Arachidonic acid intake and asthma risk in children and adults: a systematic review of observational studies

Saki Kakutani¹,²*, Kahori Egawa², Kayo Saito², Toshihide Suzuki², Chika Horikawa², Tomohiro Rogi², Hiroshi Kawashima², Hiroshi Shibata² and Satoshi Sasaki¹

¹Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
²Institute for Health Care Science, Suntory Wellness Limited, Osaka, Japan

(Received 4 July 2013 – Final revision received 24 February 2014 – Accepted 26 February 2014)

Abstract

The effect of arachidonic acid (ARA) intake on asthma risk is unclear. The objective of the present review was to systematically evaluate available observational studies on the relationship between ARA exposure and asthma risk in children and adults. A PubMed search was conducted on 22 October 2013 and seventy-three publications were checked against predefined criteria for eligibility. To identify additional eligible publications, potentially relevant articles were searched from bibliographies of articles on ARA and asthma. A total of 2924 citations were scrutinised. Finally, fourteen articles were included. A quality assessment was conducted based on the reporting and methodological quality. A meta-analysis was not conducted; therefore, a qualitative assessment is presented. Three high-, two medium- and ten low-quality studies were reviewed. Eleven studies, including two high- and two medium-quality studies, did not find a significant association between ARA exposure and asthma risk. In contrast, one high-quality study indicated a significant trend toward reducing asthma risk in children with decreasing maternal ARA intake ($P_{\text{trend}} = 0.025$), and one low-quality study reported a significant trend of increasing asthma risk with higher blood ARA levels ($P_{\text{trend}} = 0.007$). In two low-quality studies, asthma patients had significantly lower blood ARA levels than controls (both $P < 0.05$). These studies did not sufficiently demonstrate any relationships between ARA exposure and asthma risk because of the limited number of studies and their methodological limitations. They seem to suggest that ARA exposure is not consistently associated with asthma risk. Nevertheless, further evidence is required to prove or disprove the association.

Key words: Epidemiology: Asthma: Dietary fatty acids: Free-living populations

Asthma is a chronic inflammatory disorder of the airways, usually associated with airway hyper-responsiveness and variable airflow obstruction. Asthma has become more common in both children and adults. It is estimated that as many as 300 million individuals of all ages and all ethnic backgrounds suffer from asthma, and that there may be an additional 100 million individuals with asthma by 2025. The rapid increase in the prevalence of asthma may be explained by changes in environmental factors. The prevention of asthma is one of the major public health issues in the world today.

Many risk factors for chronic respiratory diseases have been proposed based on the modern, urban lifestyle. In particular, changes in eating habits may affect the development of asthma. Several epidemiological studies have reported a beneficial effect of fresh fruit intake on symptoms or lung function in asthma. Some studies have reported a favourable effect of fish consumption during pregnancy on asthma in infants. Essential fatty acids, namely n-3 and n-6 fatty acids, are involved in many important biological functions. They play a structural role in cell membranes, influencing their fluidity and membrane enzyme activities. In addition, some are the precursors of prostaglandins and other lipid mediators. Arachidonic acid (ARA) is an n-6 essential fatty acid and a major constituent of biomembranes. ARA is also contained in human and animal

Abbreviations: ARA, arachidonic acid; cys-LT, cysteinyl leukotriene; STROBE, Strengthening the Reporting of Observational Studies in Epidemiology.

*Corresponding author: Saki Kakutani, fax +81 75 962 1690, email Saki_Kakutani@suntory.co.jp

© The Author(s) 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.

https://doi.org/10.1017/jns.2014.9

Downloaded from https://www.cambridge.org/core. IP address: 54.191.40.80, on 20 Apr 2017 at 13:33:46, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
breast milk and is involved in infant development\(^{14-16}\). Many advisory boards and scientists have recommended the use of infant formula in which both ARA and DHA are contained when breast-feeding is not possible\(^{17-22}\).

