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Abstract

In this work the modified Green's function technique for an exterior Dirichlet and Neumann
problem in linear elasticity is investigated. We introduce a modification of the fundamental
solution in order to remove the lack of uniqueness for the solution of the boundary integral
equations describing the problems, and to simultaneously minimise their condition number.
In view of this procedure the cases of the sphere and perturbations of the sphere are
examined. Numerical results that demonstrate the effect of increasing the number of
coefficients in the modification on the optimal condition number are also presented.

1. Introduction

As is well-known, the reformulation of an exterior boundary value problem to a
boundary integral equation presents difficulties caused by the lack of uniqueness of its
solutions. In order to remove this problem the modified Green's function technique
was proposed by Jones [8] and Ursell[ 13] for the acoustical case. In 110,11] Kleinman
and Roach have shown that the choice of coefficients of the modification, apart from
the removal of the non-uniqueness problem, can also satisfy other criteria of best
modification. These include that of the best approximation to the actual Green's
function and that of minimisation of the norm of the modified integral operator. In [9]
Kleinman and Kress have established the criterion of minimisation of the condition
number of the boundary integral equation for the acoustical case.

Similar arguments hold for the elastic case. The first work in linear elasticity in
which this technique was introduced is due to Jones [8]. In [4,5J results for the elastic
two-dimensional case are presented. In [1,2] and [7] exterior elastic problems in /?3

are examined and criteria for best modification are also established.
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432 E. Argyropoulos, D. Gintides and K. Kiriaki [2]

In this work the modified Green's function technique is adopted and, using it, the
minimisation of the condition number of the boundary integral equations describing
the exterior Dirichlet and Neumann problems is established.

Many ideas of [9] are exploited, nevertheless there are noteworthy differences
between the acoustic and the elastic case. In Section 2 the formulation of the problems
in integral form through a layer theoretic approach is given. In Section 3 the main idea
of the Green's function technique is presented. The free-space Green's function and
the regular part of the modification are expressed in Hansen eigenvectors. In Section 4
the criterion of minimisation is established for the spherical rigid body and the cavity.
In Section 5 the shapes which can be produced as perturbations of the sphere are
discussed. Finally in Section 6 numerical implementation of the whole technique
is given. The figures in this section demonstrate the effect of adding non-vanishing
terms to the modified Green's function. The nature of the problem in elasticity admits
the presence of two different types of eigenvalues: spheroidal and toroidal. These
eigenvalues are removed by adding different types of terms in the modification.

The need for adopting minimisation criteria in elasticity relies on the fact that
the finally derived linear systems incorporate large amounts of error stemming from
approximations of surface integrations over weakly and strongly singular kernels,
standard numerical errors, etc. Therefore it is extremely useful to implement meth-
ods which ensure stability. From this point of view, each technique for choosing
the modification coefficients constitutes a strategy to solve numerically complicated
elasticity problems. The method of minimising the norm of the operator is appro-
priate for operator approximation schemes such as, for example, Neumann operator
series. The method which is presented in this paper is proper for direct inversion of
the approximate linear systems using, for example, iteration schemes. The case of
the sphere is quite interesting because analytical and numerical estimations reveal the
main characteristics of the modified Green's function method. These results can be
applied to perturbations of the sphere and potentially can be applied in more general
boundaries. For spheres, the criterion of minimisation of the operator norm gives
results which can be recovered from the general choice of coefficients provided by the
method of minimising the condition number, but this result is limited to this geometry
where, as proved in [1], it corresponds to a degenerate integral operator.

2. Statement of the problem

Let D_ denote a bounded connected domain in /?3 with boundary 3D, which will be
assumed closed, bounded and Lyapunov. Let D+ = R3/D- , where D_ = D_ U 3D.
We assume that D+ is filled by an isotropic and homogeneous elastic medium specified
by the Lame constants k, \x and mass density p. If the harmonic time dependence
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[3] Integral equations in linear elasticity 433

e~iu" is suppressed, then the displacement field u(r), in the absence of body forces,
satisfies the time-reduced Navier equation of linearised elasticity

(A* + cu2p)u(r) = 0, (2.1)

where the Kupradze operator A* is given by the relation A* = : /xA + (A. + /x)VV-
and co is the angular frequency. It is well-known that the solution of (2.1) is the sum
of a longitudinal wave up propagating with phase velocity cp and a transverse wave
us propagating with phase velocity cs, that is, u(r) = up(r) + M r ) . We also define
the surface stress operator

T = lixrj • V + XrjV • +nr) x V x ,

where rj is the exterior unit normal on 3D. The radiation conditions, due to Kupradze,
which the longitudinal and the transverse components of the displacement field must
satisfy at the radiation zone are [12]

9 U a ( r ) - ikaua(r)] = o(l) , r = |r| -+ oo, (2.2)
dr

uo(r) =

where a — p and 5 and kj = peo2/(k + 2fi), k] = pu>2/fj. are the wavenumbers
for the longitudinal and the transverse waves respectively. The above conditions are
required to hold for all directions of r uniformly.

