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SEMILINEAR ELLIPTIC PROBLEMS WITH PAIRS OF 
DECAYING POSITIVE SOLUTIONS 

EZZAT S. NOUSSAIR AND CHARLES A. SWANSON 

1. Introduction. Our main objective is to prove the existence of a pair of 
positive, exponentially decaying, classical solutions of the semilinear 
elliptic eigenvalue problem 

f Lu = XJ(x, u), x G 12, 
( U ) u\dti = 0, lim u(x) = 0 

[ | .Y|-»OO 

in a smooth unbounded domain 12 c RyV, N â 2, where X is a positive 
parameter and L is a uniformly elliptic operator in 12 defined by 

N 

L = - 2 AkyC*)^] + *(*)> •* G a* 

Z), = d/dxh i = 1 , . . . , AT. 

The nonlinearity /(JC, I/) is assumed to be bounded, as described in detail 
below. For some numbers À* and À*, 0 < À* ^ A*, the main Theorems 3.2 
and 4.1 establish that (1.1) has at least two distinct positive solutions in 12 
with exponential decay at oo for all X > A.*, but no nontrivial nonnegative 
solutions for 0 ^ À < À*. Parallel results also hold for the analogue of 
(1.1) in the entire space R^, i.e., 

[ Lu = \f(x, u\ x e RA, 
( L 2 ) lim u(x) = 0. 

( |.Y|—»oo 

The hypotheses on L are: Each atj <E C ^ ^ f i ) , b e Cfoc(12) for some 
a e (0, 1), each #.., D^a^x-, and Z? are bounded in 12, Z?(x) = b0 > 0, and 
L is uniformly elliptic in 12. The hypotheses on the nonlinearity f(x, u) are 
listed below: 

(f,) /:(12 U ^12) X R + —> R is locally Lipschitz continuous and 
/ ( * , 0) = 0 for all x e 12, where R + = [0, oo). 

(f2) There exists a number T > 0 such that / ( x , 0 < 0 for all / > 7\ 
JC G 12. 
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(f3) F(x0, t0) > 0 for some (JC0, t0) e Q X [0, 7], where 

F(x, 0 = JQ f(x, s)ds. 

(f4) / i s bounded on fi X [0, T] and / (x , /) = o(t) as / —» 0 uniformly 
on Q. 

(f5) lim sup Z i ^ l l l = o uniformly on [0, T]. 
|x|—»oo / 

For problem (1.2), it is understood that £2 = R^ and dfi is deleted. For 
example, all these conditions are satisfied in the case of the equation 

(1.3) - Au + b(x)u = Aw[/>(*) |w|Y - ?(*) | i / ] , JC G R V , 

where 0 < y < /?, and 6, /?, q are appropriate nonnegative functions 
inR" . 

Condition (f2) implies that (1.1) has a "bounded nonlinearity". This is 
crucial for our method in Sections 2 and 3 for establishing two distinct 
decaying positive solutions. Condition (f5) is not needed for the 
nonexistence results in Section 4, but it is essential in Section 3 for our 
procedure for proving the multiplicity Theorem 3.2 via Lemma 3.1. The 
key exponential decay estimates in this lemma, for two distinct sequences 
of local solutions, are obtained from the fact that these local solutions 
satisfy linear elliptic inequalities of type (3.2) as a consequence of (f2) and 
(f5). Of course our results neither preclude other possible multiplicity 
theorems under conditions replacing (fj )-(f5), nor generalize known 
multiplicity theorems for special equations. For example it is well 
known that the "critical exponent" Lane-Emden (associated with Yang-
Mills) equation 

-Au = u
(N + mN-2) i n R w , 7 V â 3 

has an uncountable infinitude of radially symmetric positive solutions 
u( \x\ ) = 0{ \x\2~N) in R^ (but u £ L2(RN) ), see, e.g., [3, p. 370; 4]. As 
far as we are aware, multiplicity results for positive decaying solutions of 
our type for (1.1) have not been obtained previously, even for the case 
of constant coefficients. We do not know to what extent our existence 
results remain true if (f5) is weakened. 

