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1. Introduction

Let (X, d) be a separable metric space and (T, µ) a transformation preserving a Borel,
probability measure. The classical Poincaré lemma in such a setting gives that

lim inf
n→∞

d(x, Tn(x)) = 0 forµ− almost everyx.

The historically first attempt at strengthening this result came in a paper by
M. Boshernitzan [1], who proved that d(x, Tn(x)) ≈ n−1/α, where α is the Hausdorff
dimension of X. Precisely speaking, he gave two results, which we state now.
For a dynamical system (X,T ) preserving a probability Borel measure µ:

If Hα(X) < +∞, then lim inf
n→∞

n1/αd(Tn(x), x) < +∞, forµ− a.e. x. (1.1)

If Hα(X) = 0, then lim inf
n→∞

n1/αd(Tn(x), x) = 0, forµ− a.e.x. (1.2)
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Estimating the Hausdorff measure using recurrence 189

The second result from that paper states, that if the preserved probability measure
µ = Hα, then

lim inf
n→∞

n1/αd(Tn(x), x) ≤ 1, forµ− a.e.x. (1.3)

There has been a lot of development in the area, for an introduction into quantitative
recurrence, see e.g. [3].
In this paper, we will be interested in showing some new bounds on the recurrence

speed. We will prove a generalisation of Boshernitzan’s result, but the main new idea is
to show how to use this improved result to get an estimate from below of the Hausdorff
measure of a fractal set. We discuss this on an easy example. An upcoming paper with
M. Urbański [4] shows a more interesting application, namely for Cantor sets defined
by the so-called Denjoy maps (i.e. we show a bound from below on the Hausdorff mea-
sure of the minimal set occurring for a C1+α diffeomorphism on the circle which is only
semi-conjugate to a rotation).
The idea of the method comes from the author’s PhD Thesis.
The paper is organised as follows. In the next section, we give the needed definitions,

state the relevant theorems and sketch the new technique. In § 3, we show the method
of estimating the Hausdorff measure on an example. § 4 is filled with additional com-
ments, improvements and limitations of the method. Finally, § 5 is devoted to the proof
of Theorem 3.

2. Definitions and theorems

Throughout this paper, we will assume that (X, d) is a metric space and T : X → X a
Borel measurable map; µ is a T -invariant, ergodic, probability, Borel measure on X.
As we are working with subtle measure estimates it seems prudent to put here the

precise definitions in use in this paper.
We will use the (most common) version of the definition of the Hausdorff measure.

Definition 1. The outer Hausdorff measure is the following

Hα(Y ) = lim
r→0

inf

{ ∞∑
k=1

(diamUk)
α : ∀k diamUk < r and Y ⊂

∞⋃
k=1

Uk

}
,

where the infimum is take over all countable covers of Y satisfying the conditions as
stated. By Carathéodory’s extension this gives the (typical) Hausdorff measure.

The next definition is also standard.

Definition 2. The Hausdorff dimension of the set Y is given by the formula

dimH(Y ) = inf{α ≥ 0 : Hα(Y ) = 0}.

We will now state a new version of Boshernitzan’s estimate (1.3). In contrast to his
result we do not assume that the preserved measure µ = Hα.
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Theorem 3. With the assumptions on the dynamical system as above, for any α> 0
for which Hα is σ-finite on X and for µ-almost every x ∈ X we have

lim inf
n→∞

n
(
d(Tn(x), x)

)α

≤ g(x) := lim sup
r→0

Hα(B(x, r))

µ(B(x, r))
. (2.1)

Remark. Note that g(x ) may be equal to 0 or +∞. The statement still holds. Also,
due to the way this theorem is used below, the σ-finiteness assumption is not restrictive
at all. (We want to give a bound from below on the Hα(X), so infinite measure only
helps us.)

