J. Austral. Math. Soc. (Series A) 47 (1989), 350-367

GEOMETRY OF NEUMANN SUBGROUPS

RAVI S. KULKARNI

(Received 25 February 1986)

Communicated by H. Lausch

Abstract

A Neumann subgroup of the classical modular group is by definition a complement of a maximal parabolic subgroup. Recently Neumann subgroups have been studied in a series of papers by Brenner and Lyndon. There is a natural extension of the notion of a Neumann subgroup in the context of any finitely generated Fuchsian group Γ acting on the hyperbolic plane H such that $\Gamma \setminus H$ is homeomorphic to an open disk. Using a new geometric method we extend the work of Brenner and Lyndon in this more general context.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 E 28.

1. Introduction

(1.1) This note essentially consists of some remarks on a series of recent papers by Brenner and Lyndon concerned with the Neumann subgroups of the classical modular group; cf. [1]-[3]. We first recall their definition. Let $\Gamma = \langle x, y | x^2 = y^3 = e \rangle$ act as the modular group on the upper half plane H in the standard way. Then the subgroup $P = \langle z \rangle$, where z = xy, is a maximal parabolic subgroup of Γ and all such subgroups are conjugate. A subgroup Φ of Γ is said to be *non-parabolic* if it contains no parabolic element. If Φ is a complement of P in Γ , that is (1) $P \cap \Phi = \{e\}$, and (2) $P \cdot \Phi = \Gamma$, then Φ is called a *Neumann subgroup*; cf. [1]. A Neumann subgroup is maximal among non-parabolic subgroups; cf. [1, (2.8)].

This work was partially supported by the Max-Planck-Institut für Mathematik, Bonn, Germany and an NSF grant.

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

(1.2) In connection with these subgroups, Brenner and Lyndon were led to study transitive triples (Ω, A, B) (cf. [2]) where Ω is a countable set, A and B are permutations of Ω of orders 2 and 3 respectively such that the group $\langle C \rangle$, where C = AB, is transitive on Ω . If (Ω, A, B) is a transitive triple then Γ , as in (1.1), acts on Ω in the obvious way so that the subgroup P is transitive on Ω . In particular $\Omega \approx \Gamma/\Phi$ for a suitable subgroup Φ whose conjugacy class is well-defined. Since $P \approx Z$ it is clear that either P acts simply transitively on Ω in which case Ω is an infinite set, or else P acts ineffectively on Ω in which case Ω is a finite set. In the first case Φ is a Neumann subgroup. In the second case ($\Gamma: \Phi$) < ∞ and $\Phi \setminus H$ has only one cusp. Such a subgroup was called *cycloidal* by Petersson [9]. Thus the study of transitive triples amounts to a simultaneous study of Neumann and cycloidal subgroups of Γ . For the earlier work on Neumann subgroups see [8], [6], [13], and also [7, pages 119-122].

(1.3) A principal result in [1] which extends Theorem 2 of [13] is a structure-and-realization theorem for Neumann subgroups. Similar and more general results were proved by Stothers [10]-[12]. The proof in [1] is based on a correspondence between transitive triples and Eulerian paths in cuboid graphs, that is, the graphs with vertex-valences at most 3. For the triples associated with torsion-free Neumann-or-cycloidal subgroups the correspondence one-to-one one would need to put an extra structure on the cuboid graphs. The same method is used in [3] to produce maximal-among-non-parabolic subgroups which are not Neumann.

(1.4) In this note we extend this work to

(1.4.1)
$$\Gamma = \prod_{i=1}^{*n} \Gamma_i, \quad \Gamma_i = \langle x_i \rangle \approx \mathbb{Z}_{m_i}, \qquad 2 \leq m_i, \quad n < \infty.$$

Except for $\Gamma \approx \mathbb{Z}_2 * \mathbb{Z}_2$, these groups can be realized as discrete subgroups of the orientation-preserving isometries of the hyperbolic plane **H** such that $\Gamma \setminus \mathbf{H}$ has finite area, and x_i acts as a rotation through angle $2\pi/m_i$ around its fixed point. Then the element $u = x_1 x_2 \cdots x_n$ is parabolic.