The exterior boundary value problems which we examine are the problems of the
rigid body and the cavity. So we have to determine the displacement field which
satisfies the differential equation (2.1) for D + , the boundary conditions

u(r) = f(r), redD

or

7u(r) = g(r), redD

where f, g are known functions, for the Dirichlet and the Neumann problem respec-
tively, and the radiation conditions (2.2).

In order to reformulate the problem in integral form, we can follow either the direct
method, based on Betti's formulae, or the indirect method using the layer potentials.
Following the layer theoretic approach, we define the single layer potential

(S<p)(r) = -L f f (r, r') • <p(r') dS(r')
2?r J3D

for a density <p € L2(dD) and the double layer potential

(D<p) (r) = - 1 - / <p(r') • r^T(r, r')dS(r'),
2n JgD
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where T(r, r1) is the free-space fundamental dyadic in R3 which satisfies the equation

(A* + co2p)T(r, r') = -4nIS(r - r'). (2.3)

Here / denotes the identity dyadic and F(r, r1) is given by the relation

f (r, r') = - f-ll—• /" - -L vr ® Vr (P^r - ?—-^) • (2.4)
/xlr-r7! nk] \ | r - r ' | \r-r'\J

The subscripts and the superscripts in the above relations indicate that the action of
the differential operators is on the indicated variable.

Exploiting the jump relations at the boundary [12], we can see that if we seek
solutions of the exterior Dirichlet problem in terms of a double layer potential of an
unknown density <p, then <p is required to satisfy the boundary integral equation

( / + K*)<p(r) = f ( r ) , r e d D (2.5)

where the integral operator appearing in (2.5) is the L2-adjoint of K given by the
relation

= — / <p(r')-TiT)f(r,r')dS(r').
2?r J3D

So K* may be expressed as

(A"»(r) = — / <p(r') • T^fi^^dSir')
2* JdD

and the bar in (2.5) indicates the complex conjugate. Similarly the solution of the
exterior Neumann problem may be expressed as a single layer potential of an unknown
density which satisfies the integral equation

(/ - K)<p(r) = -g(r), r e 3D. (2.6)

The above defined integral operators K and K* have singular kernels. In [12] a
Fredholm-type theory for these boundary integral equations based on a regularisation
procedure is established. The global regulariser, which is shown to exist, is equivalent.
So the original and the regularised equations have the same solutions. Many properties
of the resolvents are also presented. It is proven that the homogeneous interior
Dirichlet or Neumann problem has a discrete spectrum. In order to have uniqueness
for the boundary integral equation describing the exterior problem we have to avoid
the irregular frequencies, that is, the eigenvalues of the adjoint interior problem. To
accommodate this difficulty we shall adopt the modified Green's function technique.
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3. The modified Green's function technique

As in [2] we assume that the modified part U(r, r1) is a solution of the Lame
equation (2.1) which is regular in both variables r, r1. So the dyadic

where F(r, r1) is the free-space fundamental solution given by (2.4), is also a solution
of (2.3). Using this as a kernel we can also define single and double layer potentials
and in view of modified jump relations, we can produce modified boundary integral
equations.

The main motivation for the modification of the Green's function is an appropriate
choice of the regular part in (3.1), so that it is possible to restore uniqueness of
the solutions of the boundary integral equations and simultaneously achieve other
desirable properties.

