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Abstract. Only finitely many shift equivalence classes of non-negative aperiodic
integral matrices may share a given diagonal Jordan form away from zero. The
diagonal assumption is necessary.

0. Introduction

Subshifts of finite type are fundamental in applications of symbolic dynamics to
diffeomorphisms [3], ergodic theory [4], and coding theory [2]. These subshifts are
defined by square non-negative integral matrices [16], and may be studied by way
of invariants of matrices which define topologically conjugate subshifts. We will
refer to such invariants as ‘invariants of conjugacy’.

In a fundamental paper [16], Williams introduced two equivalence relations on
square non-negative integral matrices: shift equivalence and strong shift equivalence.
Strong shift equivalence is a complete but highly non-computable invariant of
conjugacy. Shift equivalence is an invariant of conjugacy which is conjectured to
be complete and which is more computable-it is often practical to decide if two
matrices are shift equivalent, and significant partial results suggest there is a general
decision procedure [7]. In addition, from Krieger’s work we find shift equivalence
intimately related to dimension groups [9] and the construction of factor maps [10].

The Jordan form away from zero is a strictly weaker invariant of conjugacy. It
is still a very strong one; it determines the entropy and zeta function, classifies
irreducible subshifts of finite type up to ‘stable weak isomorphism’ [10] and severely
constrains equal-entropy factors {8]. Moreover, it is completely computable. To
understand the structure of the class of subshifts of finite type, we should in particular
understand how shift equivalence refines this Jordan equivalence relation.

In this paper, we find that only finitely many shift equivalence classes of aperiodic
matrices may share a given diagonal Jordan form away from zero. On the other
hand, examples are provided in which infinitely many aperiodic non-negative integral
matrices, pairwise not shift equivalent, share the same (non-diagonal) Jordan form
away from zero.
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1. Definitions and background

We need only consider matrices. For a thorough introduction to subshifts of finite
type, see [1], [4] and [12]. For shift equivalence and strong shift equivalence, a good
introduction is Ch. V, Sec. III of [12].

Let A and B be square integral matrices (not necessarily of equal size), and let
& be one of the semi-rings Z, Q or the non-negative integers Z*. Write A 4B if
there exist matrices R, S with entries from & such that SR = A, RS = B. If there is
a finite string A <|¢A,; <y - - <4 B, then A and B are strong shift equivalent over
& (SSE-%). A and B are shift equivalent over & (SE-¥) if there exist matrices R,
S with entries from & such that

(1.1) RA=BR, AS=SB, SR=A' and RS = B', for some 1> 0.

The integer /in (1.1) is called the lag of the shift equivalence. Whenever the semi-ring
& is not specified, & is intended to be Z". Strong shift equivalence over & implies
shift equivalence over &; the converse is true for ¥ =Z or Q ([16]) and conjectured
for ¥=27".

The matrix J*(A) obtained by removing from the complex Jordan form of A all
rows and columns with zero on the diagonal is the Jordan form away from zero of
A. We (must) consider J*(A) and J*(B) to be the same if there exists a permutation
matrix P such that

PI*(A)P~' = J*(B).

A and B are shift equivalent over Q if and only if J*(A)=J*(B) ([5, th. 6.5]). In
particular, matrices shift equivalent over Z or Z* have the same Jordan form away
from zero; the converse fails easily ({16, example 3]).

The characteristic polynomial of A has a unique factorization x"p,(x) for which
pa(0) is non-zero; pa, the characteristic polynomial of A mod x, is an invariant of
conjugacy. The periodic point counts of the subshift of finite type defined by A
determine p,, and vice versa. Obviously, J*(A) determines p,.

A and B are similar over & if there exist matrices U, U™' over & such that
UAU '=B. If A and B are similar over Z, then they are shift equivalent over Z,
with R=UA and S=U"" in (1.1). In general, for non-negative integral A and B,
similarity over Z does not imply shift equivalence, and shift equivalence does not
imply similarity over Z. The similarity class of a square integral matrix A is the set
of all matrices similar to A over Z.

We will need two basic facts about integral matrices.

(1.2) TueoreM ([11, Ch. III, Sec. 15]). Let A be a square integral matrix with
characteristic polynomial p\p, - - - p,, where each p; is a monic polynomial with integral
coefficients which is irreducible over Q. Then A is similar over Z to a matrix in block
lower triangular form, where the characteristic polynomial of the i’th diagonal block
is p;.