The rather simple proof utilises the idea by M. Boshernitzan and some techniques from
ergodic theory. We postpone it till the last section.
This result shows that the behaviour of the recurrence is (may be) governed by the

Hausdorff measure of the space. We will try to apply this in a reverse manner: if we
could compute/estimate the lower limit of the speed of recurrence, then this would give
us some information on the Hausdorff measure.
More precisely, if we can show that the lower limit on the LHS of (2.1) is positive for

some α> 0, then either Hα(X) = +∞ or we will get the lower bound on the density (and
so on the α-Hausdorff measure of the space). Also, both cases trivially give dimH(X) ≥ α.
Regarding the dimension, note that there is a unique value α∗ ∈ [0,+∞] such that

lim inf
n→∞

n
(
d(Tn(x), x)

)α
= +∞, for all α < α∗ and

lim inf
n→∞

n
(
d(Tn(x), x)

)α
= 0, for all α > α∗.

Theorem 3 now gives that dimH(X) ≥ α∗.
Note that a priori we may take any map on the space, as long as it preserves some

Borel, probability, ergodic measure µ. However, we ought to take a map with poor mixing
properties because of a result that requires another well-known definition.

Definition 4. We say that a dynamical system has an exponential decay of corre-
lations in Lipschitz–continuous functions (denoted by L), if there exist γ ∈ (0, 1) and
C < +∞, such that for all g ∈ L, all f ∈ L1(µ) and every n ∈ N, we have

|µ (f ◦ Tn · g)− µ(g) · µ(f)| ≤ Cγn||g||Lµ(|f |), (2.2)

where || · ||L denotes the typical norm of the space of Lipschitz functions.

The simplified version (stronger assumptions) of Theorem 3.1. from [6] states that
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Theorem 5. With the assumptions on the dynamical system as above, if µ ≈ Hα and
the system has an exponential decay of correlation in Lipschitz–continuous functions, then

lim inf
n→∞

(n ln lnn)
1/α

d(Tn(x), x) = 0, (2.3)

which is the opposite of what we want (namely a positive lower limit). Thus, for the map
to be useful to our method it needs to be slowly mixing. Typical examples of such maps
include the irrational rotations on S1, Feigenbaum maps or the adding machine map,
which we utilise below.

3. Example

Our example will be arguably the simplest of fractal sets – the one-third Cantor set. We
will estimate from below the dimensional density g(x ) for all values of α. As it turns out,
we will get a meaningful result for α equal to the Hausdorff dimension of the Cantor set,
leading to a bound on the Hausdorff dimension and the Hausdorff measure, both from
below.
As mentioned, we will utilise a so-called adding machine map. We recall the definition

now.
Every point x in the Cantor set C has a unique coding (xn)

∞
n=1 using symbols 0 and

1. The first symbol is 0 if the point is to the left of 1/2 and 1 if it is to the right.
The second symbol decides if the point is on the left or on the right of the second level

segments, etc. The relation between coding and the point on the real line is x =
+∞∑
n=1

2xn

3n
.

It follows that the (Euclidean) distance between points x and y is given by a formula

|x− y| = 2

∣∣∣∣∣
+∞∑
n=1

xn − yn
3n

∣∣∣∣∣.
The map T on the coding space, is defined by an inductive scheme:

A) Start with the first symbol: n =1.
B) If the symbol xn = 0, then add 1 to it (new (Tx)n = 1) and finish.
C) If the symbol xn = 1, then make it equal to 0 (new (Tx)n = 0), increase n by 1,

and return to (B).

In other words – we scan the code for the first digit of (xn) equal to 0, set it to 1 and
set all the previous digits (i.e. (xk) for k <n) to 0.
Note that this ‘program’ will run indefinitely, if our point x has code [111 . . .] (i.e. if

x =1), but mathematically this is not an issue as we may set T (1) = 0.
This map is called an adding machine, because it is equivalent to adding 1 to the first

digit of a binary number, where the digits are written in reverse order (Figure 1). This
transformation is a piecewise isometry and it preserves the Cantor measure µ (defined to
be equally distributed on the cylinders of the same level/size).
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00 01 10 110 111

Figure 1. Adding machine transformation on a Cantor set. The map in the neighbourhood of
the point 1111 . . . is drawn only up to the cylinder of length 3.

