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Abstract

Ginzburg-Landau type complex partial differential equations are simplified mathematical
models for various pattern formation systems in mechanics, physics and chemistry. Most
work so far has concentrated on Ginzburg-Landau type equations with one spatial variable
(1D). In this paper, the authors study a complex generalised Ginzburg-Landau equation with
two spatial variables (2D) and fifth-order and cubic terms containing derivatives. Based on
detail analysis, sufficient conditions for the existence and uniqueness of global solutions
are obtained.

1. Introduction

There have been many discussions on Ginzburg-Landau type equations (GLEs) and
generalised Ginzburg-Landau type equations (GGLEs).

Ghidaglia and Heron [16] and Doering et al. [6] studied the finite-dimensional
global attractor and related dynamical issues for the following ID or 2D (namely, with
one or two spatial variables) GLE:

u, - (1 + iv)Au + (1 + I » | « | 2 H -au=0,

where i = V—T, a > 0, v and /x are given real numbers. Levermore and Oliver [21]
studied the ID GLE as a model problem. In [3], Bu considered the global existence
of the Cauchy problem of the following 2D GLE:

u,-(v + ia)Au + (fi + ip)\u\*u + yu = 0, (1.1)
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with q = 1 or 2 and afi > 0 or |y3| < V5/2. Bartuccelli et al. [1,2] and Doering et
al. [7] investigated turbulence, weak or strong solutions and length scales for (1.1) in
higher dimensions. Mielke and Schneider [23-25] studied sharper results for (1.1) on
bounded and unbounded domains.

For the ID generalised Ginzburg-Landau equation, derived by Doelman [5],

u, = aou +aluxx +or2M2« + a!3|H|2H, +a4u
2ux —a5\u\4u, (1.2)

where a0 > 0, ay = ay + ibj, j = 1,... , 5, at > 0, a5 > 0, Duan et al. and
Gao et al. ([9-13,17]) studied the global existence of solutions, the finite-dimensional
global attractor, Gevery regularity of solutions, the exponential attractor, the number
of determining nodes and inertial forms. In [8], Duan and Holmes obtained global
existence for the Cauchy problem of (1.2) under the condition of 4axas > (&3 — b4)

2

for the global existence of the initial value problem. Guo and Wang [18] considered
the special 2D generalised Ginzburg-Landau equation

u, = pU + (\ + /V)AH - (1 + <>)|«|2(TM + aX1V(|M|2H) + /8(X2VM)|H|2, (1.3)

where p > 0, a, ft, v, /z are real numbers, and X,, X2 are real constant vectors. They
studied the existence of a finite-dimensional global attractor of (1.3) with periodic
boundary conditions, assuming that there exists a positive number S > 0 so that

- vS2)/(\ + S2))2 - -

In all the above mentioned papers, appropriate boundary conditions are assumed
for the existence of finite-dimensional global attractors, determining nodes and inertial
forms.

Since the 2D generalised Ginzburg-Landau equation

u, — aou -for. Aw + a2\u\2ux + ai\u\2uv + a4u
2ux + asu2uy — a6\u\2(y u, (1.4)

is more closed than the equation which Doleman [5] derived in two dimensions
(that is, a = 2), and can be regarded as a perturbation of the nonlinear derivative
Schrodinger equation, it is worth considering for the case when a0 > 0, otj = aj + ibj,
j = I, ... ,6, at > 0, at, > 0, a > 0. In [14], Gao and Duan considered the initial
value problem for the more general 2D generalised Ginzburg-Landau equation (see
[5]) with the suitable initial condition

u(x,y,O) = uo(x,y), (x,y) 6 K2.

Here, for simplicity, we omit the term |W|2M but the proof is essentially the same.
The main result of [14] is the existence and uniqueness of the global (in time)

solution for the Cauchy form of the above problem with initial condition belonging to
//2(K2), under the following assumptions on a:
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Al If btb(, > 0, then o- > (l + VfO)/2; if b6 = 0orZ?A < 0, then there exists a
positive number 8 > 0 such that

1 1 +x/T0
= > o > .