(1.3) Tueorem ([11, Ch. II1, Sec. 16)]. There are oply finitely many similarity classes
of integral matrices A such that f(A)=0, where f(x) is a monic polynomial with
integral coefficients which is irreducible over Q.
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If A is a non-negative n by n matrix and every entry of some positive power of A
is positive, then A is aperiodic; if, given integers i and j with 1=, j=< n, there is
some positive m such that (A™); is positive, then A is irreducible. The following
observation, perhaps first made in [13], is basic to the sequel.

(1.4) Aperiodic non-negative square integral matrices are shift equivalent over
Z* if and only if they are shift equivalent over Z.
For a succinct proof of (1.4), see (2.1) of [7]). Example (2.13) of the next section,
obtained with 1. Kaplansky, shows that (1.4) cannot be extended to irreducible
matrices. This corrects remark 4 in § 5 of [13].

2. The finiteness result
In this section we find that only finitely many shift equivalence classes of aperiodic
matrices may share a given diagonal Jordan form away from zero. For aperiodic
matrices, we may neglect positivity requirements and work with shift equivalence
over Z. Over Z, it is enough to consider non-singular matrices with a fixed diagonal
Jordan form. Then we find such matrices come from only finitely many similarity
classes, hence from finitely many SE-Z classes. We close with some related results.
In particular, we find infinitely many non-negative matrices shift equivalent over Z
may be pairwise not shift equivalent over Z".

Throughout this section, a matrix is integral unless specified otherwise. We must
suffer a little notation. Let M, (&) be the set of n X k matrices with entries from &
(& will be Z, Z" or Q). In the sequel, always take Ae M, (Z), Be My (Z) and

[A, Bly={YA-BY: Y e M,(¥)}.

Notice that [A, Blg is a rational vector space in which [A, B]; is a lattice of full
rank. Especially,
(2.1) the quotient group ([A, Blo ™ M,(Z))/[A, B]z is finite.

(2.2) LEMMA. Any non-nilpotent square integral matrix is shift equivalent over Z to
a non-singular matrix.

Proof. By (1.2), any non-nilpotent square integral matrix is similar over Z (hence

SE-Z) to one of the form
(442
"LXINY/

where A is non-singular and N is nilpotent. Pick I such that N'=0, so

B,_[A’ 0]
“LYlo

AI
R=[7], S=[I| 0]

Then the only non-trivial verification of the equations (1.1) involves RA = BR, which
requires YA = XA'+ NY, which follows from

B el R R o S

for some Y. Define
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(2.3) LEMMA. Suppose A and B are square matrices with no common eigenvalues,
and C is a matrix such that AC = CB. Then C =0.

Proof. Let C, A, B act as linear transformations on complex row vectors. Let p(x)
be the minimal polynomial of A. Then 0= p(A)C = Cp(B). So, if C #0, then the
minimal polynomial of B|,, divides p(x); therefore, A and B share an eigenvalue,
a contradiction. (]

(2.4) LEMMA. Suppose X — Y is in [A, B];. Then

are similar over Z.

Proof. For some Z in M,,(Z), X -Y=ZA—-BZ, so

[A\o][uo],_[uo][,ﬂo] -
x|BJlzlr ] Lzl Y|B )
(2.5) LEMMA. Suppose C,, ..., C, are square integral matrices which pairwise have

no common eigenvalues. Then only finitely many similarity classes may contain matrices
of the block triangular form

C, 0
&

c
Proof. This is trivial for n = 1; suppose true for n—1. Then there are finitely many
matrices A; such that for any integral matrix of the form

C, 0

Cn—l

there is an integral unimodular matrix U such that UCU ™' = A, for some i. Therefore,
given some matrix

for some U we find a similar matrix

el

with one of finitely many forms
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Now it suffices to show, for fixed A and B with no common eigenvalues, that only
finitely many similarity classes may contain matrices of the form

7]
X|BJ
By (2.4), it fs enough to show there are only finitely many elements in the quotient
group M,,(Z)/[A, B];. This is true if and only if the lattice [A, B]; has full rank

in M,,,(Z). This is true if and only if the linear transformation Z+— ZA — BZ from
M, (Q) to itself has kernel zero. This follows from (2.3). ]

The core of (2.5) was proved and used by Handelman in his study of stenotic
extensions of certain dimension groups (see the remarks preceding I11.7 of [6]).