Let us start computing the recurrence rate by taking the point z0 = 0 = [0000 . . .] and
denote the forward iterates as Tn(z0) = zn.

z1 =
2

3
= [100 . . .], z2 =

2

9
= [010 . . .], z3 =

8

9
= [110 . . .], z4 =

2

27
= [0010 . . .].

To calculate the lower limit (LHS) of (2.1), we only need to look at the subsequent
closest returns, i.e. we can ignore all n for which there exists k <n such that |T k(z)−z| ≤
|Tn(z) − z|. For our point z 0 (and in fact any starting point) it is obvious that those
returns will occur for the iterates being powers of 2. More precisely,∣∣∣T 2n(z0)− z0

∣∣∣ = 2

3n+1
, for all n ≥ 0,∣∣T k(z0)− z0

∣∣ > 2

3n+1
, for all 0 < k < 2n.

Taking any α> 0, we get the following

lim inf
k→+∞

k
∣∣T k(z0)− z0

∣∣α = lim
n→+∞

2n
( 2

3n+1

)α

= lim
n→+∞

2α

3α

(
2

3α

)n

. (3.1)

Obviously, z 0 is not a typical point in this system. However, the general calculation
is not that different. Take any point x ∈ C and look at its code – [x1x2x3 . . .]. As

before, we only need to look at iterates that are of form 2n . The point T 2n(x) will have
the first n symbols identical and the (n+ 1)st symbol will be different. What we do not
control/know are the later symbols, which can lower the distance slightly, e.g. the distance
between [100 . . .] and [010 . . .] is equal to 4/9. However, it is easy to write down all the
possibilities.

∣∣∣T 2n(x)− x
∣∣∣ = 2

3n+1
ifxn+1 = 0,∣∣∣T 2n(x)− x

∣∣∣ = 4

3n+2
if xn+1 = 1and xn+2 = 0,∣∣∣T 2n(x)− x

∣∣∣ > 2

3n+1
if xn+1 = 1and xn+2 = 1.
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To sum up – the worst case is when we add 1 at the place where there is a symbol 1
followed by a 0.
Repeating (3.1) for a general point we get a slightly worse estimate

lim inf
k→+∞

k
∣∣T k(x)− x

∣∣α ≥ lim
n→+∞

(4
9

)α
(

2

3α

)n

= lim
n→+∞

(4
9

)α (
3log3 2−α

)n
. (3.2)

So if we take any α < log3 2, we see that the lower limit is infinite so by using
Boshernitzan’s result (1.1) we know that the Hausdorff measure Hα(C) is infinite, so
the Hausdorff dimension HD(C) ≥ log3 2.
Take α = log3 2 and the Cantor measure µ. Now Thm. 3 gives that either Hlog3 2 is not

σ-finite on C (thus Hlog3 2(C) = +∞) or g(x) ≥
(
4
9

)α
for all x (where g(x) = dHα

dµ ).So

Hlog3 2(C) =

∫
C

g(x)dµ(x) ≥ µ(C)

(
4

9

)log3 2

≈ 0.6. (3.3)

This is not a very strong result – in reality Hlog3 2(C) = 1, but on the other hand, the
estimate has been acquired with little effort. The next section is dedicated to comments
on improving this lower bound.
Note that, it is easy to apply this technique to other self-similar sets, which allow

symbolic coding, e.g. the Sierpiński triangle. Unfortunately, the unoptimality of the lower
bound may (and typically will) remain.
On the other hand, the coding is not strictly necessary. If a system has slow recurrence

properties, then one could get meaningful results as well. An example of this is in a paper
with M. Urbański [4], where the underlying dynamics is that of an irrational rotation on
a circle (which for numbers with bad Diophantine properties is in fact slowly recurrent).