If we expand the modified fundamental solution in terms of a known eigenvector
system, the problem is to find suitable coefficients for the expansion of the regular
part. So we use the Hansen eigenvectors given by the relations

, 0)

Bmn(0, 0 ) 1 , (3.3)

Kn(T) = f:"(kPr)Pmn(0, 0) + Jn(n+l)f:'(kpr)Bmn(8, 0), (3.4)

where n = 0, 1,2, . . . , \m\ < n and the superscripts e, i stand for exterior and
interior solutions respectively. Here/,,'-1 are the spherical Bessel functions/„' = j n ,
/„' = h(

n
[), and the prime denotes differentiation with respect to the argument. We note

that Pmn(0, 0), Bmn(0, 0) and Cmn{6, 0) in (3.2)-(3.4) are the well-known mutually
orthogonal surface vector harmonics [3], which are given by the relations

P m n (0 ,0) :=fy; (0 ,0) , (3.5)

l)Bmn(0,0) := (el.+4-L-jL) y;(0,0), (3.6)
V 90 sin 0 3 0 /

(n + l)Cmn(0,0) := (6-L--?--$-?-) Y?(6,4>), (3.7)
\ sin0 d0 00/

where the spherical harmonics are

0) =
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and f, 9 and 4> are the unit vectors of the spherical coordinates.
In view of this eigenvector system the fundamental dyadic solution admits the

representation [3]

n = 1,1,0 m=—n

":(r) ® t (r') + n(n

where c = sign(r — /-')> r = |r|, r' = |r'|. When e = (+), (-) this corresponds to
superscript (/), (e) respectively. The summation over n for Mmn and Nmn starts from
n = 1, while for Lmn it starts from n = 0. The starred quantities are obtained by
changing e""* into e~'m*. Similarly the eigenvector expansion of U(r, r'), the regular
part of the modification, is

w.'> = * t t
n=l,1.0 m=—n

(3.8)

As is clarified in [2] the presence of the last two terms in the sum of (3.8), which we call
"cross terms", is necessary in order to examine the special case of the sphere. In [2,7]
sufficient conditions on the coefficients of the modification for unique solvability of
the boundary integral equation are established. In [ 1 ] we have also proposed a criterion
for minimising the norm of the modified integral operator.

4. On the condition number: the case of the sphere

If we introduce the operators M, N : L2(dD) -> L2(dD), where M := I + K*,
N := I — Ki then (2.5) and (2.6) may be written as

M0 = f, N<(> = - g .

We also introduce their L2-adjoints A/*and N*.
As is well-known, the condition number which is given by the relation [6]

cond(M) := - ' i

https://doi.org/10.1017/S1446181100008129 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008129


[7] Integral equations in linear elasticity 437

with respect to the L2-norm can be expressed as cond(M) = (k^/^n)^2, where
k^x and X^n denote the largest and the smallest spectral value of the self-adjoint
operator M*M. The condition number of the operator N is similarly given in terms
of the largest and the smallest spectral values of N*N.

As is shown in [11], it is extremely difficult to get explicit results for the coefficients
which minimise the operator norms for arbitrary boundaries 3D. Similar discussion is
given in [9] for the condition number of integral equations in acoustics, using modified
Green's functions. Nevertheless, the special result for minimising the condition
number when 3D is a sphere serves as a guide to an explicit coefficient choice which
leads to well conditioned integral equations for perturbations of spherical domains. So
we examine first the spherical rigid body and the spherical cavity. It is easily proved
that the following relations hold for a sphere centered at the origin with radius R:

T(r)f (r, r') = [T(r>)f(r, r ' ) ] r and T(r) f/(r, r') = [r(r>) U(r, r')]T, (4.1)

where the superscript "7"' indicates the transpose matrix. In view of (4.1) we conclude
that K\ = K*. We now consider the modified single layer potentials with densities
given by the vector spherical harmonics Pmn, Bmn, Cmn:

\p
mn(r) = - L f r,(r, r') • Pmn(0, <t>)dS(.r'),

= ̂ - f
2?r JBD

f ,(r, r') • Bmn(0,

(4.2)

(4.3)

(4.4)

Substituting the expressions (3.5)-(3.6) in (4.2)-(4.4) and exploiting the orthogonality
relations for the surface vector harmonics we obtain the relations

= ^- [ f ,(r, r') • Cmn(0, <j>) dS(r').
2?r J

v l ( r ) .
k,r

R2,

(4.5)

2ik

, (4.6)
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2ik
/ [Mi(r) + alW(T)]f^kr)R\ (4.7)

The above relations (4.5H4.7) hold for r - |r| < R.
In what follows we will examine the case of the rigid sphere. So, in order to find

the eigenvalues of M, the following relation has to be satisfied:

A/u(r) = A.u(r), r € dDR. (4.8)