(2.6) LEMMA. Suppose p(x) in Z[x] is monic irreducible and n is a positive integer.
Then the set of similarity classes of integral matrices with characteristic polynomial
p(x)" and diagonal Jordan form is finite.

Proof. We may suppose p(x) # x. The case n=1 is (1.3). Suppose the claim is true
for n, and C is diagonalizable with characteristic polynomial y = p(x)"*'. By (1.2),
C is similar over Z to a matrix of the form

]
XIiB [
where x, = p(x)" and xg = p(x). Since C is diagonalizable, so is A.

Let of (B) be a finite, complete set of representatives of similarity classes of
integral matrices with characteristic polynomial p(x)" (p(x)) and diagonal Jordan
form. Possibly after replacing C with

SHEE)ER)

olv/)\xIB/\ olvi)

where UAU 'e of, VBV 'e B and |det U|=|det V|=1, we may assume A€ &,
Be A. Now it suffices to prove the finiteness claim for fixed A and B. Since

(515) = ($H5)

are diagonalizable over C, there exists an integral matrix

Uulo
( YIZ )
invertible over @ such that
15 (A2) - (G2 (5
olB)\Ylz) \'vIz/\' xIB )
(To justify the specified zero block in
Ujlo
(1)
consider the matrices as linear transformations on column vectors. Corresponding
to each B is a natural invariant subspace of dimension k, the size of B. We may
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specify the zero block because we may require the conjugating transformation to
map these B-subspaces to one another.)

Now Z must invert over @, and BZ = ZB;so Z 'B=BZ™'. Also BY = YA+ ZX,
so ZX =—YA+ BY. Then

X=Z'ZX=Z"(-YA+BY)=(-Z"'Y)A-B(-Z7'Y).
Therefore, X € M,(Z)~[A, Blg. But recall (2.1), the quotient group
(M, (Z) n[A, Bla)/[A, B)z
is finite. Now apply (2.4). O

(2.7) LEMMA. Suppose p(x) is a monic polynomial with integer coefficients. Then the
set of similarity classes of integral matrices with characteristic polynomial p(x) and
diagonal Jordan form is finite.
Proof. Let p(x)=]'[:‘=l (pi(x))%, where the p;(x) are distinct and irreducible. By
(1.2), an integral matrix with characteristic polynomial p(x) is similar over Z to one
with the block triangular form

o 0

—C

C= |
C,

where C; has characteristic polynomial p;(x)%, 1<i<n.

Let g(x) be the minimal polynomial of C; since C is diagonalizable, g has no
repeated roots. Since the ith diagonal block of g(C) is g(C;), the minimal polynomial
of C; has no repeated roots, so C; is diagonalizable, 1<i=n. By (2.6) we may
specify (by passing to a similar matrix as in the proof of (2.6)) that the n-tuple
(Cy,..., C,) come from a finite set. Now apply (2.5). 0O

(2.8) THEOREM. There are only finitely many SE-Z classes of integral matrices with
a given diagonal Jordan form away from zero.

Proof. By (2.2), it suffices to consider matrices with a fixed diagonal non-singular
Jordan form. By (2.7), only finitely many similarity classes contain such matrices.
Since similarity over Z implies shift equivalence over Z, the SE-Z classes containing
such matrices are formed by some clumping of these similarity classes. O

(2.9) CoroLLARY. There are only finitely many SE-Z" classes containing aperiodic
non-negative matrices with a given diagonal Jordan form away from zero.

Proof. Apply (1.4). O

Corollary (2.10) below is an immediate consequence of (2.9) and Kitchens’ Jordan
form theorem - see [8] for proof and definitions. Proposition (2.11) below, an
elaboration of (3.1), gives the converse of (2.8).

I do not know if (2.9) is true without the hypothesis of aperiodicity. In general,
the refinement of SE-Z classes into SE-Z" classes is complicated. Sometimes the
refinement is finite, sometimes not; (2.12) below exhibits an infinite refinement. For
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a penetrating analysis of when a shift equivalence over Z induces a shift equivalence
over Z", see [7].