(1.5) The above remarks are meant only for motivation. In the following, hyperbolic geometry will not be used explicitly. We start with Γ as in (1.4.1). Let $u = x_1 \cdots x_n$. The conjugates of u^k , $k \neq 0$ are called the *parabolic elements* of Γ . Let $P = \langle u \rangle$. A subgroup of Γ is called *parabolic* if all of its non-identity elements are parabolic. Clearly the maximal parabolic subgroups are precisely the conjugates of P. A subgroup of Γ is called *nonparabolic* if it contains no parabolic element. A complement Φ of P in Γ is called a *Neumann subgroup*. Thus, for a Neumann subgroup Φ one has (i) $P \cap \Phi = \{e\}$, and (ii) $P \cdot \Phi = \Gamma$. The latter implies (ii)' $|P \setminus \Gamma / \Phi| = 1$. Conversely, if (ii)' holds and $(\Gamma: \Phi) = \infty$ then Φ is a Neumann subgroup. If (ii) holds and $(\Gamma: \Phi) < \infty$ then as in [5], Φ is called a 1-cycloidal subgroup. (In the correspondence between subgroups of the Fuchsian groups and holomorphic maps among Riemann surfaces, the 1-cycloidal subgroups precisely correspond to meromorphic functions on closed Riemann surfaces with a single pole; these functions may be considered as generalizations of polynomial maps; cf. [5].) One sees (cf. (2.1)) that a Neumann subgroup is maximal among non-parabolic subgroups.

(1.6) Let Γ be as in (1.4.1). For $\Phi \leq \Gamma$, in [4] we attached a diagram X_{Φ} and its thickening X_{Φ} with canonical projections $X_{\Phi} \to X_{\Gamma}, X_{\Phi} \to X_{\Gamma}$. Here X_{Φ} is an orientable surface with non-empty boundary ∂X_{Φ} . One may think of X_{Γ} as " $\Gamma \setminus H$ with the cusp cut off". This makes the "cuspidal infinity" more tangible—for example, one gets the following useful characterizations: $\Phi \leq \Gamma$ is Neumann (respectively 1-cycloidal) if and only if ∂X_{Φ} is connected and non-compact (respectively connected and compact). Pinching each circle in X_{Φ} to a point one obtains a graph Y_{Φ} whose structure suggests the notion of an (m_1, \ldots, m_n) -semiregular graph; cf. (2.4). If Φ is a Neumann subgroup then the image of ∂X_{Φ} in Y_{Φ} is a special type of Eulerian path which we simply call *admissible*. This provides a natural explanation of the initially intriguing Brenner-Lyndon correspondence between Neumann and 1-cycloidal subgroups of the modular group and the Eulerian paths in cuboid graphs. A natural extension of their results is as follows: the conjugacy classes of Neumann (respectively 1-cycloidal) subgroups of Γ are in one-to-one correspondence with the admissible Eulerian paths in (m_1, \ldots, m_n) -semiregular graphs.

(1.7) For Γ as in (1.4.1) and $\Phi \leq \Gamma$ we have by Kurosh's theorem,

(1.7.1)
$$\Phi \approx F_r * \prod_{i=1}^n \left(\prod_{j \in J_i}^* \Phi_{ij} \right),$$

where F_r denotes the free group of rank r and $\Phi_{ij} \cong \mathbb{Z}_d$, $d|m_i$, are conjugates to subgroups of Γ_i . In (1.7.1) we assume that $\Phi_{ij} \not\cong \{e\}$ with the understanding that if J_i is empty then $\prod_{i \in J_i}^* \Phi_{ij} = \{e\}$. Let

(1.7.2)
$$r_i(d) = \#\{\Phi_{ij} = \mathbb{Z}_{m_i/d}\}, \quad d|m_i, d < m_i.$$

The numbers $r_i(d)$ may be possibly infinite. In Section 4 we prove a structureand-realization theorem for Neumann subgroups. For example, *if at most one* m_i is even, then Φ as in (1.7.1) is realizable as a Neumann subgroup if and only if either (1) $r = \infty$ or (2) r is an even integer and $r_i(1) = \infty$ for at least n - 1 values of i. If there are two even m_i 's there is a curious new family of Neumann subgroups (cf. (2.11)) of which there is no analogue in the case of the modular group. This family makes the full structure theorem a bit complicated, but the underlying geometric idea is simple. For details see Section 4.