ARA is released from membranes by phospholipase A\(_2\) and converted into various lipid mediators that exert many physiological actions\(^{23-25}\). The cysteinyl leukotrienes (cys-LT) derived from ARA are known to be important pro-inflammatory mediators in the pathogenesis of asthma\(^{26,27}\). Current guidelines recommend leukotriene receptor antagonists as a second-choice treatment or an add-on therapy to reduce the dose of inhaled corticosteroids\(^{28-30}\), suggesting that high ARA exposure may cause asthma through the leukotriene pathway because it increases ARA content in cell membranes. The hypothesis that EPA and DHA, \(n\)-3 essential fatty acids, reduce ARA content in cell membranes and inhibit ARA metabolism has been used as an explanation of the beneficial effects of fish intake or supplementation with fish oil on asthma in many experiments\(^{7-9,31}\). However, some observational studies failed to show that ARA exposure was positively correlated with asthma risk\(^{32-34}\). ARA is one of the major PUFA, particularly in early life, and this inconsistency is not negligible.

No systematic review or meta-analysis has been conducted to evaluate the long-term effects of ARA intake and blood or non-blood tissue ARA composition on asthma risk in freelifing populations. The objective of the present study was to systematically evaluate available observational studies on the relationship between ARA exposure and asthma risk.

Methods

Search strategy

The PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) was searched for observational studies on the relationship between dietary or blood ARA levels and asthma risk that were listed in PubMed up to 17 May 2010. To identify target articles effectively, the strategy for the PubMed search was as follows: keywords for outcome and study types were adopted as commonly used terms representing asthma and study design, whereas terms for exposure were selected from specific words that stand for ‘arachidonic acid’ (see online Supplementary Table S1). The PubMed search was updated on 22 October 2013, yielding seventy-three potentially relevant articles (Fig. 1).

Study selection

Inclusion criteria were English-language articles that reported original data on the relationship between ARA intake and blood.

![Flow diagram for the literature search and study selection. ARA, arachidonic acid; ch, cohort study; ncc, nested case–control study; cc, case–control study; cs, cross-sectional study.](https://journals.cambridge.org/core/jns)
asthma risk in free-living populations. ARA exposure was assessed as dietary intake, blood levels or non-blood tissue levels for participants’ own risk, and as mothers’ dietary intake, mothers’ blood levels or mothers’ non-blood tissue levels for their children’s risk. Eligible study designs were cohort, case–control or cross-sectional studies. Articles published after 1966 were searched considering PubMed database coverage.

The study selection process is presented in Fig. 1. Articles that were excluded were those whose titles or abstracts indicated clearly that they: (1) were not human studies; (2) were limited to special populations such as individuals with unusual eating habits; (3) involved assessment only after intervention; or (4) were not about asthma and fatty acids (not fat). Titles and abstracts of the publications identified from the PubMed database were checked and reviewed against the predefined criteria. Next, it was confirmed that the articles had a description of ARA and asthma in their full text. To identify additional eligible publications, potentially relevant articles were searched from bibliographies of full-text articles that included descriptions of both ARA and asthma. Our previous review suggested that searches from bibliographies of articles including ARA were both ARA and asthma. Our previous review suggested that searches from bibliographies of articles including ARA were both ARA and asthma. To identify additional eligible publications, potentially relevant articles were searched from bibliographies of full-text articles that included descriptions of both ARA and asthma. Our previous review suggested that searches from bibliographies of articles including ARA were more efficient when enough articles were identified from the PubMed database. They were screened using the same criteria as for the PubMed search. This reference search procedure was continued until no new potentially relevant articles could be identified from bibliographies.

The titles and abstracts of the seventy-three publications identified from the PubMed database were checked and reviewed against the predefined criteria. Seventeen publications were confirmed, and five of these original articles in English from the PubMed search were finally included in the present review. A total of 2924 citations were scrutinised, and nine articles were obtained. Thus, fourteen eligible articles were finally included in the review. These database and reference searches were performed by one evaluator (K. E. or S. K.) and then checked by another (S. K. or T. S.).