(2.10) CoroLLARY. If S is a subshift of finite type defined by an aperiodic matrix with
diagonal Jordan form away from zero, then only finitely many shift equivalence classes
contain matrices which define equal entropy finite type factors of S.

(2.11) ProposITION. Suppose p(x) is a monic polynomial with integral coefficients
with a repeated non-zero root. Then there are infinitely many matrices, pairwise not
shift equivalent over Z, with characteristic polynomial p(x).

Proof. Let p(x)=[q(x)]"r(x), where g(x) is irreducible monic, n is greater than 1,
and g(x) does not divide r(x). Let A be the companion matrix of g(x), B the
companion matrix of r(x). Given ke Z, let C, be the matrix

) -
K A
kI

kI A

L 0 B
with characteristic polynomial p(x).
It is an exercise to show that shift equivalence over Z of Cy and C; forces a shift

by matrices R, S in block lower triangular form, e.g.

(0 1)

(A|O)< U|0)_( U0\ AlO

kitA)\ zIlv )"~ ZIV)(jIlA)'

Thus, U and V commute with A, so they are in the field Q[ A] (see [15]). Therefore,
AZ-ZA=jV—kU is in Q[A]. But if 0% AZ — ZA= C e Q[A], then I=C"'C =
C'AZ-C'ZA=A(C7'Z)—(C'Z)A; this is a contradiction, since the trace of
A(C7'Z)—(C7'Z)A must be zero. Therefore, jV = kU. Then SR = A' forces det U

and det V to divide some power of det A. So, if C; and C, are shift equivalent over
Z, and j, k are positive integers relatively prime to det A, then j=k. O

In particular,

(2.12) Example. Infinitely many SE-Z™ classes may be contained in one SE-Z class.

Proof. If c is a positive integer, let

1 0 0 1 0 O
S.={ 1 1 0], R.=|1 1 of
1+¢ ¢ 1 I —c 1
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Then
1 0 0] 1 00
SR.=A.=| 2 1 0} RS.=B=|2 1 0]
2¢+2 0 1] 2 0 1

So all the A, are SE-Z. It suffices to show they are pairwise not SE-Z*. If S, R gives
a shift equivalence over Z* of A, and A, then R and S must take the form

Lo
X »
Ly | P

where

1 0] 0 1
P= pP= )
[0 ] [1 0]

In R (for example), the prescribed zero block follows from evaluation of both sides
of RA, = AR at column eigenvectors of A.. Then 1 and P are forced on the diagonal
by SR =(A.). Now it is easy to check that RA, = A4R forces ¢ =d. O

(2.13) Example (with 1. Kaplansky). For irreducible non-negative integral matrices,
shift equivalence over Z does not imply shift equivalence over Z*.

Proof. Let
0010 0 01 O 0 1 0
0 0 0 1 0 0 0 1 3 51 2
A= = C= .
01 0 0Yf B 1 2 0 oY 1 2 0 1
1 6 00 3500 7 12 3 5

Then AC=CB and det C =1, 50 A and B are SE-Z. We claim they are not SE-Z".

Suppose they are. Then
01 1 2
D= E=
[1 6] and [3 5]

must also be SE-Z". This can be seen dynamically, or directly as follows. Let
non-negative S and R satisfy the equations (1.1) of shift equivalence with lag I Let

S'=A'SB*, R'=B‘RA'™.
Then A® and B” are SE-Z* by S’, R’ with lag I+8. In each 2 X2 corner block of S’

and R/, the entries are all positive or all zero. The matrices R’ and S’ must share
one of two block sign patterns,

o2 23]

Now positive blocks from R’ and S’ can be used for a shift equivalence of D and
E. Since D and E are unimodular, their shift equivalence implies similarity over

z s 9 - 9 2
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with ps~rg==x1. Here r=p+3q and s=2p+Sg, so
p(2p+59)—(p+3q)q=2p"+4pg—3q° =1,
hence 2(p+q)*~5¢*==1.

The last equation is impossible mod 5. In Z/5Z, 1 and —1 are squares, but 2 is
not a square. This gives the contradiction.