4. Improvements and comments

4.1. Changing the metric

In the calculation above we used the Euclidean metric on the real line. However, on
the Cantor set, there is another natural metric, coming from the symbolic representation.
Define

d(x, y) = d
(
(xn), (yn)

)
= 31−min{k≥1 : xk 6=yk}.

Then, the diameter of C stays equal to 1. Also, the diameters of all the cylinder sets in
this metric is equal to the diameters in the Euclidean one. And the Hausdorff measure
(and dimension) are exactly as it was in the Euclidean case.
Let us check what happens to our recurrence estimates if we take this metric.

For any z ∈ C we trivially get

d
(
T 2n(z), z

)
=

1

3n
, for all n ≥ 0,

d
(
T k(z), z

)
≥ 1

3n
, for all 0 < k < 2n.
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Inserting this into the liminf estimates yields

lim inf
n→+∞

k
∣∣T k(x)− x

∣∣α = lim
n→+∞

2n
(
3−n

)α
= lim

n→+∞

(
3log3 2−α

)n
. (4.1)

Now, setting α = log3 2 we get the estimate on the density g(x) ≥ 1, which in turns gives
Hα(C) ≥ 1.
We see that using this metric we get the optimal estimate.

4.2. Irremovable obstacle

Let us return to the Euclidean metric. One could ask a very natural question – would
some different map yield a better estimate?
And while it is possible that there exists a map with even slower recurrence, there does

not seem to be any chance of improving up to the optimal lower bound. This is shown
by a result of Boshernitzan and Delecroix, [2], which we will utilise below.
To see the problem, let us try to apply our method to a circle S of length 1. To get

the best bound we need to find a map T on the circle (preserving some probability
measure µ) for which:

lim inf
n→∞

nd(Tn(x), x) ≥ 1, (4.2)

for µ-a.e. x ∈ S. This would prove that H1(S) ≥ 1.
First, let us see what should we assume on the measure. Its support needs to be the

entire circle (we get nonsense otherwise). Also, the dimension of the measure needs to be
1 (reason as before). Finally, as the circle is geometrically identical at any point so should
be the measure – leaving as only with the Lebesgue measure. The last argument is not
precise at all, but we are not actually proving anything here, so for the sake of clarity let
us leave it like that.
There is still plenty of maps preserving the Lebesgue measure. The simplest of those

are the rotations by angle γ, denoted by Rγ . Then the recurrence speed does not depend
on the starting point, but on the continued fraction expansion of γ. It is very well studied
subject. By the classic result of Khinchin we know that the slowest return speed happens

for the rotation by the golden mean (minus one) ϕ =
√
5−1
2 . Khinchin’s Theorem also

states that

lim inf
n→∞

nd(Rn
γ (x), x) ≤

1√
5
, (4.3)

with the equality for ϕ.
This shows that taking only the rotations, we have no chance of realising (4.2). And

Boshernitzan and Delecroix generalise this to prove (in [2]) that inequality (4.3) is true
for all maps preserving the Lebesgue measure. This shows that the method shown here
has an irremovable obstacle in achieving the best bound. At least on the circle, but their
proof suggest this would happen on every space.
Actually, their proof indicates that there exists a constant correction term (depend-

ing on the dimension of the space, and perhaps slightly on the geometry of the space)
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which one could apply to get the correct measure (for the circle this would be 1√
5
).

Unfortunately, making this argument precise would require very general results on the
optimal packing of points in rather arbitrary sets.

4.3. Dependence on the dimension

Their proof also suggests that the scale of the unoptimality of the lower bound (i.e. the
difference between the obtained result and the true Hausdorff measure) depends on the
dimension. In fact, it should shrink to zero as the dimension goes to zero.
We cannot prove this general result here. What we can do, however, is show the

phenomenon for basic Cantor sets.
Let us compute the lower bound on the measure of the Cantor sets of varying

dimensions. Fix 0 < a < 1
2 . The Cantor set Ca in question is given by the maps:

f0(x) = ax, f1(x) = ax+ (1− a) = a(x− 1) + 1. (4.4)

The Hausdorff dimension of this set is trivially computed dimH(Ca) =
log(2)

− log(a) .

