(β)¯ 0±1. In order to make a comparison, we use an

approximate formula for determining the selection

coefficient in selection experiments, 2s¯ i(2a}σ) (Fal-

coner & Mackay, 1996, p. 200), where i is the intensity

of selection. Then, assuming i¯1±0 (40% of popu-

lation surviving at each generation: Falconer &

Mackay, 1996, p. 190), we find the selection coefficient

of the QTL is approximately 0±14. Our analytic

formula indicates that, in this case, artificial selection

with N¯ 90 and t¯14 or N¯ 229 and t¯ 7 is

required to detect this QTL that is completely linked

to the marker.

When there is recombination between a marker and

a QTL, sample size increases by 1}(1®2c)# in an F2

design. Therefore, if the marker is 5 cM from the

QTL, the number of offspring required in the F2

design described above increases to 1282 (the use of

interval mapping reduces this increase in sample size :

Lander & Botstein, 1989). In the case of artificial

selection with t¯14, however, N increases from 90 to

293 for detecting the same QTL. Therefore, although

the number of offspring to be genotyped can be much

smaller in QTL mapping by artificial selection, the

decline in power due to recombination is more serious

than in an F2 design. The advantage over F2 or

backcross designs (in terms of power) is maximized

when one uses a very dense map of markers.

The number of recombination events between a

marker and a QTL is the most important factor in

determining the resolution of any QTL mapping

design. We can thus expect better resolution of QTL

location in an artificial selection experiment than in

an F2 or backcross design. In the experiment using

multiple linked markers, the location of a genetic

marker which exhibits the largest frequency change

will provide information on the location of QTL in

question, although this cannot be a clear criterion

of QTL location. The probability that the highest

deviation in frequency is observed in a false marker

(which is not the closest to the QTL) will increase as

the genetic distances between markers become smaller.

We can express the precision of this QTL mapping as

the maximum possible density of markers above

which the probability of correctly inferring the closest

marker to the QTL cannot exceed a certain value (the

highest value is obtained when one of the markers

happens to be completely linked to the QTL). Then,

the probability P[p
t
" q

t
] we obtained will provide the

maximum possible density for a given experimental

condition. For example, if we want a maximum

accuracy of 90% of inferring the closest marker to the

QTL of s¯ 0±1, the average distance between markers

should not be less than 4 cM when N¯ 240 and

t¯15 (Table 4).

We conducted both analytic and simulation studies

of artificial selection experiments in which effective

population size (less than the number of surviving

offsprings at each generation) is at least 100. Although

most selection experiments are conducted with smaller

populations (usually less than 50), there are difficulties

in applying our result to a small population. First, the

variance of q
t
becomes large in small populations so

that, after a certain number of generations, p
!
­zα/#

σ
!

exceeds 1±0 and thus the statistical test is impossible.

For example, with t¯15 and α¯ 0±01, N cannot be

lower than 50. Secondly, the distribution of q
t
becomes

more skewed as N gets smaller. Besides these reasons,

the power of detecting a QTL is not high enough to be

practically important when N is below 100 (Table 3).

Therefore, the application of our result will be limited

to large-scale selection experiments such as those

carried out in Drosophila (Weber, 1996).
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