Alternatively, the non-similarity of D and E over Z can be seen from the well
known connection between integral matrices and ideals in algebraic number fields:
the ideal corresponding to D is principal, while the ideal corresponding to E is not.

[

3. Examples

We will produce a sequence {A,} of aperiodic non-negative integral matrices,
pairwise not shift equivalent, with the same (non-diagonal) Jordan form away from
zero. Notice that the size of A, must go to infinity with n, as only finitely many
non-negative irreducible integral matrices of a given size may satisfy a finite upper
bound on the spectral radius.

(3.1) LEMMA. Suppose a, j and k are non-zero integers, j and k are each relatively
prime to a, and |j| #|k|. Then

(o) e (o)

are not shift equivalent over Z.

Proof. Suppose
a O a 0
(j a) and (k a>

are shift equivalent over Z by matrices S and R; say
b ¢
R=
(d e)
<a 0)<b c)_(b c)(a O)
j aJ\d e) \d e/\k a)

Then ab = ba + ck, so ¢ =0. Since det SR is a power of g, the numbers b and e must

be units or products of primes dividing a. But jb + ad = da + ek, so jb = ek ; therefore
|l =1k]|, a contradiction. 0

and

We will let x4 denote the characteristic polynomial of a matrix A.

(3.2) LEMMA. Suppose integral matrices

oo(2fg) e 5 (213
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are shift equivalent over Z, yg = x5 and no root of g is a root of xp or 5. Then B
and B are shift equivalent over Z.

Proof. Suppose S, R give a shift equivalence over Z of A and A, with SR = A’ etc.

Let
E|F E|F
S—(G H) and R—(C_; I-_I)’

where the block pattern is induced by A and A. Then AS = SA forces BF = FD,
and by (2.3) this forces F=0. Likewise, F=0. Now the pair E, E gives a shift
equivalence over Z between B and B. O

(3.3) LemMA. Suppose V is a proper vector subspace of R", B={v,,..., v} is an
integral basis of Z" "V and w is a vector in Z" ~ V. Let W be the linear span of V
and {w}. Then there is a vector vy, such that {v,,..., vy, Uy} is an integral basis
Jor Z" A W.

Proof. Define a bijective linear transformation ¢ from W to R**' by sending v; to
the i’th canonical basis vector e, 1=i=<k, and w to e+,. Now the image under ¢
of Z"~ W is a lattice £ of rank k+ 1. It suffices to find a vector v in £ such that
{el,..., &, v} is an integral basis for Z.

Because £ is a lattice, there is a positive number y (the volume of a fundamental
domain) such that, if x € &, then the volume of

K
C(x)={ax+z ae:0<a, a,-SI}
1

is an integral multiple of y (see, e.g., ch. 6 of [14]). Therefore, we may pick v in &£
giving C(v) with minimal positive volume. We claim B'={e,, ..., €, v}is an integral
basis for £.

Suppose not. Then there is some ¥ in &£ but not in the integral span of &', with
u=Y a;e;+av for some a and «o; from R. Now if @ were an integer, then ¥ ae;
would be in %, and since & is an integral basis for V the «; would be integers,
contradicting u € %. So, « is not an integer. By replacing u with u —[a]Jv, we may
assume 0 < a < 1. Let ¢ be a linear bijection of R**! which fixes e,, .. ., e, and maps
v to u. Then ¢ takes C(v) onto C(u). With respect to the basis {e, ..., e, v}, ¥ is
given by the matrix

1 0 @,
A= .
| S
0 a
Since |det A|=a <1, vol C(v)>vol C(u), a contradiction. 0

(3.4) An example. Pick positive integers M and a, with M = a+3. Given positive
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n, let B, be the (n+3) X(n+3) matrix

. .
1 0
1 1 0 0
1 1 0
0 1 1 0
1 1 a
I 1 1 M

Rows 3 through n+1 of B, have as their only non-zero entries two 1’s to the left
of the diagonal. The characteristic polynomial of B, is x"(x — M)(x — a)?.

Let U, be the (n+3) X(n+3) unimodular matrix whose entries on the diagonal
and in the last column are all 1, and whose other entries are 0. Let A, = U,B,(U,)"".
The matrix A, is obtained by first adding the last row of B, to each other row, then
subtracting the first n+2 columns of the resulting matrix from the last column. A,
is aperiodic and non-negative. Since A, is similar over Z to B,, it is shift equivalent
over Z to B,. So it is enough to show that the B, are pairwise not shift equivalent
over Z.