Taking into account that {Pmn, Bmn, Cmn) is a basis in (L2(3D))3, we can express u(r)
as a linear combination of the surface vector spherical harmonics. So

oo n

= E E [clp™»<*. *> + 4.1W0,0) + cLCmn(^, 0)], (4.9)
n=0,1,1 m=—n

where r e dDR . From (4.8)-(4.9), taking into account (A.1)-(A.3), we arrive at the
relation

n=0,1,1 m=—n

k]R22ik]R2 {/^+T)Alncln + A4
mnc>mn) Bmn(6,

oo n

n=0,1,1 m=—n

where the A's are given by (A.4)-(A.7). Forming the inner products of (4.10) with
the surface vector spherical harmonics and taking into account orthogonality relations
we arrive at the homogeneous system

- 4ik*R2Al
mn)c

l
mn - 4ik2

sRWn(n + l)Alnc
2
mn = 0,

j c l n + (X- 2ik)R2A*mn) c\n = 0,

[k - 2i*,3*3 (F^k,R) + «!/•,',(*,*))/;(*,*)] <L = 0.

In order that the solution of the above system be non-trivial, its determinant must
vanish. So we arrive at the following relations which the eigenvalues must satisfy:

A. = 2ik]R* (F'n[{ksR) + al
mnF^sR))f:(ksR) (4.11)

or

X2 - 2ik]R2 (A4
mn + 2Al

mn) X - 8k*sR
AAl

mnA
4
mn + Sk4

sR
4n(n + \)A2

mnAln = 0.
(4.12)
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From (4.11)-(4.12) we can find the eigenvalues X%n of M*M. So, from (4.11),

*1 = 4*«K6 !<(*,*) + a^F^k^f \f;(ksR)\2.

Obviously, in order to minimise the condition number we have to choose the coef-
ficients a'mn, i = 1 , . . . , 5, in such a way that all eigenvalues become 1. Then the
condition number is 1. Hence after some computational effort we conclude that the
optimal choice is

mn
fj(k,R)

jn'(k,R)

where </>„,„ are arbitrary real numbers. While any real <pmn will suffice to minimise the
condition number there is one choice which will simultaneously minimise the norm
of the integral operator M. So, for <pmn = —n/2, we take

amn = ~-
2\Jn'(k,R) F^(ks

These are the same coefficients which we found in [1] where we established the
criterion of minimisation of the operator norm. From (4.12), using similar arguments
as previously, in order that all the eigenvalues be equal to 1, we obtain the relations

8k4
sR

4 [n(n + l)A2
mnA

3
mn - Al

mnA
4

mn] = e2W™,

where pmn, 0mn are arbitrary real numbers satisfying the inequalities 0 < pmn < 2,
0 < 0mn < 2n. Obviously there are infinitely many choices of coefficients a'mn,
1 — 2, 3, 4, 5, which satisfy the imposed conditions. If we choose as a'mn the coeffi-
cients which minimise the norm of the operator [1], after some calculations we obtain
Kn = KJ1 = -i/(*k]R2), A2

mn = Aln = 0. For these values of A's and for
pmn = 2, dmn = n, we find that (4.12) has a double root X = 1.

The above choice of coefficients does not satisfy the inequalities imposed on the
coefficients by the uniqueness theorem in [2,7]. But, as in [1], it has been proved
that with this choice, the norm of the modified integral operator equals zero. So the
boundary integral equation is uniquely solvable.

Following the same motivation as previously we can handle Neumann's problem.
Proceeding in this way, we obtain a result similar to (4.11) which must be satisfied by
the eigenvalues of N. In view of this we take the relation for the eigenvalues of N*N

* ! = 4k6
sR

6 \fi(ksR) + aU:(ksR)\2 iF^R)]2,
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\J

FIGURE 1. Condition number cond(A/) versus^/?: Unmodified case.

FIGURE 2. Condition number cond(W) versus ksR: Regular part with the first two spheroidal terms.

from which, imposing the condition kN = 1, we take

, 4>mn € [0 , 2 T T ) ,

where <pmn is an arbitrary real number. For <j>mn = n/2 we take

~m,R) , Fl
mi(k,RY• 1

2

that is, the same coefficient that minimises the norm of the operator N. The corre-
sponding relation to (4.12) for the case of the cavity gives, for the eigenvalues k%n,
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FIGURE 3. Condition number cond(M) versus ksR: Regular part with the first three spheroidal terms.

the relations

4k4
sR*[2n(n

1 1 = o ew'
nn Hmn

where pmn, 6mn are arbitrary real numbers satisfying the inequalities 0 < pmn < 2,
0 < 0mn < 2n. As previously, the coefficients which minimise the operator norm
also minimise the condition number with pmn = 2, 6mn = n. So the criterion for the
minimisation of the condition number for the two exterior problems is established.