In [15], Gao et al. obtained the existence and uniqueness of the global (in time)
solution and attractor for (1.4) with initial value belonging to H2(Q) under the
following condition:

A2 If bib6 > 0, then a > 2; if b6 = 0 or bxb6 < 0, then there exists a positive
number 8 > 0 such that

1
> a > 2.

REMARK. Here and after, the positive number 8 is a variant constant which depends
on ix and v in different regions. It can be seen in the proof.

The initial value is

) , (x,y)eSl, (1.5)

where fi = (0, L\) x (0, L2), u is spatially periodic.
In the present paper, we consider a periodic problem for (1.4) with a — 2, that is,

u, = aou + ot\ AM + ai\u\2ux + ai\u\2uy + a^u2ux + a5u
2uy — CK6|M|4M. (1.6)

In [4], Bu et al. obtained global existence under the condition

A3 (|fc4 -b2\ + \b5- b2\)
2 < 4a,a6, a, > 0, a6 > 0,

and \bb/ah\

Meantime, a numerical example for the blow-up phenomenon of the solution was
given.

Using scaling for space variables and the function u, we may normalise au a6 in
(1.6) to 1. Therefore (1.4) can be written as

u, = aQu + (1 + iv)Au + at\u\2ux + a2\u\2uv

+ a4u
2uy-(l+ifi)\u\4u. (1.7)

We will give a condition sharper than A3 to guarantee the global existence of (1.7)
with a periodic boundary condition and initial condition.

For the local existence of (1.7) with (1.5) and periodic boundary condition in
) , we refer to [4] and [14].
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2. Global existence

In order to show that the solution exists for all / > 0, we only need some conditions
such that

||M||W2 < oo, for all / > 0. (2.1)

This can be archived by the following a priori estimates, that is, ||«(0ll//2 <
K(T, ||K0||),'f e [0, T], T > 0. This means \\u(t)\\H2 cannot go to infinity at any
finite time. In the following, f = fndx dy, \\-\\B denotes the norm in a Banach space
B and || • \\p denotes || • \\LP. In order to establish (2.1), we derive a priori estimates
for the solution of (1.7) (with (1.5) and periodic boundary condition) in the following
lemmas.

LEMMA 2.1. Assume that u0 e L^iQ) and {\b\ - b3\ + \b2 - b4\)
2 < 4, then for

the solution u(t) of problem (1.7) with (1.5) and a periodic boundary condition, we
have \\u\\l < ^ ,(r ; | | i io | |2) , /„' | |V«| | | < K2(T;\\uoh) and ft\\u\\6

6 < K3(T;\\u0\\2),
V / € [0, 7"], where Kt (i = 1, 2, 3) are constants which depend only on T, HW0II2 and
ot0,bj (j = 1,2,3,4).

The proof is similar to that in [4] and [14]; we omit it here.

LEMMA 2.2. Under the assumptions of Lemma 2.1, u0 € / / ' and one of the
following conditions holds.

(I) |u| < V5/2, n arbitrary and M2 < (3/2 - >J\ + v2) {here M = max{|a,|,

(II) \v\ - S12,11 arbitrary and M2 < (3/2-Vl + a2), a - -fi/(l + 8 + A) +
8v/(l +S + A), (A =2/S).

(III) fiv > 0, M > S/2, n arbitrary and M2 < 1/2.
(IV) ILV < 0, \fj.\ < S/2, v > S/2andM2 < (3/2 - Jl +/x2).

(V) fiv <0, \fj.\ > S/2, \v\ > yflli \a\ < V5/2,-(I + fiv) < \a\\n-v\and

M2 <

Then the solution u(t) of problem (1.7) with (1.5) and periodic boundary condition is

MI«oll//')./oi-0<r < T.