We define the coding as before, take the same adding machine map and repeat the
calculation as in the example. We get for any x ∈ Ca (where 1− 2a is the size of the gap
between intervals of the same order, to which we may add the length of the next-level
cylinder a2): ∣∣∣T 2n(x)− x

∣∣∣ ≥ an(1− 2a+ a2), (4.5)

where the inequality becomes equality for those n’s when xn = 1 and xn+1 = 0 (exactly
as before). Putting this into the lower limit yields

lim inf
k→+∞

k
∣∣T k(x)− x

∣∣α ≥ lim
n→+∞

2n
(
an(1− 2a+ a2)

)α
= lim

n→+∞
(1− a)2α

(
21+α log2(a)

)n

.

(4.6)

Put α = log(2)
− log(a) , so that the sequence is constant. Then, we see

Hα(Ca) ≥ (1− a)2α. (4.7)

This expression goes to one as a goes to zero (note that then so does α). Thus the
difference between the true Hausdorff measure (equal to one in this case) and our estimate
does disappear in the limit.

5. Proofs

The proof of Theorem 3 is divided into a few steps. First we prove

Proposition 6. With the assumptions on the dynamical system as in Theorem 3, in
addition suppose that Hα � µ for some α> 0, and denote the corresponding density
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by g := dHα
dµ . Then for µ-almost every x ∈ X we have

lim inf
n→∞

n1/αd(Tn(x), x) ≤ (esssup g)1/α. (5.1)

Remark. Note that g is the inverse of the usually taken density.

Proof. First, if g is unbounded, then the inequality is trivial. Denote β := 1
α and

s := esssup g < +∞. In this notation we need to show that µ(D) = 0, where

D = {x ∈ X : lim inf
n→∞

nβd(Tn(x), x) > sβ}. (5.2)

Take any ε> 0 and define

Dε := {x ∈ X : nβd(Tn(x), x) >

(
s

1− ε

)β

, for all n ≥ 1 such that d(Tn(x), x) < ε}.

(5.3)
It suffices to show that for any ε> 0, this set has µ-measure zero.
Assume the opposite, i.e. µ(Dε) > 0 for some fixed ε. We will prove that this implies

Hα(Dε) > 0.
Define τ(x) as the first return map of a point x into Dε. This map preserves the

conditional measure ν, defined as

ν(A) =
µ(A ∩Dε)

µ(Dε)
. (5.4)

Now, if Hα(Dε) = 0, then by a result of Boshernitzan cited in the introduction (1.2), we
have

lim inf
k→+∞

kβd(τk(x), x) = 0 for ν − a.e. x ∈ Dε. (5.5)

Denote by nk(x) the time of k -th return of x to Dε. Then τk(x) = Tnk(y)(x) and also

lim
k→∞

k

nk(x)
= µ(Dε) (5.6)

for ν-a.e. y because of the ergodic theorem. Combining the two limits above we get

lim inf
k→+∞

µ(Dε)
β · nk(x)

βd(Tnk(x)(x), x) = 0 for ν − a.e.x ∈ Dε (5.7)

which is contradicts the definition of Dε. Thus we know that Hα(Dε) > 0.
As the Hausdorff measure is positive, there must exist a measurable, non-empty subset

U ⊂ Dε with diamU < ε satisfying (1 − ε)(diamU)α ≤ Hα(U). (If all subsets of Dε
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satisfy the opposite inequality, then this trivially violates the definition of the Hausdorff
measure). Put u = µ(U) and r = diamU . From the definition of density g

Hα(U) =

∫
X

1U dHα =

∫
X

g1U dµ ≤ esssup g · µ(U) = sµ(U).