Solutions u(x) of (1.3) of course provide stationary states eluiîu(x) of the 
corresponding wave equation, called the Klein-Gordon equation in 
nonlinear quantum field theory [11]. In the case of constant coefficients b, 
p, q and in some radially symmetric cases, the existence of a positive 
decaying solution of (1.3) in R^ has been proved by Berestycki and Lions 
[2] and Strauss [11], in particular. Existence theorems guaranteeing 
infinitely many distinct radial solutions (not necessarily positive) of 
equations including (1.3) have been obtained by Berestycki and Lions [3], 
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Jones and Kiipper [5] and Strauss [11]. A remarkable and powerful 
"principle of concentration-compactness" has been developed by Lions 
[6, 7, etc.] as a method in the Calculus of Variations capable of attacking 
equations with variable coefficients. Jones and Kiipper [5] employ a 
dynamical systems approach to obtain radial solutions of an equation of 
the type Au + f(u) = 0 with exactly m zeros in [0, oo]. Many additional 
related results can be found in the bibliographies of the References cited, 
especially [3]. 

On the basis of the variational method of Ambrosetti and Rabinowitz 
[1], distinct local solutions un and vn of Lu = Xf(x, u) in bounded 
domains 

(1.4) Qn = {x e Q: \x\ < w}, n = 1, 2, . . . 

are obtained in Section 2 for sufficiently large X. It is then shown in 
Section 3 that {un} and {v„} have subsequences which converge locally 
uniformly in C2(fi) to distinct solutions u and v of (1.1) (or (1.2) ) with 
exponential decay at oo. Section 4 contains theorems guaranteeing 
nonexistence of nontrivial nonnegative solutions of (1.1) and related 
problems for all X in some interval [0, X*). 

2. Existence of local solutions. With T as in (f2) we define 

0 if t < 0, 

f(x, t) if 0 ^ t ^ T, 

f(x, T) if / > T\ 

(2.2) FT(x, t) = J *o fT(x, s)ds, t ^ O J C G S 2 . 

Then fT is locally Lipschitz continuous in (Œ U dl2) X R + by (f,), and 
FT(x, t) = F(x, t) for all x G fi, 0 ^ t ^ T by (f3). Consider the 
eigenvalue problem 

(2.3) Lu = X/r(jc, u), x G Qn, u\dttn = 0, 

where fiA? is defined by (1.4), for integers n ^ n0, Qn ¥= 0. We note that a 
nonnegative solution un(x) of (2.3) must satisfy 

(2.4) 0 â un(x) ^ T, x e Qn, 

for if ufl(x0) > T is a positive maximum of un(x) at x0 e £2A?, then in 
suitable coordinates 

(2.1) / r ( x , / ) = 

A/ r(x0, un(x0)) = (Lun)(x0) ^ b0un(x0) > 0, 

licting (f2). It follows from (2.4) that a no 
a solution of 

(2.5) Lu = \f(x9 u\ x G Bw, w|dfi/7 = 0. 

contradicting (f2). It follows from (2.4) that a nonnegative solution of (2.3) 
also is a solution of 
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dx\ 

Let En denote the Sobolev space WQ2(ÇI„)9 with norm || ||. Let Hn, Itv 

and Jn be the functionals on En defined by 

1 f \ N 

(2.6) Hn(u) = - L 2 ayWD-uDjU + b(x)u\x) 

(2.7) / » = J^FT(x,u(x))dx; 

(2.8) / > , A) = i / » - À / » , u e £„. 

For p > 0 define 

5„p = {w G En: \\u\\ < p); 

Swp = {u e £„: IMI = p}. 

LEMMA 2.1. ^ (fi)-(f4) hold, for arbitrary X > 0 //zere exwf positive 
numbers p aw J a, independent of n, such that 

Jn(u,\) >0forallu e £„p\{0}; 

Jn(u, X) i? a /or a// w G S . 