PROOF. In order to estimate the boundedness of // '-norm, we need the functional
Es(u(t)) = f [ | V M ( / ) | 2 / 2 + C$|M(OI6/6] , where S > 0 will be suitably chosen later.
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Using (1.7), we get

— £,(«(/)) = ao( | |VM| | 2 + 8\\u\\6
6) - ( | |AH| | 2 + 8\\u\Q

+ Re I(1 + I » | M | 4 M A M + 8 Ml + I"V)|M|4MAW

385

2, (2.2)

where

a2\u\2uy= Re / [ai |u|2

= Re / [at\u\2ux + a2\u\2uy +a3u
2ux

«>] AM,

\u\4u.

Since |/ , | < 2M f[\u\2\ux\ + |M|2 |M,, |] |AM| and |/2| < 2 « A / / | I I | 7 [ | M X | + |n,|],then
(2.2) can be written as

^ < a0 (\\Vu\\l + «||«||«) - (||A«||2 + 8\\u\Q

+ ]• Re A | M | 4 « , AU)N0(\U\4U, AM)'

+ 2M J [\u\2\ux\ + | « | 2 |« , | ] |AII | + 28M J |M|7[|«, | +

where (|M|4M, AM) ' denotes the tranpose of (|M|4M, AM) and

], (2.3)

Here * denotes the complex conjugate of 1 + 8 — i(v8 — fi). Since any a satisfies
|a | < \ /5 /2 , by the standard method (see [15,23,24]), we have

- Re Ml + I«) |M|4MAM > (3 - 2>/l +aA J |U | 4 |VM| 2 . (2.4)

Multiplying (2.4) by — rj (17 > 0 to be chosen later) and adding it to (2.3), we obtain

^ ( O ) < <XO(I|VM||2 + S\\u\\l) - (1 - ^ ) ( | | A M | | 2 J°

- n (3 - 27l+a2) I |M|4|VM|2

+ ]- Re I (\u\4u, AM) N (|M|4M, AM) '

at

+ 28M I \u\1[\ux\ + \uy\], (2.5)
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where 0 < K < 1 is to be determined and

• 8 — T) — i(v8 — ix — an)^-*-(-f 'N - , . - ,
—2K

Here • denotes the complex conjugate of 1 + 8 — n — i(v8 — /x — an). In order to
prove /V is negative semidefinite, we need the following lemma.

LEMMA 2.3. Let K e (0,1) be fixed. Then there exists 8 > 0, n > 0, \a\ < V5/2
and

-(I + Uiv) < \a\\n - v\, (2.6)

such that N is negative semidefinite. Hence, R e / (|«|4«, AM) N (|W|4M, AM)' < 0.

PROOF. We use the method of [23] and [24] to prove this lemma. We give the
complete proof here in order to determine parameters 8, r\ and a in detail (these are a
little different from [23] and [24]).

It is clear that N is negative semidefinite if and only if

(1 + 8 - rj)2 + (8v - ^ - an)2 <48K2, (2.7)

which means, dist(z(S), Z) < 2-/IK, where z(8) = \ + ifi + 8(\ - iv) and

We prove (2.7) by five cases.

Case (I). When |v | < V 5 / 2 , it suffices to take r) = 1 + 8, a = v, 0 < K < 1 and

8 large enough; then (2.7) is satisfied.

Case (II). When |v | = > /5 /2 , fj. arbitrary, it suffices to take r) — 1+8,

a = - M / ( 1 +8 + A) + 8V/{\ +8 +A), (A = 2/VI), 0 < K < 1 and 8 large
enough; then (2.7) is satisfied.
Case (III). When fiv > 0, |v| > V5/2, /x arbitrary, it suffice to take rj = 1 +8, a = 0,
0 < K < 1 and 8 = fi/v; then (2.7) is satisfied.
Case (IV). When fiv < 0, \[i\ < V5/2, v > V5/2, it suffices to take r\ = 1 + 8,
a = —fj., 0 < K < 1 and 8 small enough; then (2.7) is satisfied.
Case (V). When /xv < 0, \fi\ > y/5/2, v > 75/2, |a| < >/5/2, we may restrict
attention to the case v > 0 > /x, a > 0, as u < 0 < /x, a < 0 is similar by
conjugation. So we consider the case of v > V5/2, /x < --J5/2 and a > 0. Let
r = s/8, then
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where T = r0 = 3K/(2v — VJ), h(z0) = minreR h(r). We can see h(r0) < 0 if and
only if

If*- <
1

Once

- 1 <

l + a 2

1
1 +O2

(H + a)(v -a).