Let matrices act on row vectors, and let V, be the two-dimensional kernel of
(B,—al)® Let v'™ be the row vector whose first entry is 1 and whose remaining
n+2 entries are zero. Clearly, v\ € Ker (B, — al) < V,. Define integral row vectors

w™ inductively as follows.
Let wV=(0, 1, a,0). For n> 1, let:
(*) (n) =0
(**) (n>_ We D 4 D,

(***) w(") =awi"7"V if3<i<n+3.
For example,
w?=(0,a+1, a, da?0),
¥=(0,2a+1, a*+a, a?, a,0),
®=(0,a*+3a+1,2a’+a,a*+a? a°, a*0).
Then the following hold for each n=1.
(i) wi,=a";
(ii) wi™ and a are relatively prime;
(iii) wi™ is a positive multiple of a;
(iv) wi V> wim>0;
(v) w™(B,—al)= k™, with k, = w$"*"; in particular, w'” e V,.
It is easy to check (i)-(iv) by induction. For the induction step on (v), notice that
the (n+2) X(n+2) submatrices in the lower right corners of (B, —al) and (B,.,—
al) are equal, and above these submatrices all entries are zero. Therefore, since

w D = (0, wi*Y, awd”, awl®, ..., awlls),
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the last (n+2) entries of w'"*"(B,,,~al) are just the last (n+2) entries of
w"(B,—al) multiplied by a; that is, they are zero. The second entry of
w'"t (B, ., ~al) is
—awd" T+ W™+ WD = —a(wi + wi) + awl + aw(™ =0.

The first entry is wi"* "+ w{"*V = w{"*?_ This shows (v).

By (i) and (ii), the g.c.d. of the entries of w'™ is 1, and w{™ = 0. Then by iteration
of (3.3), w™ is contained in an integral basis {b",..., b"**?} =B for the set of
integral row vectors of length n+3 with first coordinate zero. Let A be the (n+3) X

(n+3) matrix

whose last n+ 2 rows are the vectors from % and whose first row is . Det B must
be 1, so det A is 1, so B'= B u {v™} is an integral basis for Z"*>. Let v"” and
w'™ be the first and second vectors listed in B'.

Now the linear span of v and w'™ is V,, a B,-invariant subspace. Therefore,
with respect to the basis %', the linear transformation defined by B, is given by a
matrix C, of the form

a 0 0
k, a

X |Y
Since &' is an integral basis, C, must be similar over Z (hence, SE-Z) to B,. But
by (i)-(v), the k, are positive, strictly increasing with n and relatively prime to a.
Now (3.1) and (3.2) imply that the C, are pairwise not shift equivalent over Z, and

we are done. O

(3.5) Remark. One can give a less elementary but more geometric demonstration
of (3.4) which bypasses (3.2) and (3.3). Here one applies the direct limit viewpoint
of Krieger [9] and considers the group automorphism B, obtained by restriction of
B, to

{xe V,: x(B,)<€Z"*nV, forsomek>0}.
One sees that the shift equivalence of B,, and B, forces the conjugacy of 1§,,, and
B,, which in turn implies that the matrices

( ) and ( )
k, a k, a
are shift equivalent over Z.

One can vary (3.3) to produce more complicated examples. I expect the following.

(3.6) Conjecture. If A is a non-negative aperiodic integral matrix and its characteris-
tic polynomial y, has a repeated non-zero root, then there exist infinitely many
non-negative aperiodic integral matrices B, pairwise not shift equivalent, such that
Xa= xs modulo powers of x.

A better understanding of the geometry behind (3.4) may show how to produce
such B from A. By (2.11), there is no algebraic obstacle to (3.6).
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Why try to resolve (3.6), other than to sharpen (2.8)? It is likely that the classifica-
tion of aperiodic non-negative integral matrices up to shift equivalence will involve
two parts: a classification of non-singular integral matrices up to shift equivalence
over Z, and a realization theory indicating when an integral matrix is shift equivalent
over Z to a non-negative aperiodic matrix. Resolution of (3.6) would involve progress
on the difficult realization problem.
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