Proof For a fixed number /? <E (0, 4/(TV — 2) ), condition (f4) implies 
that 

\FT(x,t)\ ^e\t\2 + C\t\2+P, x e Q, 

for all € > 0 and for all real t, where C = C(e) is a positive constant. By 
(2.7), 

/ » ^ c||M||2 H- C | M | ^ for all u e £„, 

where || ||̂  denotes the norm in Lq(Sln). Since 2 < 2 + p < 2N/(N - 2), 
the Sobolev embedding En cr* Lq(Qn) for 2 ^ q < 2N/(N - 2) implies 
that 

(2.9) /„(!!) ^ K(e\\u\\2 4- C\\u\\2+P\ u e En 

for some positive constant K independent of n. The uniform ellipticity of 
L and (2.6)-(2.9) show that 

J„(u9 X) ^ (K0 - XeK - XCK\\u\\p) \\u\\2 

for all u G En, where K0 is another positive constant independent of n. 
With the choice € = K0/4XK, the conclusion of Lemma 2.1 follows if 

p = (K0/4XCK)1/P, o = l-KoP
2. 

LEMMA 2.2. 7/"(f1)-(f4) hold, there exists X* > 0, a positive integer M, and 
a function z e E for all n ^ M such that Jn(z9 X) < 0 for all X > À*. 
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Proof. By (f3) there exists § <E C^(tiM), for M sufficiently large, such 
that IM((j)) > 0. Let A* be defined by the condition 

HM($) = \*IM(4>1 

i.e., JM(<t>, A*) = 0, and let z(x) be the extension of <j>(x) to 12 defined to be 
0 outside QM. Since ŒM c Qn for n > M, it follows that 7w(z, X) < 0 for all 
n ^ A/, A > A*. 

Let //, 7, J denote the functional on £ = W0' (£2) corresponding to 
(2.6), (2.7), (2.8), respectively, i.e., 

H(u) = ^ j Q [ 2 a^DfUDjU + M * ) " V ) rfx; 
2 ^ L / - i 

/ ( w ) = JQ^r(^u(x))dx; 

J(u, X) = H(u) - Xl(u\ u Œ E. 

THEOREM 2.3. Suppose that (fjHf^ hold, and let A* and M he as in 
Lemma 2.2. Then there exist two distinct sequences {un} and {vn} in E with 
the following properties : 

(i) Each un and v„ has support fi,z; 
(ii) un and vn are distinct positive solutions of (2.3) /« S2/7 /<?r #// n = M, 

A > A*; and 
(iii) /(£/„ + „ A) ^ 7(M|1, A) ^ 7(z, A) < 0, 

J(v; /+1,A) ^7( V / I , A) ^ a > 0 

/or all n ^ M,X> A*. 

Proof. Since S,/p separates 0 and z by Lemmas 2.1 and 2.2, (fj)-(f4) imply 
by a theorem of Ambrosetti and Rabinowitz [1, Theorem 3.35] that (2.3) 
has at least two distinct positive solutions uiv vn in Q>n for all n = A7, 
A > A* such that 

(2.10) J(u„, A) = inf{J„(u, \):u G £„} 

(2.11) J(v,r A) = = inf max 7„(g(0, A) 
ger„ OS/SI 

where 

r„ = {£ G C( [0, 1], £„): g(0) 0 ,g( l ) = z}. 

Extensions of uir vn to $2 are defined to have support Q/;, and also are 
denoted by w/r v,r Thus Jn(un, A) = 7(w/7, A) in (2.10), and similarly in 
(2.11). We note that assumption (p7) of [1] is not needed here since it was 
used in [1] only to construct z e En satisfying Jn{z, A) ^ 0. The monotony 
properties (iii) follow from the variational definitions (2.10) and (2.11) 
since £2 c £2 + 1 , n ^ M. The property 
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7(vw, A) ^ a > 0 

is a consequence of Lemma 2.1 since S separates 0 and z. 

