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Abstract

Here, we show that for most primes p, every residue class modulo p can be represented as a sum of 32
Fibonacci numbers.
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1. Introduction

Let Fn be the nth Fibonacci number. Recall that F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn holds for all n ≥ 0. (1.1)

We put α = (1+
√

5)/2 and β = (1−
√

5)/2 for the roots of the characteristic
equation x2

− x − 1= 0. It is then well known that

Fn =
αn
− βn

α − β
holds for all n ≥ 0. (1.2)

In particular, Fn < α
n holds for all positive integers n. It is convenient to extend the

Fibonacci sequence {Fn}n≥0 to negative integers, either using recurrence (1.1) directly
or allowing n to be negative in formula (1.2). Either way, once this is done then
F−n = (−1)n−1 Fn holds for all n ≥ 0.

It is also well known that every positive integer n can be written as a sum of
Fibonacci numbers

n = Fm1 + · · · + Fmk with m1 ≥ m2 ≥ · · · ≥ mk ≥ 1. (1.3)

If we impose the condition that the inequality mi − mi+1 ≥ 2 holds for all i =
1, 2, . . . , k − 1 then, up to identifying F1 and F2 (both equal to 1), the resulting
representation (1.3) is unique and is called the Zeckendorf representation of n.
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As with representations in base b (where b > 1 is an integer), most positive
integers n have a large k in representation (1.3). In fact, it is easy to prove that the
inequality k� log n holds on a set of asymptotic density 1.

Here, we look at the analogous problem modulo p. It turns out that for most
primes p, every residue class can be represented as a sum of a bounded number of
Fibonacci numbers.

THEOREM 1.1. The set of primes p such that every residue class modulo p is a sum
of 32 Fibonacci numbers is of relative asymptotic density 1.

Before proceeding to the proof of Theorem 1.1, a few comments are in order. First
of all, the conclusion of Theorem 1.1 does not hold for all primes. For example, it
fails for the prime p = F509. By the arguments from the proof of the Theorem 1.1
below, the Fibonacci sequence is periodic with period 4 · 509 modulo p. Thus, the
totality of the number of residues modulo p which are a sum of at most 32 Fibonacci
numbers is at most (4 · 509)32 < p, therefore not all residues modulo p are a sum of 32
Fibonacci numbers. More generally, if n is a positive integer such that Fn has a prime
factor p > (4n)32, then the conclusion of Theorem 1.1 fails for p. We conjecture that
there should exist infinitely many primes p with the above property, but a proof of this
seems to be out of reach. It is quite likely that for every given constant K , starting
with some large n the number Fn has a prime factor p > nK . If this is true, then the
conclusion of Theorem 1.1 would fail for infinitely many primes p even if the number
32 were replaced by any arbitrary constant K . However, our theorem only addresses
the situation of most primes p, not of all primes p.

Our proof uses recent results from additive combinatorics. A different approach
suggested to us by the referee would be to use recent results on explicit bounds on
short exponential sums with exponential functions. We did not use this approach.
This alternative approach might allow one to even obtain uniform distribution results
regarding sums of K Fibonacci numbers (with K some sufficiently large but otherwise
fixed number) modulo p valid on a subset of primes p of relative density 1. We leave
these questions as future projects for the interested reader.

Throughout the paper, we use the classical notation A = O(B), A� B and A � B
with their regular meaning. The constants implied by them are absolute. For a set A
of positive integers and a positive real number x we write A(x) for A ∩ [1, x].

2. Orders of appearance of primes

For a positive integer k we write z(k) for the minimal positive integer ` such that
k|F`. The number z(k) exists for all positive integers k and has the important property
that k|F` if and only if z(k)|`. The number z(k) is called the order of appearance of k.

The next few results show that the inequality z(p) > 6p1/2 holds for almost all
primes p. One could easily replace the lower bound 6p1/2 with the lower bound
p1/2 exp((log p)ρ) with some sufficiently small ρ > 0 in the above inequality and
keep the conclusion, but the bound 6p1/2 is sufficient for our purposes. Our proof
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follows an argument of Erdős and Murty [1] who proved a similar lower bound when
z(p) is replaced by the multiplicative order of 2 modulo p (see also [4, 6], for example,
for various extensions of the above result).