Quality assessment and data extraction

Quality assessment was conducted based on the reporting quality and the methodological quality of each study. The reporting quality shows whether the necessary information for observational studies is well reported; it is the number of studies of high quality suitable for a meta-analysis. The risk of asthma in children was evaluated in eight studies, and that in adults was examined in seven studies. The studies are not discussed separately because the results do not seem to be clearly different between children and adults. Dietary intake was estimated using self-administered FFQ or a brief self-administered diet history questionnaire, both of which were validated against multiple-day dietary records or 24 h dietary intake or maternal blood ARA levels and one nested case–control study. The study quality of two cohort studies on maternal ARA intake and erythrocyte membrane ARA levels, and it was therefore treated as two individual studies.

The quality of all studies using a case–control study (temporal relationship between exposure and outcome is unclear) was defined as an article in which ARA exposure preceded the occurrence of asthma, whereas a case–control study (temporal relationship between exposure and outcome is clear) did not describe sufficient temporal information between exposure and outcome assessment.

A meta-analysis was not conducted because of the heterogeneity among studies, particularly in the subject characteristics and exposure/outcome assessments, and the insufficient number of studies of high quality suitable for a meta-analysis. Therefore, a qualitative assessment of ARA exposure and asthma risk is presented in the review.

Results

A total of fourteen eligible articles were selected from potentially relevant papers and included in the present systematic review (Fig. 1); their major characteristics are shown in Table 1. One article reported both dietary ARA intake and erythrocyte membrane ARA levels, and it was therefore treated as two individual studies.

The study quality of two cohort studies on maternal ARA intake or maternal blood ARA levels and one nested case–control study was considered to be high, because ARA exposure had clearly preceded the onset of asthma in these studies, and their relationship was carefully analysed. The remaining two cohort studies in which ARA levels of breast milk were measured were regarded as having medium quality; maternal ARA exposure, which transferred to breast milk, clearly preceded the asthma onset of children, but confounding factors in their relationship were not sufficiently considered in these studies. The quality of all studies using a case–control and a cross-sectional design was low. Their reporting quality was very low, and/or temporal information between exposure and outcome was insufficient. As a result, three high-, two medium- and ten low-quality studies were reviewed.

The risk of asthma in children was evaluated in eight studies, and in adults was examined in seven studies. The studies are not discussed separately because the results do not seem to be clearly different between children and adults. Dietary intake was estimated using self-administered FFQ or a brief self-administered diet history questionnaire, both of which were validated against multiple-day dietary records or 24 h dietary intake.
Table 1.Summary of observational studies on the association between arachidonic acid (ARA) exposure and asthma risk

<table>
<thead>
<tr>
<th>References</th>
<th>Study</th>
<th>Subjects</th>
<th>Exposure assessment</th>
<th>Asthma assessment (diagnosis)</th>
<th>Adjustment for potential confounders</th>
<th>Assessment of reporting quality*</th>
<th>Main findings</th>
<th>Intergroup comparison</th>
<th>P or P<sub>trend</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design: cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumia et al. (2011)<sup>(37)</sup></td>
<td>DIPP Nutrition Study, Finland, 1997–2009, cohort design (5 years follow-up)</td>
<td>2679 mother–child pairs</td>
<td>Self-administered semi-quantitative FFQ, 181 items, validated against 12 × 5 d DR, diet of mothers during 8th month of pregnancy</td>
<td>Parent-reported questionnaire based on ISAAC questionnaire with parental report of child’s age at physician diagnosis at 5 years</td>
<td>Child’s sex, region of birth, duration of gestation, maternal age, maternal education level, maternal smoking status, number of previous deliveries, parental history of asthma and/or allergic rhinitis, child’s birth weight, delivery mode, pets at home, farming, contact with cow stable, breast-feeding duration</td>
<td>21</td>
<td>Dietary ARA intake, g/d, tertile, range</td>
<td>T1: <0.06 0.0·0.52 (95 % CI 0·32, 0·84) 0·025 T2: 0·06–0·11 1·00 T3: >0·11 0·77 (95 % CI 0·51, 1·17)</td>
<td></td>
</tr>
<tr>
<td>Exposure assessment: maternal dietary intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noteboom et al. (2011)<sup>(38)</sup></td>
<td>KOALA Birth Cohort Study, Netherlands, 2002–2008, cohort design (6–7 years follow-up)</td>
<td>951 mother–child pairs (maternal age at 6–7 years follow-up 32.7 years)</td>
<td>Plasma phospholipids, GC analysis, precision not indicated, plasma at 34–36 weeks of pregnancy</td>
<td>Parent-reported questionnaire based on ISAAC questionnaire at 6–7 years</td>
<td>Recruitment group, maternal age, maternal ethnicity, maternal education level, maternal smoking status, parental history of atopy and/or asthma, duration of gestation, season of birth, child’s sex, child’s birth weight, delivery mode, exposure to environmental tobacco, presence of older siblings and sibling atopy, breast-feeding, child daycare, pets at home</td>
<td>22</td>
<td>Plasma ARA composition, wt %, quintile, range</td>
<td>Q1: ≤6·46 1·00 (95 % CI 0·70, 4·10) 0·83 Q2: 6·47–7·15 1·69 (95 % CI 0·70, 4·10) Q3: 7·16–7·85 1·29 (95 % CI 0·52, 3·20) Q4: 7·86–8·60 0·82 (95 % CI 0·31, 2·15) Q5: ≥8·61 1·70 (95 % CI 0·67, 4·33)</td>
<td></td>
</tr>
</tbody>
</table>
Exposure assessment: maternal non-blood tissue ARA level

