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1. Introduction. Previously, the problem of expressing rational numbers 
as finite sums of rational numbers of a given type has been concerned with 
the Egyptian, or unit, fractions. It has long been known that any rational 
number is the sum of distinct unit fractions. In response to a problem pro
posed by E. P. Starke (4), R. Breusch (1) and B. M. Stewart (5) showed 
that every rational number with an odd denominator is a sum of distinct odd 
unit fractions. P. J. Van Albada and J. H. Van Lint (6) extended this result to 
show that any integer is a sum of unit fractions with denominators from an 
arithmetic progression. This result was extended further by R. L. Graham 
(2), who showed that every positive rational number a/b can be expressed 
as a finite sum of reciprocals of distinct elements of the arithmetic progression 
r + sx, if and only if (b/(b, (r,s)), r/(r,s)) = 1. In (3) Graham also has 
shown that for every positive rational number a there is an integer n such 
that for every integer m > n there is a partition of m whose reciprocals have 
the sum a. 

In this paper we deal with some related problems not of the unit fraction 
type, such as expressing rational numbers as sums of other rational numbers 
where numerators, or both numerators and denominators, are restricted in 
some way. 

2. Restricted numerators. In this case, where only the numerators are 
restricted, we have the following quite general result. 

THEOREM 1. Given any infinite set S of positive integers such that in S there 
are infinitely many disjoint pairs of elements which are relatively prime, then 
any rational number a/b may be written as a finite sum of reduced fractions 
whose numerators are distinct elements of S and whose denominators are distinct. 

Proof. Assume a/b is positive. If it is negative, simply make all of the 
denominators negative. We write a/b = \/b + 1/b + . . . + 1/b (a sum-
mands). If b = 1, write 2a/2 = 1/2 + . . . + 1/2 (2a summands). So we 
may assume that b 9e 1. We now express each 1/b as follows. 

Let Si and s2 be elements of 5, (si, s2) = 1, and let b = PQ where (51, P) = 1 
and (52, Q) = 1. That is, P contains all the primes in (s2, b), and Q contains 
all the primes in (51, b). We arbitrarily put all other prime factors of b in P. 
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Then, 

1 Si S2 

b " P(Sl Q + s2P)^ Q(Sl Q + siP)' 

The fractions are reduced since (si, s2) = 1, (sh P) = 1 and (s2, Q) = 1. 
The denominators are not equal since P and Q have different prime factors. 
Repeat this process for s3 and s4 in S, distinct from si and s2, such that (53, s4) = 1 
and s 3 + 54 > (51 + s2)b

2. This can be done since we have infinitely many 
disjoint pairs of relatively prime elements in S. There is obviously no repe
tition of numerators since they were picked distinct. The denominators are 
different since both old denominators are less than (si + s2)b

2, while both 
new denominators are greater than (si + s2)b

2. We repeat this process for 
each I/o picking s2k + s2k-i greater than (52 -̂2 + s2k-Z)b2. This gives us the 
desired representation. 

We note that such sets as the primes, the &th powers of the primes, any 
arithmetic progression r + sx, where (r, s) = 1, or even the Fibonacci num
bers are suitable for S. 

3. Restricted numerators and denominators. In this case we have 
the following result concerning arithmetic progressions. 

THEOREM 2. Any positive rational number a/b where b is odd, a/b reduced, 
can be written as a finite sum of proper, reduced fractions whose numerators are 
distinct elements of the arithmetic progression r + sx, and whose denominators 
are distinct elements of the arithmetic progression u + vy; provided (u,v) = 1, 
(r, s) = 1, (v, b) = 1, (v, s) = 1, and (v, r) = 1. 

Proof. We divide the proof into two parts. In the first part we reduce the 
problem to the case where b = 1 (mod v), and in the second part we prove 
the result for this special case. 

If v = 1, the result is true by Theorem 1. Therefore assume v > 1. 
Write b = c + yv, 0 < c < v. Clearly {v, c) = 1 since (v, b) = 1. By the 

Chinese remainder theorem the system of congruences 

k = cu2 (mod v), 
(1) 

vk = 1 (mod b) 

can be solved for k, where k has the property 0 < k < bv; (k,v) = 1 and 
(k, b) = 1. Since (v, k2) = 1 , (v, b) = 1, and (b, k2) = 1, the system of con
gruences 

yx v + u = 0 (mod k2), 

yxv + u = 1 (mod b) 

can be solved for yi = Y + mi bk2, where Y is the particular solution such 
that 0 < Y < bk2. 
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Now, if pa || k, where p is a prime and a > 1, then £a || (yi + &)*> + u 
since £2a | 3/1 v + u and £a || kv. Also, (3/1 y + u, (yi + k)v + u) = k since k 
divides both, and if pa divides both, it divides their difference vk. Up divides 
v, then it would not divide yiv + u, since (v, u) = 1. Therefore pa \ k, which 
proves the statement. 