(/x+a)(v - a )

(2.8)

(2.9)

holds, we can find K e (0, 1) such that (2.8) is satisfied, thus h(T0) < 0 and therefore
dist(z(r0

2), S) < KX0.
From (2.9), we get (2.6). In this case, that is, 8 = r0

2 = (3K/(2v - VI))2, we have

1
= Re(z(S) • ( ! + /«)) =

1

The proof of Lemma 2.3 is therefore complete.

Using Cauchy's inequality and Lemma 2.3, (2.5) can be written as

< ao(l|VM||2 S\\u\\t) (3 - 27l+a2) J

In order to guarantee

-n (3 - 2 y r r ^ ) /" i«i

(2.10)

(2.1

we use Lemma 2.3 again and obtain teh following cases:
Case (I). When A/2 < (3/2 - N/TTv2)(l - K), then (2.11) holds. Since the above
inequality holds for every K e (0, 1), we know that when M1 < (3/2 — VI + v2),
then (2.11) holds.
Case (II). When M2 < (3/2 - y/\+a2), a as in the proof of Lemma 2.3, then (2.11)
holds.
Case (III). When M2 < 1/2, then (2.11) holds.
Case (IV). When M2 < (3/2 - Jl + fi2), then (2.11) holds.
Case (V). When

M2 <
T

V5
2 '

then (2.11) holds.
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So, under the condition of Lemma 2.2, (2.10) can be written as

— E,(u(t))<6a0Et(u(t)).
dt

By Gronwall's inequality, Lemma 2.2 is proved.

LEMMA 2.4. Under the assumptions of Lemma 2.2, we have

I |AM||2 < K5(T, HMOIIHO, far 0 < t < T.

PROOF. Taking the real part of the inner product of (1.7) with A2M, we find that

| |AM| | 2 = <3OI|AM||2 - | |VAM| | 2 - Rea6 / \u\2auA2u
idt J

r r .
+ Re

\a2 / \u\2uxA
2u + a3 / \u\2uyA

2u

+a4 I M2«^A2M + a5 / u2uyA
2u .

After integration by parts and using Lemma 2.2 and some elementary manipulation,

wegetrf ( | |AM| | 2 ) /^ < d\\Au\\\ - ||VAM\\\ + C2, where C,, C2 depend on a0, |a,-|

( / = 1 4), T, nand v. Thus, by Gronwall's inequality, | |AM||2 < K5(T, \\uo\\Hi)-

By the local existence result, Lemmas 2.1, 2.2 and 2.4, we finally obtain the
following global existence result.

THEOREM 2.5 (Global existence). Under the assumptions of Lemma 2.2, there ex-

ists a unique global solution of the initial value problem for the 2D generalised

Ginzburg-Landau equation (1.7) with (1.5) in H2
er{Q.).

3. Some remarks

In this section, we give four remarks on our problem.

REMARK 1. From the conditions in Lemmas 2.1 and 2.2, we find that our results

improved the results of [4]. On one hand, we use M = m a x d a j , |a2|, |ar3|, |a4|}

instead of X!>=? \aJ I2» o n t n e other hand, the global result in [4] is just the case of

|/z| < V5/2 . That is, for Case (IV) and some parts of (I)-(III) in Lemma 2.2 in

our paper, our results are sharper and more detailed than [4]. In [4], the authors

considered the numerical example for v — 1, /z = —10, a0 — at = a2 = a?, = a4 — 0