5. The perturbation of the sphere

As in [2,9,11] we can consider a family of non-spherical boundaries given para-
metrically by the relation rf = R + €\j/{6, <p), 0 < 6 < n, 0 < <f> < 2n, where f,
df/86, (l/sin0)(aV/90) are all bounded. We will use the estimates for the Hansen
vectors given in [1],

M K O = M;n(ro) + O(t), TWmn(r() = TM<mn(ro) + 0(0 ,

where rf is a point in the perturbed surface while ro describes points on the sphere.
Similar estimates hold for N^n and \Jmn. In [ 1 ] it has been proved that the boundary
integral operator is a perturbation of the boundary integral operator defined on the
sphere. In view of these estimates it is straightforward that the eigenvalues of the
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FIGURE 4. Condition number cond(Af) versus k,R: Regular part with the first three toroidal and three
spheroidal terms.

perturbed M and N are perturbations of the eigenvalues of the original operators. So

cond(M) = 1 + O{€). (5.1)

Similarly for N. In view of this relation the choice proposed for the sphere is also, in
general, good enough for the perturbed spherical domains.

6. Numerical results

In this section we will examine numerically the case of the rigid sphere. As already
mentioned, the homogeneous integral equation corresponding to (2.5) is uniquely
solvable unless the adjoint interior Neumann problem has non-trivial solutions. The
investigation of this problem has been done in [3] by considering the oscillations of a
homogeneous sphere. Two types of eigenvalues and corresponding eigenfrequencies
exist. The first type are the toroidal oscillations which are expressed via the Mmn

eigenvectors. The second type of eigenvectors are known as spheroidal oscillations
and are expressed via the Nmn and Lmn eigenvectors.

When we plot the condition number for the original integral operator versus ksR,
for an elastic medium with kp = \.\ks, then ill-conditioned behaviour is observed
at the values of the toroidal and the spheroidal eigenvalues. In the plotted figures of
the condition number versus ksR, the existence of eigenfrequencies is reflected in the
existence of points where the values of the condition number is extremely increased.
We can see the unmodified case in Figure 1. In Figure 2 we show the effect of
considering the regular part of the modification with two spheroidal terms. We see that
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FIGURE 5. Condition number cond(W) versus ksR: Regular part with the first four spheroidal and four
toroidal terms.

the eigenfrequencies due to the first spheroidal oscillations are removed. In Figure 3
we observe the effect of adding three spheroidal terms in the modification. In Figure 4
the addition of three spheroidal and three toroidal terms removes all the eigenvalues in
the range 0 < ksR < 3.5. In Figure 5 the effect of the consideration of four spheroidal
and four toroidal terms is to completely remove all the eigenfrequencies in the range
0 < ksR < 4.5. Similarly in Figure 6, considering that the regular part consists of
five spheroidal and five toroidal terms, we completely remove all the eigenfrequencies
in the range 0 < ksR < 5.5. So the introduction of the modified terms enlarges the
region of unique solvability of the boundary integral equation.

From the above numerical consideration and relation (5.1) it is also deduced that
when we have to solve numerically the modified integral equation for shapes which
are small perturbations of a sphere the terms of the modification required in the
representation of the Green's function depend on the values of ksR analogously as for
the spherical case.

Appendix A.

Now we will produce, with the aid of the potential theoretic jump relations, bound-
ary integral equations on the surface of a rigid sphere and of a spherical cavity, with
densities being the vector spherical harmonics.

For the rigid sphere with radius R we conclude that the following boundary integral
relations hold:

= 2ik]R2 y/n(.n + l)A2
mnBmn(e, </.)) , (A.I)
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FIGURE 6. Condition number cond(M) versus k,R: Regular part with the first five spheroidal and five
toroidal terms.

where

i. = nln

A'. -

The quantities 6̂ ,n in (A.4)-(A.7) are

(A.4)

(A.5)

(A.6)

(A.7)

a2
mnFn2(ksR) + ifa^F

(rf 1&»
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[15] Integral equations in linear elasticity 445

with [3]

For the spherical cavity with radius i?, after some computation we conclude that

(/ - Kx)Vmn{6, <P) = -2ik]R2

= -2ik]R2

where the A's appearing are given by (A.5)-(A.7).
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