(1.8) Finally in Section 5 we give some geometric constructions of subgroups which are maximal, or maximal with respect to some additional properties such as Neumann, 1-cycloidal, non-parabolic but non-Neumann,....

I wish to thank W. W. Stothers for drawing my attention to [2].

2. Preliminaries

(2.0) Throughout this section let Γ , Γ_i , x_i , u be as in (1.4) and (1.5). We use the terminology introduced there.

(2.1) **PROPOSITION.** A Neumann subgroup is maximal among non-parabolic subgroups.

PROOF. Let Φ be a Neumann subgroup of Γ , and $P = \langle u \rangle$. So P acts simply transitively on Γ/Φ . The isotropy subgroup of P at $a\Phi$ is $P \cap a\Phi a^{-1} = \{e\}$. So $a^{-1}Pa \cap \Phi = \{e\}$, that is, Φ is a non-parabolic subgroup. If Ψ is a subgroup of Γ which properly contains Φ then P acts transitively but not simply transitively on Γ/Ψ . But since $P \approx \mathbb{Z}$, this means that the P-action on Γ/Ψ is ineffective and $|\Gamma/\Psi| < \infty$. Hence $P \cap \Psi \neq \{e\}$, that is, Ψ contains parabolic elements. So Φ is maximal among non-parabolic subgroups.

(2.2) As in [4], let X_{Γ} be a diagram for Γ and X_{Γ} its thickening

(2.2.1)

Ravi S. Kulkarni

In the thickening each circle with $m < \infty$ is replaced by a disk and each segment is replaced by a rectangular sheet. These pieces are attached as shown in the figure so as to form a compact orientable surface with boundary. The case of a circle with $m = \infty$ does not occur in this paper. In that case a circle would be replaced by an annulus.

A building block of type *i* has the form

(2.2.2)
$$(m_i/d) = d edges$$

and is denoted by $B_i(d)$. A diagram X_{Φ} is built out of such $B_i(d)$'s and there is a canonical projection $X_{\Phi} \to X_{\Gamma}$. The thickening of $B_i(d)$ is

The thickening \mathbf{X}_{Φ} of X_{Φ} is built out of $\mathbf{B}_i(d)$'s. Notice that \mathbf{X}_{Φ} is an orientable surface with boundary $\partial \mathbf{X}_{\Phi}$. There is a canonical projection $p: \mathbf{X}_{\Phi} \to \mathbf{X}_{\Gamma}$ and also a "thinning" map $\mathbf{X}_{\Phi} \to X_{\Phi}$ (the restriction $p|_{\text{int}\mathbf{X}_{\Phi}}$: int $\mathbf{X}_{\Phi} \to \mathbf{X}_{\Gamma}$ is a branched covering of surfaces; if Γ is realized as an orientationpreserving, properly discontinuous group of homeomorphisms of \mathbf{R}^2 then $p|_{\text{int}\mathbf{X}_{\Phi}}$ is equivalent to the canonical map $\Phi \setminus \mathbf{R}^2 \to \Gamma \setminus \mathbf{R}^2$). The shape of $\mathbf{B}_i(d)$ may be described as "a closed disk with d arms." Each of the dotted edges at the end of an arm is its *half-outlet*; together they form an *outlet*. In \mathbf{X}_{Φ} the outlets come in groups of n. So we may use the obvious and suggestive terminology of an *angle formed by the half-outlets*. For example the interior angle formed by the half-outlet of arm of $\mathbf{B}_{i+1}(*)$, where the subscript i is counted mod n. In the sequel, it will be important to keep in mind that

(2.2.4)
$$\partial \mathbf{B}_i(d) = \{\mathbf{B}_i(d) \cap \partial \mathbf{X}_{\mathbf{\Phi}}\} \cup \{\text{the outlets}\}.$$

(2.3) Pinching each circle in X_{Φ} to a point one gets a graph Y_{Φ} . Again one has a canonical projection denoted by $p: Y_{\Phi} \to Y_{\Gamma}$. Notice that the *terminal vertices*, that is, the vertices of valence 1, of Y_{Φ} are precisely the images of m_i

in X_{Φ} . The vertices adjacent to terminal vertices will be called *sub-terminal* vertices. Now

has n + 1 vertices—the image of m_i is numbered *i*, and the "base-vertex" is numbered 0. So the vertices of Y_{Φ} are divided into n + 1 disjoint subsets:

(2.3.2) $\alpha_i = \{v | p(v) \text{ has number } i\}.$

The structure of Y_{Φ} motivates the following

(2.4) DEFINITION. Let *n* and m_1, \ldots, m_n be positive integers, each at least 2. An (m_1, \ldots, m_n) -semiregular graph is a connected graph *G* whose vertices are divided into n + 1 disjoint subsets α_i , $i = 0, 1, \ldots, n$, such that

(a) $v \in \alpha_i$ implies valence v = n (respectively a divisor of m_i) if i = 0 (respectively if $i \ge 1$),

(b) each edge of G has one end in α_0 and the other in α_i , $i \ge 1$,

(c) given $v \in \alpha_0$ and $i \ge 1$, there is a unique edge joining v to a vertex in α_i .

Clearly Y_{Φ} , as in (2.3), is an (m_1, \ldots, m_n) -semiregular graph.

If n = 2 (respectively some m_i is even), then the vertices in α_0 (respectively certain vertices in α_i) have valence 2, and if convenient may well be not counted as vertices. Thus for example, not counting the vertices in α_0 , an (m_1, m_2) -semiregular graph is a bipartite graph. Again if G is a (2, k)-semiregular graph such that all vertices in α_1 (respectively α_2) have valence 2 (respectively k), then not counting the vertices either in α_0 or in α_1 , one has a k-regular graph in the usual sense. Thus if $\Gamma = \mathbb{Z}_2 * \mathbb{Z}_k$, and $\Phi \leq \Gamma$ is torsion-free then Y_{Φ} may be considered as a k-regular graph. In particular, corresponding to torsion-free subgroups of the modular group one gets cubic graphs.

(2.5) REMARK. Let G be an (m_1, \ldots, m_n) -semiregular graph. Then the edges at a vertex in α_0 come equipped with a natural cyclic order. Now suppose at each vertex $v \in \alpha_i$, $i \ge 1$, we specify some cyclic order among the edges incident with v. Then we may replace each $v \in \alpha_i$, $i \ge 1$, by a circle and attach the v-ends of the edges incident at v to the circle consistent

Ravi S. Kulkarni

with the prescribed cyclic order, and obtain a diagram X. This diagram has a canonical projection $p: X \to X_{\Gamma}$; see the proof of [4, Theorem 1]. X may be considered as X_{Φ} for a subgroup Φ whose conjugacy class is well defined. Thus G is isomorphic to Y_{Φ} for some $\Phi \leq \Gamma$.

(2.6) Taking a base point in ∂X_{Γ} we may represent $u = x_1 \cdots x_n$ by the oriented boundary ∂X_{Γ} . Now $p^{-1}(\partial X_{\Gamma}) = \partial X_{\Phi}$, so the components of X_{Φ} are in one-to-one correspondence with the double cosets $P \setminus \Gamma / \Phi$. If C is a component of ∂X_{ϕ} and $P|_C : C \to \partial X_{\Gamma}$ has degree d (possibly infinite), then d is the number of points in the corresponding P-orbit in Γ / Φ . In particular C is non-compact if and only if $d = \infty$, which is if and only if the P-action on the corresponding orbit is effective. Clearly one gets

PROPOSITION. (1) Φ is a non-parabolic subgroup if and only if ∂X_{Φ} has no compact component.

(2) Φ is a Neumann (respectively 1-cycloidal) subgroup if and only if ∂X_{Φ} is connected and non-compact (respectively connected and compact).

(2.7) We recall some elementary facts from the topology of surfaces. Let M be any connected surface possibly with non-empty boundary. A connected, compact subsurface S of M is said to be *tight* if M - int S has no compact component. Notice that if S is a compact subsurface then M - S has only finitely many components. So if S is compact and connected then $S_1 = S \cup \{\text{compact components of } M - \text{int } S\}$ is a tight subsurface. It is now clear that M admits an *exhaustion* by tight subsurfaces, that is, a sequence S_i , $i = 1, 2, \ldots$, of tight subsurfaces such that $S_i \subseteq \text{int } S_{i+1}$ and $M = \bigcup_i S_i$.