3. Pairs of positive solutions of (1.1). The following notation will be 
used: 

N 

A(x) = \x\~2 2 alJ(x)xlxJ; 

N 

'<./ = 1 

B(x) = 2 £ , [ « / * ) ]*,•; 

A = SUp y4(x) . 
A G 12 

The next lemma enables us to show that the sequences in Theorem 2.3 
have subsequences which converge locally uniformly in C~(Œ). 

LEMMA 3.1. Suppose that (fj)-(f5) hold. Let {un} and {v„} be the 
sequences in Theorem 2.3, and let 8 be any number satisfying 

0 < 8 < ^fb^rX. 

Then there exists a positive constant K, independent of n, such that 

(3.1) un(x) ^ Ke~8[x[ vn(x) S Ke~8lxl 

for all x ^ $2, n ^ M. 

Proof. Choose e > 0 such that b(x) - e > 82A for all x e 12. For R > 0, 
n > R, define 

Q0^ = {x G Q:W > R}; QthR = {x e ^ : | X | > / *} . 

By (f2) and (f5), R can be chosen large enough that 

A/Cx, 0 ^ cr for all x e Qa/?, r ^ 0. 

Theorem 2.3 (ii) shows that un is a solution of (2.5) and hence satisfies the 
inequality 

(3.2) (Lu„ - €U„)(x) = A/(x, un(x)) - eu„(x) ^ 0, x e B , ^ 

For a 
satisfies 

For any positive constant C, a calculation shows that w(x) = Ce t|A| 

(^W — €W)(x) rt? 
V A 7 = [b(x) - € - 82A(x)] w(x) 

+ 
8 

2 Û I7U) + 5U) - ,4(*) 
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and therefore a sufficiently large number R exists for which 

(3.3) (Lw - ew)(x) â 0, x <= tt0R. 

Define 

(34) C = Te8R. 

Then by (2.4) and (3.2)-(3.4), 

L(w - w„) - c(w - w„) ^ 0 in Qw^ 

w — un ^ 0 on dtin R, 

implying that w — un ^ 0 throughout £2„ # by the maximum principle. 
Thus 

un(x) ^ Ce~8]xl for all x e £20/? 

since w„ has support fi„, establishing the uniform estimate (3.1) in S20/?. 
The same estimate is obvious if |x| ^ Rby (2.4). The conclusion for vn(x) 
is proved in exactly the same way. 

THEOREM 3.2. If (fx)-(f5) hold, there exists a number A* > 0 such that 
(1.1) has at least two positive solutions u and v in 12 satisfying 

J(u, A) < 0 < o ^ J(y, A) for all A > A*. 

These solutions are both bounded above by a constant multiple ofexp( — 8\x\ ) 
in 12 for some 8 > 0. Parallel statements apply to problem (1.2). 

Proof. Since the sequence {un(x) } is uniformly bounded in 12 by Lemma 
3.1, a standard argument via //-estimates, Schauder estimates, and 
Sobolev embedding theorems (see, e.g. [9, pp. 124-126] ) establishes that 
{un} has a subsequence {w*} which converges locally uniformly in C (£2) 
to a nonnegative solution w(x) of 

Lu = Xf(x, u), u\$£l = 0. 

An interior Schauder estimate for this equation in any bounded 
subdomain implies that 

u <= cf0+"(12) for some a <E (0, 1). 

In view of property (hi) of Theorem 2.3, 

J(u*9 X) S / (z , A) < 0 for all « è M, A > A*. 