<table>
<thead>
<tr>
<th>Study</th>
<th>Design/Location</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>Follow-up</th>
<th>Outcome Measure</th>
<th>OR per 1 SD increase</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowe et al. (2008)[38]</td>
<td>MACS, Australia, 1990–2001, cohort design (7 years follow-up)</td>
<td>224 mother–child pairs with history of allergic disease of a first-degree family of child, 194 colostrum samples and 118 expressed breast milk samples</td>
<td>Parent’s report of physician diagnosis and wheezing event during telephone interview at 6 and 7 years</td>
<td>15</td>
<td>Colostrum ARA composition, wt%</td>
<td>0.87 (95% CI 0.63, 1.21)</td>
<td>0.413</td>
</tr>
<tr>
<td>Wijga et al. (2006)[39]</td>
<td>PIAMA Study, Netherlands, 1996–2001, cohort design (4 years follow-up)</td>
<td>158 mother with allergy–child pairs (maternal age 31.2 years)</td>
<td>Breast milk fatty acids, GC analysis, precision not indicated, breast milk at 3 months visit</td>
<td>19</td>
<td>Breast milk ARA composition, wt%</td>
<td>1.06 (95% CI 0.69, 1.64)</td>
<td>0.783</td>
</tr>
<tr>
<td>Nagel & Linseisen (2005)[33]</td>
<td>EPIC-Heidelberg cohort, Germany, 1994–2000 (2.1 years follow-up)</td>
<td>105 newly diagnosed adult asthma patients, 420 controls without prevalent asthma or other atopic diseases, aged 35–65 years in women and 40–65 years in men at recruiting, one case matched with four controls by sex, age</td>
<td>Self-administered semi-quantitative FFQ, 158 items, validated against 12 x 24HDR</td>
<td>22</td>
<td>Dietary ARA intake, mg/d, tertile</td>
<td>1.00 OR</td>
<td>0.838</td>
</tr>
</tbody>
</table>

Study design: nested case–control study

Exposure assessment: dietary intake

<table>
<thead>
<tr>
<th>Study</th>
<th>Design/Location</th>
<th>Study population</th>
<th>Exposure assessment</th>
<th>Follow-up</th>
<th>Outcome Measure</th>
<th>OR per 1 SD increase</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagel & Linseisen (2005)[33]</td>
<td>EPIC-Heidelberg cohort, Germany, 1994–2000 (2.1 years follow-up)</td>
<td>105 newly diagnosed adult asthma patients, 420 controls without prevalent asthma or other atopic diseases, aged 35–65 years in women and 40–65 years in men at recruiting, one case matched with four controls by sex, age</td>
<td>Self-reported physician diagnosis Age, fat energy intake, non-fat energy intake, BMI, smoking status, sex, educational level</td>
<td>22</td>
<td>Dietary ARA intake, mg/d, tertile</td>
<td>0.70 OR (95% CI 0.39, 1.23)</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85 OR (95% CI 0.44, 1.68)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Study design: case–control study (temporal relationship between exposure and outcome is unclear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure assessment: dietary intake</td>
</tr>
<tr>
<td>Study</td>
</tr>
<tr>
<td>Broadfield et al. (2004)</td>
</tr>
<tr>
<td>Exposure assessment: blood ARA level</td>
</tr>
<tr>
<td>Study</td>
</tr>
<tr>
<td>Broadfield et al. (2004)</td>
</tr>
<tr>
<td>Picado et al. (1999)</td>
</tr>
<tr>
<td>Leichsenring et al. (1995)</td>
</tr>
<tr>
<td>Giese et al. (1990)</td>
</tr>
</tbody>
</table>