For a positive real number y we put

P(y) := {p : z(p) < y}. (2.1)

LEMMA 2.1. The estimate
|P(y)|< y2 (2.2)

holds.

PROOF. Observe that ∏
p∈P(y)

p divides
∏
t≤y

Ft .

Hence,
2|P(y)|

≤

∏
p∈P(y)

p ≤
∏
t≤y

Ft .

Taking logarithms and using the fact that the inequality Fm < α
m holds for all m, we

get that
|P(y)| log 2≤

∑
t≤y

log Ft ≤ (log α)
∑
t≤y

t < (log α)y2,

whence the desired conclusion follows. 2

We shall need some information concerning the number of divisors of shifted
primes which are in a given interval. Namely, let

H(x, y, z) := |{n ≤ x : d | n for some d ∈ (y, z)}|,

and for a given nonzero integer λ put

H(x, y, z; Pλ) := |{p ≤ x : d | p + λ for some d ∈ (y, z)}|.

The following result appears in [2].

LEMMA 2.2. If 100≤ y ≤ x1/2 and 2y ≤ z ≤ y2, then

H(x, y, z)� xuδ(log 2/u)−3/2,

where u is defined implicitly by z = y1+u and

δ = 1−
1+ log log 2

log 2
= 0.086 071 . . . .

Furthermore, let 1≤ y ≤ x1/2 and y + (log y)2/3 ≤ z ≤ x. The following estimate
holds:

H(x, y, z; Pλ)�λ

H(x, y, z)

log x
.
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Define
S := {p : z(p) > 6p1/2

}. (2.3)

LEMMA 2.3. The estimate

|S(x)| = π(x)(1+ o(1)) holds as x→∞. (2.4)

PROOF. We split the set of primes p ≤ x as Q(x) ∪R(x) ∪ S(x), where

Q(x) := {p ≤ x : z(p) < p1/2/log p}

and
R(x) := {p ≤ x : p1/2/log p ≤ z(p)≤ 6p1/2

}.

From Lemma 2.1, we obtain

|Q(x)|<
x

(log x)2
.

Let us suppose now that p > 5. Recalling that z(p) | p ± 1, we observe that any prime
p ∈R(x) belongs to the set

{p ≤ x : d | p ± 1 for some d ∈ [p1/2/log p, 6p1/2
]}.

Hence,

R(x) ⊆
{

p ≤
x

log x

}
∪

{
x

log x
< p ≤ x : d | p ± 1 for some d ∈

[
p1/2

log p
, 6p1/2

]}
⊆

{
p ≤

x

log x

}
∪

{
x

log x
< p ≤ x : d | p ± 1 for some d ∈

[
x1/2

(log x)3/2
, 6x1/2

]}
.

Therefore, taking

y =
x1/2

(log x)3/2
and z = 6x1/2,

we have, in view of Lemma 2.2,

|R(x)| �
x

log2 x
+ H

(
x,

x1/2

(log x)3/2
, 6x1/2

; P1

)
+ H

(
x,

x1/2

(log x)3/2
, 6x1/2

; P−1

)
�

x

log2 x
+

x

log x

(log log x)δ−3/2

(log x)δ
= o(π(x)) as x→∞,

and so estimate (2.4) follows. 2
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3. The subset {Fn}n≥0 modulo p for most primes p

Let x be a large real number and let p ≤ x . In light of the results from Section 2, we
may assume that p ∈ S(x). Consider the set {F2n}n≥0 modulo p. It is easy to see that
4z(p) is the period of the Fibonacci sequence modulo p. Indeed, this can be obtained
using the formula

2Fa+b = Fa Lb + Fb La (3.1)

valid for all integers a and b, where {Ln}n≥0 is the Lucas companion of the Fibonacci
sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. The formula
for its general term is