Since u* satisfies (2.3) and has support Qn, integration by parts yields 

J(u*9 A) = j [ [ ^* (x ) / r (x , i t fx ) ) - Aiv(x, K(x)) 

^ 7(z, A) < 0. 

dx 
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(3.5) g(x, t) 

The uniform estimate (3.1) and the pointwise convergence of {u*(x) } to 
u(x) guarantee an estimate 

u(x) ^ Ke~8]xl 

in 12 for a constant K > 0. Then the dominated convergence theorem 
implies that 

lim J(u% X) = J(u9 X) ^ J(z, X) < 0, 

showing that u(x) is not identically zero. 
To prove that u(x) > 0 in 12, define 

f(x9 t)/t if t > 0 

0 if f ^ 0; 

g^(x) - max{g(x, w(x) ), 0}; 

g~(x) = min{g(x, u(x) ), 0}, JC e 12. 

Then 

/ ( * , u(x)) = [g+(-x) -I- g~(x) ]w(.x), x G 0, 

and consequently i/(x) is a nontrivial nonnegative solution of the linear 
elliptic inequality 

Lu ~ Xg~(x)u = Xg (x)u = 0, x G £2. 

Since g~(x) = 0 in 12, the strong maximum principle implies that 
u(x) > 0 throughout 12. 

The corresponding properties of v(x) are proved in the same way. Since 
J(v, X) > 0, it follows that u(x) and v(x) are distinct positive solutions of 
(1.1) in 12. The proof for (1.2) is essentially the same. 

COROLLARY 3.3. If (f{)'(fs) hold and 0 < 8 < -\Zb0/A, both solutions 
u and v in Theorem 3.2, and in addition |Vw| and |Vv|, are bounded above by 
constant multiples of exp( — S\x\ ) in 12. 

The estimates for w, v follow from Theorem 3.2, and these imply the 
estimates for the gradients via standard interior Schauder estimates. 

Remarks 3.4. Suppose that hypothesis (f4) is strengthened to (ff
4) below: 

(r4) fis bounded on S X [0, T] and /(JC, t) = 0(tv) as t-> 0 uniformly on 
12, for some v > 1. 

Also, assume that a* > 0, where 

lim inf 
1 ' " 

2 au(x) + B(x) - A(x) 
| JC|^OO > 4 ( X ) L / = 1 

Then the estimate in Corollary 3.3 can be sharpened to 
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(3.6) u(x) ^ K\x\ t y e x p ( - V V Â | x | ), x <= Q 

for any d < a*/2 and some constant AT > 0. The same type estimates (3.6) 
hold for v(x), | (Vu)(x) |, and | (Vv)(x) |. The proof is a slight elaboration 
of that given in Lemma 3.1. 

In the special case L = — A + b( \x\ ), x e R V , so A = 1, it can be 
shown that (3.6) holds with d = (N — l)/2. This is accomplished by use of 
estimates for the Green's function for — A -f 1 in RA together with 
arguments of Gidas, Ni, and Nirenberg [4]. 

4. Nonexistence theorems. The number À* in Theorem 3.2 cannot be 
replaced by 0. In fact, Theorem 4.1 below shows that a nonnegative 
solution of (1.1) of (1.2) must be identically zero for all X in some interval 
[0, À*). Theorem 4.3 contains, in particular, the stronger statement that a 
nonnegative solution of Lu = Xf(x, u) in R v is identically zero for all such 
X. Condition (f5) is not needed for any of the nonexistence theorems. 

THEOREM 4.1. 7/(fj)-(f4) hold, there exists a number X* > 0 such that 
neither (1.1) nor (1.2) has any nontrivial nonnegative solution u Jor any 
X <= [0, À*). 

Proof. Let g(x, t) be as in (3.5), and define 

JU* = sup sup g(x, t)\ X* = ÔQ/xr1. 

Conditions (f2)-(f4) show that 0 < X* < oo. A nonnegative solution of 
(1.1) satisfies the linear equation 

N 

(4.1) - 2 DXa^Dju] + 2(x, X)u = 0, x e fi, 

where 

Q(x, X) = b(x) — Xg(x, u(x) ), x G fi. 