Let (r, u + vyi) = d\. Take xi = (u + vyi)/di*, where di* is defined as 
the smallest number such that ((u + vy±)/di*t r) = 1. That is, if 

di = £ i a l . . . ph
ah and u + vyi = p^1. . . ph^

h. . . p£\ 

then rfi* = piPl. . . pj?h. Now, (r + xi 5, u + zryi) = 1, since if a prime g 
divides both, then either g \ r, in which case q \ x\ s since (xi, r) — 1 and 
(s, r) = 1, so g t r + Xi s, or g | r and hence g | di*, in which case g | Xi 
since g | u + ^ 1 and w + vyi = xi di*. Here too we find g <f r + xi 5, which 
contradicts the assumption that g was to divide both numbers. 

Let (r, w + v(yi + k)) = d2. Then let x2 = (u + v(y± + k))/d2*, where d2* 
is defined in the same way as di*. We then have (r + x2 s, u + v(yi + &)) = 1 
just as above. 

We now show that we may pick m\ such that xi 9^ x2. If r = £ 1 . . . ^ , 
let 3̂1 y + u = P i Qi and (ji + &)u + u = P2 Q2, where P i and P 2 contain 
only the pt as prime factors, (QiQ2,r) = 1. Then, by definition, xi = Qi 
and x2 = Q2. Now assume that xi = x2 for all choices of mi, i.e. Q\ = Q2. 
Then we have (3̂ 1 v + w, {yi + &)z> + w) = P3 (?i, where P 3 contains only the 
?̂j as prime factors. But we have already shown that the greatest common 

divisor of these two numbers is precisely k, i.e. P 3 Qi = k. By (2), k2\yiv + u\ 
hence (P3 Q1)2 | P i (?i- Therefore, since the Pt are relatively prime to the Qu 

we have Q12 | (?i, which is possible only if Q\ = 1. This means that 3>ifl + ^ 
contains only the primes pi, p2, . . . , ph as prime factors. But since Wi may be 
any positive integer, we may pick yi v + u to be any member of an arith
metic progression. It is well known and easily shown that the elements of 
any arithmetic progression have infinitely many prime factors, which con
tradicts what we have just shown. Therefore, Xi cannot be equal to x2 for 
all choices of mi, so we may pick mi such that xi 9^ x2. 

We now pick ji and j 2 such that ji > j 2 and 

r + xis< (u + yiv)M(v)+1 = Uh 

(3) r + x2s<(u+ (yi + k)v)M(v)+1 = U2, 

r + Xis r + x2s a 
Ui + U2 b' 

By <f>(v) we mean Euler's <f>-{unction. Clearly Ui is relatively prime to r + xi s, 
since u + y\ v is, and U2 is relatively prime to r + x2 s, since u + (3̂ 1 + ^)z; is. 

Consider the fraction 

a x (r + xi 5)Z72 + (r + ^2 5)i7i 
l 4 ; £/! C/2 
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Clearly {Uh U2) = kh<^v)+1, since (u + yiv, u + (3/1 + k)v) = k and j x > j 2 . 
This implies that kJ2*(v)+1 is the greatest common divisor of the numerator 
and denominator of (4). We can easily see this since any common divisor of 
the numerator and denominator must be a common divisor of Ui and U2. 
Therefore, after a factor of kJ2^v)+1 has been removed, the fraction (4) is in 
reduced form N/D. 

Now, 

Pfcjrfco+i = Ui Z72. Ui = n'*™*1 = u (mod v), 

and 

U2 = u'*+W+1 = w (mod y) 

since (u, v) = 1. This means that C/i and U2 are themselves elements of the 
arithmetic progression u + yv. Also, Dk3'2(f>(v)+1 = Dk (mod A) since (&, p) = 1. 
Therefore, Dk = U\ U2 = ^2 (mod y), and we find that D = u2k~x = C (mod z>), 
where cC = 1 (mod v) by (1). We now have D = C + -Mi; and can use (4) 
to write 

9L _ r ~^~ Xl s 1 r ~\- %2S iV a 
6 " f/i + U2 ~ C + Mv + b 

or 

è ~ f/x
 + U2

 + &' ' 

where 

a' = a __ N = g __ N = JVi = Nx 

V b C+ Mv c + yv C + Mv cC + Mi v ~ 1 + M2 v ' 

This fraction is greater than zero by (3). We also have that Ni/(1 + M2 v) 
is reduced, since N/D and a/b are reduced and (b, D) = 1. To show this, we 
consider 

u + yx v = 1 (mod J), « + (ji + k)v = 2 (mod b). 