For assessment of reporting quality: see text.
Study design: cross-sectional study

Exposure assessment: dietary intake

Miyake et al. (2008)(34)

RYUCHS, Japan, 2004–2005, cross-sectional design

25033 schoolchildren of fifty-two public elementary schools and twenty-five junior high schools aged 6–15 years

Self-administered BDHQ for children, fifty-one items, developed based on DHQ validated against 3 d DR

Self-or parent-reported questionnaire based on ISAAC phase I questionnaire

Age, sex, resident area, number of siblings, family smoking status, BMI, parental history of allergic diseases, parental educational level, total energy intake

<table>
<thead>
<tr>
<th>OR trend</th>
<th>P or trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: 1.00</td>
<td>0.007</td>
</tr>
<tr>
<td>Q2: 0.99</td>
<td>0.34 (95 % CI</td>
</tr>
<tr>
<td>0.83, 1.00</td>
<td>Q3: 2.11</td>
</tr>
<tr>
<td>Q4: 4.54</td>
<td>0.07 (95 % CI</td>
</tr>
<tr>
<td>Q5: 1.64</td>
<td>0.86, 1.20</td>
</tr>
</tbody>
</table>

Exposure assessment: blood ARA level

De Castro et al. (2007)(44)

Survey, Spain

Fifteen adult asthma patients with no smoking history, fifteen controls with >19 pack-years smoking and currently smoking, equivalent age, weight, blood lipids, blood pressure, BMI

Erythrocyte membrane fatty acids and platelets membrane fatty acids, GC-MS analysis, precision not indicated

Self-reported questionnaire with physician’s diagnosis

None

Erythrocyte ARA composition, %, mean

Case OR Control

Q1: 10.57 (95 % CI

Q2: 3.46 (95 % CI

Q3: 1.69 (95 % CI

Q4: 0.91 (95 % CI

Q5: 0.85 (95 % CI

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

Bolte et al. (2006)(45)

ISAAC phase II, Germany, cross-sectional design

526 children (nested case-control study population in ISAAC phase II), aged 8–11 years

Serum CE, HPLC analysis, precision not indicated

Parent’s report of physician diagnosis

Sex, age, parental education level, parental asthma

ARA composition, %, quartile

Case OR Control

Q1 0.97 (95 % CI

Q2 0.88, 1.06)

Q3 1.05 (95 % CI

Q4 0.98, 1.14)

Woods et al. (2004)(46)

Survey, Australia

Randomly selected adult subjects in Melbourne aged 20–44 years, 986 for current asthma, 1049 for asthma and physician-diagnosed asthma

Plasma phospholipids, GC analysis, precision not indicated

Interviewer-administered questionnaire

Age, sex, BMI, smoking status, family history of asthma, region of birth, total energy intake

Plasma phospholipids ARA composition, %

OR per 1 % increase

Current asthma

Current asthma

Not shown

Asthma

Not shown

Continued
<table>
<thead>
<tr>
<th>References</th>
<th>Study</th>
<th>Subjects</th>
<th>Exposure assessment</th>
<th>Asthma assessment (diagnosis)</th>
<th>Adjustment for potential confounders</th>
<th>Assessment of reporting quality*</th>
<th>Main findings</th>
<th>Intergroup comparison</th>
<th>P or P_{str}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wijga et al. (2003)^{13}</td>
<td>PIAMA Study, Netherlands, 1996–1997</td>
<td>168 allergic mothers including forty-seven mothers with history of asthma and 107 non-allergic mothers</td>
<td>Breast milk fatty acids, GC analysis, precision not indicated, breast milk at 2–35 weeks</td>
<td>Self-reported questionnaire</td>
<td>None</td>
<td>Breast milk ARA composition, wt%, mean</td>
<td>Breast milk ARA composition, wt%, mean</td>
<td>9</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 · 39 (SD 0 · 36) (SD 0 · 36) (0 · 10)</td>
<td>0 · 39 (SD 0 · 10)</td>
<td>0 · 144</td>
<td></td>
</tr>
</tbody>
</table>