If A < À*, then 

<2(x, À) è ft0 - Àju* = (À* - A)jii* > 0 

in Qé. Since 

w|̂ fi = 0 and lim u(x) = 0, 
|.v|—*x> 

the maximum principle for (4.1) implies that u(x) is identically zero in ^l. 
The proof for (1.2) is similar. 

A theorem of this type was obtained in [10, p. 186] in the special case 
L = - A + b(x). 
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For r > 0, define 

Gr = { x G R^: |JC| > r). 

Let £2 be an exterior domain in R , i.e., Gn c £2 for some p > 0. Following 
[8], we define an antibarrier for L at oo to be a solution h e C~(GR) of 
L/z ^ 0 in G ,̂ for some /? = p, such that 

lim /Î(X) = -foc. 
|.v|—>oo 

THEOREM 4.2. Suppose that L has an antibarrier h(x) at oo. Ifu <E C"(£2) 
/s tf^y solution of Lu ^ 0 />i an exterior domain £1 c R^ such that u = o(h) 
uniformly at oo, //*£« 

(4.2) lim sup w(x) ^ max(0, M), 
|.v|—»oo 

M = max W(JC). 

Results of this type appear in the literature (see, e.g., [8] ), but we could 
not locate the exact statement of Theorem 4.2 for the operator L under 
consideration here. A sketch of the proof is given below. 

Proof. Choose R ^ p large enough that h(x) > 0 for all \x\ è R. For 
arbitrary 17 > 0 define 

v (x) = u(x) — MR — rfh(x), x <E GR, 

where 

MR = max u (x). 
\x\=R 

Then 

I Lvv ^ 0 in GR, 

I v^x) < 0 on |x| = R, 

lim sup vv(x) < 0, 

implying that vv(x) < 0 in GR by the maximum principle. Since 17 is 
arbitrary, u(x) ^ MR for all |JC| = R. Now consider w(x) in the annulus 
fi2/?- Since Lw ^ 0 in £22/?, w(x) ^ M^ on \x\ = 27?, and u(x) ^ M on dfl,-
it follows from the maximum principle that 

max u(x) ^ max{M#, M}. 
\.x\ = R 

This implies that MR ^ max(0, M), from which 

u(x) ^ max(0, M) for all |JC| ^ R, 
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proving (4.2). 
In the case of an exterior domain 12, consider the following variant of 

(1.1), without the decay condition at oo: 

Lu = Xf(x, w), x e 12, 

The corresponding problem in R is 

(4.4) Lu = X/(JC, u), x e R^. 

THEOREM 4.3. If(i\)-(i^) hold, there exists X* > 0 such that neither (4.3) 
nor (4.4) has any nontrivial nonnegative solution for any X e [0, X*). 

Proof. Let e be as in the proof of Lemma 3.1. By (f2) and (f4) there exists 
X* > 0 such that 

\f(x, t) ^ et for all x e 12, t ^ 0, 0 ^ X < X*. 

Then a nonnegative solution w(x) of (4.3) satisfies 

N 

(4.5) (L - e)u = - 2 D^a^DjU] + [b(x) - e]u ^ 0 

in 12, where b(x) — e > 0 in 12. As in Lemma 3.1 it is easily seen from (4.5) 
that u(x) must be bounded in 12. The calculation preceding (3.3), with 8 
replacing — 8, shows that h(x) = e8^ is an antibarrier for L — e at oo. 
Theorem 4.2 applied to (4.5) then gives 

lim sup u(x) ^ 0. 
|JC|—»oo 

Since u\$Q = 0, the maximum principle for (4.5) implies that u(x) ^ 0 in 
12, proving the theorem in the case (4.3). 

If u(x) is a nonnegative solution of (4.4), u(x) satisfies (4.5) in GR for 
any R > 0, and Theorem 4.2 gives 

lim sup u(x) ^ max u(x). 
| J C | - * O O \x\=R 

By the maximum principle, u(x) must be a nonnegative constant, which 
can only be 0 by (4.5). 
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