Combining the two inequalities on U gives

(1− ε)rα ≤ s · u. (5.8)

Since T preserves µ, we can show that

T−nU ∩ U 6= ∅ for some n ≤ 1

u
. (5.9)

Indeed, if all those intersections were empty, then U, T−1(U) . . . T−[1/u](U) would be
pairwise disjoint, and so

µ

( [1/u]⋃
i=0

T−i(U)

)
=

([ 1
u

]
+ 1

)
· u > 1,

a contradiction.
Take n for which the intersection is non-empty and any x ∈ T−nU ∩ U . Then

d(Tn(x), x) ≤ diam U = r < ε, (5.10)

so this n satisfies the condition in the definition ofD(ε). Using (5.9) and (5.10), then (5.8),
we get

nβd(Tn(x), x) ≤
(
1

u

)β

· r ≤
(

s

1− ε

)β
1

r
· r =

(
s

1− ε

)β

,

which contradicts the definition of Dε and ends the proof. �

As the next step we will ‘localize’ the result above obtaining:

Proposition 7. With the assumptions as in Proposition 6, we have for µ-almost every
x ∈ X

lim inf
n→∞

n1/αd(Tn(x), x) ≤ g(x)1/α. (5.11)

Remark 8. The density g is defined only almost everywhere, so g(x ) really means

g(x) = lim
r→0

(esssup g|B(x,r)).

Remark 9. This result for X = [0, 1] (α=1), has been proved in [5]. That proof,
however, works only in a 1-dimensional space.
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Proof of Proposition 7. We will use basic ergodic properties as in the part of the
previous proof. Fix x and r > 0 and consider S (y) – the first return function to the ball
B(x, r). S preserves the conditional measure ν, defined as

ν(A) =
µ(A ∩B(x, r))

µ(B(x, r))
. (5.12)

The density of this new measure is related to the old density:

h =
dHα

dν
= g|B(x,r) · µ(B(x, r)). (5.13)

Using Proposition 6 for a system
(
B(x, r),F|B(x,r), ν, d|B(x,r), S

)
we get

lim inf
k→∞

k1/αd(Sk(y), y) ≤ (esssuph)1/α. (5.14)

Denote by nk(y) the time of k -th return of y to B(x, r). Then Sk(y) = Tnk(y)(y) and
from ergodic theorem

lim
k→∞

k

nk(y)
= µ(B(x, r)) forµ− a.e.y. (5.15)

Note that the closest returns (to itself) of a point y ∈ B(x, r) for the original system
have to occur within the sequence nk(y). Thus, the limit in (5.14) transforms to

lim inf
k→∞

(
k

nk(y)

)1/α

nk(y)
1/α · d(Tnk(y)(y), y) ≥ µ(B(x, r))1/α · lim inf

n→∞
n1/αd(Tn(y), y).

(5.16)
It remains to compile (5.13), (5.14) and (5.16) obtaining

µ(B(x, r))1/α · lim inf
n→∞

n1/αd(Tn(y), y) ≤ (esssup g|B(x,r))
1/α · µ(B(x, r))1/α. (5.17)

Letting r → 0 we finish the proof. �

We may finally conclude the proof of the theorem.

Proof of Theorem 3. As the result is proved µ-almost everywhere we may assume
that all the points x ∈ suppµ. Take any α> 0 and the Hausdorff measure Hα. Recall
that we assume that Hα is σ-finite. There exists a decomposition Hα = Hs +Hc, where
Hs⊥µ and Hc � µ.
If Hc = 0, then by the definition of singular measures there exists a set A such that

µ(A) = 1 and Hα(A) = Hs(A) = 0. Define a new measure preserving system only on
A, that is consisting only of points whose entire orbit stays in A. As A has full measure
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this new system has all the properties of the original system. Then by the result of
Boshernitzan cited in the introduction (1.2)

lim inf
n→∞

n1/αd(Tn(x), x) = 0, forµ− a.e.x.

Thus the limit is smaller than g(x ) whatever the latter would be.
If Hs = 0, then the result follows from Proposition 7.
Finally, if both the singular part and the absolutely continuous part exist, then – as

above – take a set A of full µ-measure for which Hs(A) = 0 and define the system
restricted to A. Within this new system Hα � µ and this case has already been solved
above. �
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