DIPP, Diabetes Prediction and Prevention; DR, diet record; ISACC, International Study of Asthma and Allergies in Childhood; HR, hazard regression; KOALA, Kind, Ouders en gezondheid: Aandacht voor Leefstijl en Aanleg (Child, parents and health: Lifestyle and genetic constitution); MACS, Melbourne Atopy Cohort Study; PIAMA, Prevention and Incidence of Asthma and Mite Allergy; EPIC, European Prospective Investigation into Cancer and Nutrition; 24HDR, 24 h dietary recall; LT, leukotriene; GINA, Global Initiative for Asthma; CE, cholesteryl ester; MNC, mononuclear cell; RYUCHS, Ryukyus Child Health Study; BDHQ, Brief-Type Self-Administered Diet History Questionnaire; DHQ, diet history questionnaire; STROBE, Strengthening the Reporting of Observational Studies in Epidemiology.

* Result of the critical evaluation carried out using the checklist of the STROBE statement.

Discussion

In the present review, observational studies investigating the association between ARA levels and asthma risk were systematically reviewed. Fourteen eligible articles were included in the review, and one was not included due to the lack of data on ARA levels. The quality of the included studies varied, with eight studies being of high quality, five of medium quality, and two of low quality.

In the case-control study, a significant association between increasing ARA levels in maternal serum and increasing asthma risk in offspring was observed (OR = 0.025, 95% CI 0.010 to 0.060). In the cross-sectional study, a significant association between ARA levels in blood and asthma risk was not observed (P > 0.05).

In conclusion, the results of the present review suggest a significant association between maternal ARA levels and asthma risk in offspring, with higher ARA levels associated with a decreased risk of asthma. Further studies are needed to confirm these findings and to investigate the mechanisms underlying this association.
to keywords related to ‘study types’. The reason that more than half of the eligible articles could not be identified in PubMed searches is considered to be due to the particularity of the ‘exposure’ keywords. Authors often describe only two or three interesting fatty acids in titles or abstracts, whereas many other fatty acids are simultaneously evaluated and described in texts or tables. This is unavoidable, because there are more than ten meaningful fatty acids in foods or the human body. This reporting characteristic made it difficult to effectively search for observational studies with a focus on individual fatty acids such as ARA, which is similar to our previous review that evaluated the observational studies on the relationship between ARA exposure and cancer risk. For example, six studies that were not identified due to ‘exposure’ could be included in the PubMed search by the addition of the search term ‘fatty’, but the initial number of articles from PubMed more than doubled. In the case of ‘study type’ terms, the unidentified literature was published in 1995 and was the oldest of the eligible articles. Because the STROBE statement, which recommends that authors should indicate the study design in the title or abstract, was developed in 2007, the necessity of defining study designs would have not been widely recognised when the article was published.

There were fourteen eligible articles. This was considered insufficient to draw conclusions about the relationship between ARA exposure and asthma risk because of the limited number of studies of high quality. On the whole, a strong positive association and a clear dose–response relationship between increased or decreased asthma risk and ARA exposure were not observed, although the results were obtained under widely varying experimental conditions among studies, such as subjects’ background, ARA evaluation, and method of asthma diagnosis. This might suggest that ARA exposure is not associated with asthma risk.

In two studies asthma risk increased significantly with increasing ARA exposure, where the risks in children were increased or decreased asthma risk in adults, did not show a significant relationship between increased or decreased asthma risk and ARA exposure. However, most of the other studies in children, as in adults, did not show a significant relationship between ARA exposure and asthma or a difference in ARA levels in asthmatic subjects. It should be also considered that ARA is required for infant growth, development and health.