These relations are true by (1) and (2). So, since b is odd, it is relatively 
prime to both numbers, and hence relatively prime to U\ U2. Since D is a 
factor of Ui U2, we have (&, D) = 1. 

We have thus expressed a/b as 

a _ r + Xis r -\- x2s a!_ 
b~ Ui + U2

 + b' ' 

All of these fractions are reduced; the first two are of the desired type since 
U\ and U2 are elements of the arithmetic progression u + yv, and b' = 1 
(modi)). Hence this completes the first part of the proof. 

We may now assume that b = 1 (mod v), and write a/b = 1/6 + . . . + \/b 
{a summands). If we let (b, r) = d%, then (b, r + z(b/d3*)s) = 1 if (z, r) = 1, 
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where d3* is defined in the same way as di* and d2*. T h e system of congruences 

z = l ( m o d r ) , 
(5) 

2z(b/dz*)s = u — 2r — s (mod v) 

has a solution, since (V, p) = 1, and we can show t h a t the second congruence 
has a solution. This is because if 2\v, then 2 \ u and 2 >f s, so 2 | u — s 
and the 2 may be cancelled from the congruence. Now, ((b/dz*)s, v) = 1 
since (ft, v) = 1 and (5, p) = 1. Hence, the coefficient of z is relatively prime 
to v (or u/2 if a 2 mus t be cancelled from the second congruence), so the 
system (5) has a solution (mod rv). There are then infinitely m a n y such z. 
Note t h a t the first congruence assures t h a t (2, r) = 1. Now, for any such z, 
set z' = z(b/dz*), which assures t h a t (ft, r + z's) = 1, and consider the ident i ty 

1 = r + z's r + (z' + l)s 
b ~~ b(r + z's + b(r + (z + l)s)) + r + z's + b(r + (z + l)s) ' 

Note t h a t (r + z's, r + {zf + 1)5) = 1, because if g, a prime, divides both, 
then it divides their difference 5. Bu t then q ^ r since (r, s) = 1, so q \ r + z's. 
Therefore the fractions are reduced and 1/ft is now expressed in the desired 
form since the numerators are in the progression r + xs, and we can prove 
t h a t the denominators are in the progression u + yv. 

Let V = r + z's + ft(r + (z' + l ) s . Then since ft = 1 (mod v), we have 
J F = V =2r + 2z's + s (mod v). Bu t 2z /s = 2z(b/dz*)s and 

2z(b/dz*)s = u — 2r — s (mod «;), 

so ft F = V = u (mod t;). This proves t h a t both denominators are in the 
desired progression. 

W e need now only do this for each 1/ft by picking z\, z2, . . . , za in such 
a way t h a t 

r + z/s>r+ ( * V i + 1)5; 

r + z/s + b(r + (z/ + l)s) > b(r + zf^s + b{r + (z/_x + l)s)); 

(6) r + Z\ s > max( r + xi 5, r + x2 s) ; 

F > max(C7i, f/2). 

This can be done since we have infinitely many z to pick from. T h e inequalities 
(6) assure distinctness of all numerators and denominators t h a t we use. 

This completes the second pa r t of the proof, and we have shown t h a t a/ft 
can be represented in the desired form. 

COROLLARY. The above theorem holds for ft odd or even if u is a primitive 

root of v. 

Proof. Let (u, ft) = d, yt = ki(b/d*), where d* has the same meaning as 
di*, etc. in Theorem 2. Then (yt,d) = 1 if (kud) = 1. Hence 

(ft, u + yiv) = 1. 
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For Xi we may pick a k\ (and hence a yi) such that (r + x\ s, u + yi v) = 1 
by using a "d* argument" as was used in Theorem 2. 

We now have 

a r + Xi s JVi 
b u + 3>i v bu + YiV ' 

Repeat this for xi, yi, . . . , xt1 Ju where bu1 = 1 (mod v). At each stage we 
pick yt such that u + ytv is relatively prime to both 

r + Xj5 and &wz_1 + Yt-iv. 

This can be done just as it was for y±. That bu1 = 1 (mod v) has a solution 
follows from the fact that u is a primitive root of z;. We also pick yt large 
enough so that we have N J (bu1 -\- Ytv) > 0. We then have 

ô u + yiv ''' u + ytv bul+Ytv' 

But the denominator of this last fraction is congruent to 1 (mod^). Hence, 
we may proceed with the second part of Theorem 2. 

The hypotheses (r, s) = 1 and (v, b) = 1 are necessary for Theorem 2 to 
hold in this generality. The condition (u, v) = 1 appears almost impossible 
to omit. The other conditions (v, s) = 1 and (v, r) = 1 may possibly be 
weakened. For instance, it can be shown using another "d* argument" that 
(v, r) = 1 may be replaced by (v, r, u — s) = 1 . 

I should like to express my thanks to Dr. B. M. Stewart for many valuable 
suggestions. 
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