andfc, =b2 = l.fr, = bA = - 1 . We note that M = 1 and {\bx - ^ l + l ^ - ^ l ) 2 = 16,
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so this example does not satisfy some conditions in Lemmas 2.1 and 2.2, but it does
satisfy —(1 + fxv) < |a||/x — v\ for some |a| < V5/2. This means by our results, if v
and/A satisfy —(l + /nv) < |a||/i —v| for some \a\ < V5/2, M small enough, then we
also have the global solution. In other words, if v and (x satisfy —(l+/ii>) < |or | |/x — u|
for some |a | < V5/2, and the nonlinear derivative terms are small perturbations, then
the solution will exist for all time.

REMARK 2. Based on our existence result, we can obtain the global attractor by a
similar method to [15], using the standard method of [19] and [26].

REMARK 3. We specifically consider a simple example to explain the blow-up of
the solution of

ut = Au-\u\pu + ib\u\2ux, x e ft = (0, Lx) x (0, L2), t > 0, (3.1)

with initial value condition

u(x,y,O) = uo(x,y), x e ft, (3.2)

where u is spatially periodic and p > 0.

We use the energy method of [20,22] to prove the following proposition.

PROPOSITION 3.1 (Blow-up for p < 2 and b ^0). If 0 < p < 2, u0 ^ 0 and
E(0) < 0 (the definition of E(t) can be seen in the proof), then every smooth solution
of (3.1)—(3.2) will blow up. That is, there exists T < oo such that l im,^ ||M|| = +oo.

PROOF. Taking the real part of the inner product of (3.1) with u, we get

— ||M||2 = -||V«||2 - J | « r 2 - blmj |«|Vt«, (3.3)

where Im denotes the imaginary part of a complex number. Let

E(t) = - / |V«|2 + / \u\p+1 + - Im / \u\2uxu. (3.4)
2 J P + 2 J 4J

Then using (3.1), we have dE{t)/dt = - | |M,| |^, SO

E(t) < E(0), t > 0. (3.5)

Here d(lmf \u\2uxii)/dt = 4 I m / \u\2uxu, was used. By (3.4) and (3.5), (3.3) can
be written as
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Since 0 < p < 2 and £(0) < 0, we obtain

P+2 JJ

where K = 2(4/(p + 2) - l ) |nr ' /"+ 2> and hence ||M||^/2 > (||MO||"''/2 -pKt/2)~x.
Moreover, if w0 # 0, then there exist T < {2/Kp)\\uQ\\'p'2 < +oo, such that

= +oo. The proof of this proposition is now complete.

Proposition 3.1 shows that if the dissipative term — \u\pu is not so strong, the
solution of (3.1), (3.2) must blow up when £(0) < 0 and b ^ 0.

REMARK 4. We will show that the boundedness of ||K||,(<7 > 4) will guarantee
global existence for (3.1), (3.2) with p — 4. By the discussion of Section 2, we only
need to obtain the estimate of || V«||. We have the following proposition.

PROPOSITION 3.2. / / | | « | | , (q > 4) is bounded then ||VM|| IS bounded, where u is
the solution of (3.1), (3.2) with p = 4.

PROOF. Taking the real part of the inner part of (3.1) with —AM, we obtain

| |V | | 2 | |A | | 2||VM||2 = -||AM||2 + Re / \u\4uAu + blm |M|2M,AM. (3.6)

Since Re / |M|4MAM = - / |VM|2|M|4 - / |V|«|2|2, then (3.6) can be written as

~\\^u\\2 < -]-\\Au\\2 + b- I |«|4|VM|2. (3.7)
2 at 2 2 J

Since

I«|4 |V«|2 < II \u\p \ I / | Vw|2"/(p-4) J < C U | VM| 2 " / ( " - 4 ) J

and || u ||p (p > 4) is bounded, by the Gagliardo-Nirenberg inequality and Young's
inequality, we have

(p-4)/p

d|A«||2 + C.

Then by (3.7), we show that || V«|| is bounded.
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