A clear temporal sequence of exposure before outcome is one of the important factors to establish a causal relationship between the risk factor and the target event. This was reported in only five of fourteen eligible articles. Five studies used a case–control design, but the temporal relationship between ARA estimation and asthma diagnosis was not expressed clearly. The remaining five studies used a cross-sectional design. The reliability of these ten studies was considered limited. The proportion of studies with an unclear temporal sequence was high, which may be due to the characteristic of asthma that it is difficult to clearly delineate when asthma begins.

The biological plausibility of the relationship between ARA exposure and asthma risk still cannot be fully explained. The cys-LT derived from ARA produce effects that are characteristic of asthma, such as potent bronchoconstriction, increased endothelial membrane permeability leading to airway oedema, and enhanced secretion of thick, viscous mucus, and their receptor antagonists are used clinically to treat asthma. Many observational studies, however, have not shown any association between ARA exposure and asthma risk. These contrasting findings may be explained in part by the following three reasons. First, blood or lung tissue ARA levels may not always represent dietary intake. Blood levels of PUFA are influenced not only by diet, but also by genetic variants of fatty acid conversion enzymes. Kohayashi et al. and Garland et al. reported that correlations between dietary estimates and the ARA contents of adipose tissue or serum phospholipids were low. On the other hand, Rett et al. reported that ARA levels in plasma/serum phospholipids are increased by ARA supplementation in adult individuals consuming Western-type diets. Second, the increment of blood or non-blood tissue ARA levels may not be connected with the levels of ARA metabolites. Kelley et al. reported that ARA supplementation increases the production of leukotriene B4 in human monocytes ex vivo; however, it has remained unclear whether an increase in dietary ARA is directly associated with cys-LT synthesis in humans. Our previous study indicated that supplementation with 240 or 720 mg ARA per d did not significantly change plasma prostanoids, which are ARA metabolites produced through pathways other than leukotrienes, although plasma ARA levels increased. Nielsen et al. reported that adipose tissue ARA was not correlated with either cys-LT formation in plaque or total body cys-LT formation in a cross-sectional study of subjects undergoing femoral thromboendarterectomy. Third, ARA metabolites other than cys-LT may decrease asthma risk. Lipoxins are trihydroxytetraene-containing eicosanoids that are generated during asthma. It has been demonstrated that lipoxin A4 derived from ARA blocks asthmatic responses in human subjects and experimental model systems.
Thus, there are insufficient studies to draw any firm conclusions about the relationship between ARA and asthma risk. Further evidence from well-designed observational studies, in particular from those with a clear time sequence of exposure and outcome, is required.

In conclusion, articles that investigated the association between dietary ARA intake or its biomarkers and the risk of asthma were systematically identified, and only a limited number of observational studies were found. Furthermore, most studies had one or more critical limitations; especially critical was the insufficiency of the temporal information between exposure and outcome. These studies did not sufficiently demonstrate any relationships between ARA exposure and asthma risk. They seem to suggest that ARA exposure is not consistently associated with increased asthma risk. Nevertheless, further evidence from well-designed observational studies is required to prove or disprove the association between ARA exposure and asthma risk.

Supplementary material
To view supplementary material for this article, please visit http://dx.doi.org/10.1017/jns.2014.9

Acknowledgements
S. K. conceived and designed the study, S. K. and K. E. performed PubMed search and reference searches. S. K., K. E. and T. S. made final decisions on inclusion/exclusion. S. K., K. S. and C. H. conducted assessments of the reporting quality. S. K., K. S. and C. H. conducted assessments of the methodological quality and contributed to interpretation of findings. S. K. wrote the manuscript and incorporated changes suggested by others. T. R., H. K., H. S. and S. S. helped to interpret the findings and refined the manuscript. All authors read and approved the final manuscript.

The present review was supported in part by a grant from Suntory Wellness Ltd, Japan. S. K., K. E., K. S., T. S., C. H., T. R., H. K. and H. S. are employees of Suntory Wellness Ltd. S. S. has consultancy relationships with Suntory Wellness Ltd.

References