Ln = α
n
+ βn for all n ≥ 0. (3.2)

As for the case of the Fibonacci numbers, we can extend the sequence of Lucas
numbers to negative integers by allowing n to be negative in formula (3.2). Taking
b = 4z(p) in (3.1) and using the fact that F2n = Fn Ln and L2n = 5F2

n + 2(−1)n , we
get that

2Fa+4z(p) = Fa L4z(p) + La F4z(p) = Fa(5F2
2z(p) + 2)+ La F2z(p)L2z(p)

= Fa(5(Fz(p)L z(p))
2
+ 2)+ La Fz(p)L z(p)L2z(p)

≡ 2Fa mod p,

because p|Fz(p). Hence, for p > 2, we get that

Fa+4z(p) ≡ Fa mod p for all integers a.

We now take
F = {F2n mod p : n ∈ {0, 1, . . . , 2z(p)− 1}}. (3.3)

Let us count the number of distinct elements in F . Assume that Fm ≡ Fn mod p for
some even integers m, n ∈ [0, 4z(p)). Using the fact that

Fm − Fn = F(m−δn)/2L(m+δn)/2 for some δ ∈ {±1},

(see [5, Lemma 2]), it follows that p|F(m±n)/2 or p|L(m±n)/2. Hence, p divides one of
Fm+n or Fm−n , and therefore m ≡±n mod z(p). Since also m and n are even and in
[0, 4z(p)), we conclude easily that

|F | ≥
2z(p)

8
=

z(p)

4
>
√

2p1/2.

For future use we record what we have shown.

LEMMA 3.1. Let p be a prime and let F be the subset (3.3) modulo p. Then the
inequality

|F | ≥
2z(p)

8
=

z(p)

4
>
√

2p1/2 (3.4)

holds for all primes p ∈ S , where this last set is shown in (2.3).
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4. Proof of the theorem

Here and in what follows, we use the standard notation

AB = {ab mod p : a ∈ A, b ∈ B}

and
A + B = {a + b mod p : a ∈ A, b ∈ B}.

We shall use the following result from [3].

LEMMA 4.1. Let A, B be subsets of Zp with |A||B|> 2p. Then

8AB = Zp.

Taking A = B = F , it immediately follows from Lemma 3.1 that if p ∈ S every
residue class λ mod p can be written as

Fn1 Fm1 + · · · + Fn8 Fm8 mod p, (4.1)

with even indices m1, n1, . . . , m8, n8. We are interested in the representability of
every residue class as a bounded sum of Fibonacci numbers, and we are almost there.
The only slight problem is that a product of two Fibonacci numbers is not a Fibonacci
number.

To deal with this, we prove another lemma.

LEMMA 4.2. Assume that a and b are even. Then:

(i) 5Fa Fb = La+b − La−b;

(ii) Fa Lb = Fa+b + Fa−b.

PROOF. The proof follows easily from relations (1.2) and (3.2). 2

The above lemma implies at once that if x , y, z are all even, then

5Fx Fy Fz = (Lx+y − Lx−y)Fz

= Fx+y+z + F−x−y+z − Fx−y+z − F−x+y+z

= Fx+y+z + F−x−y+z + F−x+y−z + Fx−y−z,

where in the above we also used the fact that −Fn = F−n for even values of n. Taking
x = 2 above, we conclude that 5Fy Fz is a sum of four Fibonacci numbers of even
indices. Keeping this in mind and assuming that p > 5, let us recall again (see (4.1))
that for every λmod p there exist Fibonacci numbers Fmi , Fni with i = 1, . . . , 8 such
that

Fm1 Fn1 + · · · + Fm8 Fn8 ≡ 5−1λ mod p,

where we use 5−1 mod p for the multiplicative inverse of 5 modulo p. Finally, every
term 5Fmi Fni for i = 1, . . . , 8 in the representation

5Fm1 Fn1 + · · · + 5Fm8 Fn8 ≡ λ mod p

is a sum of four Fibonacci numbers, which concludes the proof.
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