Now suppose that the fundamental groups of M based at * is finitely generated. So there exist finitely many based loops C_i such that $\pi_1(M, *) = \langle [C_i] \rangle$, where $[C_i]$ denotes the homotopy class of C_i . One says that an arcconnected subset A of M carries π_1 if the canonical map $\pi_1(A) \to \pi_1(M)$ is surjective. Clearly any arc-connected subset A containing $\bigcup C_i$ carries π_1 . Now let S be a tight subsurface which contains $\bigcup C_i$. In this case in fact the canonical map $\pi_1(S) \to \pi_1(M)$ is an isomorphism and it is easy to see that each component of M - S is either a cylinder or a disk. If $\partial M \neq \emptyset$ these cylinders or disks may also have non-empty boundary.

(2.8) We apply the considerations in (2.7) to X_{Φ} . Let S be a tight subsurface of X_{Φ} . Then for each building block $\mathbf{B}_i(d)$ we see that a component of $S \cap \mathbf{B}_i(d)$ is also tight. Let S_1 be the union of S and all $\mathbf{B}_i(d)$'s which intersect S in a subset with non-empty interior. Then S_1 has the additional property

(2.8.1)
$$\partial S_1 = (S_1 \cap \partial \mathbf{X}_{\Phi}) \cup A,$$

where A is the union of the half-outlets on some arms of the building blocks. Now suppose Φ is as in (1.7.1). Then its free part F_r may be identified with $\pi_1(Y_{\Phi})$ or $\pi_1(\mathbf{X}_{\Phi})$ (see the discussion in [5, Section 2]. Suppose that $r < \infty$. So there exist tight subsurfaces of \mathbf{X}_{Φ} which carry π_1 ; cf. (2.7). We call a tight subsurface *characteristic* if it carries π_1 and has the additional property stated in (2.8.1).

From the above discussion it is clear that if $r < \infty$, X_{Φ} admits an exhaustion by characteristic subsurfaces.

(2.9) PROPOSITION. Let Φ as in (1.7.1) be a Neumann subgroup of Γ and $r < \infty$. Let S be a characteristic subsurface of X_{Φ} . Then ∂S is connected and contains exactly one pair of half-outlets making an exterior angle $2\pi/n$; cf. (2.2). Moreover $int(X_{\Phi} - S)$ is homeomorphic to an open disk and $\partial(X_{\Phi} - S)$ has two components, each homeomorphic to an open interval.

PROOF. Since S is characteristic, we have $\partial S = \{S \cap \partial X_{\Phi}\} \cup A$, where A is a union of half-outlets. Since ∂S is compact, ∂X_{Φ} is connected and noncompact (cf. (2.6)) we see that each component of ∂S must intersect A as well as ∂X_{Φ} . Notice that the half-outlets in A come in pairs—each pair forms a connected arc, and different pairs form disjoint arcs.

First we claim that ∂S is connected. Suppose C_1 , C_2 are two disjoint components of ∂S . Since C_1 , C_2 contain points of ∂X_{Φ} , and ∂X_{Φ} is connected, there is an arc $\varepsilon \subseteq \partial X_{\Phi}$ joining a point p_1 in C_1 to a point p_2 in C_2 . But since S is connected there is an arc $\beta \subseteq S$ joining p_1 to p_2 and passing though a base-point *. But then $\alpha \cup \beta$ forms a based loop whose homotopy class is clearly not contained in $\pi_1(S, *)$. This would contradict that S carries π_1 . So ∂S is connected.

Next suppose, if possible, that there are two pairs of half-outlets, each pair forming an arc. Then $\partial S - A$ has two components which must be connected by an arc $\subseteq \partial X_{\Phi}$, and we get a contradiction exactly as above.

Next suppose that the pair w_1 , w_2 of half-outlets makes an exterior angle strictly greater than $2\pi/n$ (see the figure in (2.9.1)). Then the arms A_1 , A_2 in

 X_{Φ} -int S incident with w_1 and w_2 are distinct. Again since ∂X_{Φ} is connected, the components α_1 , α_2 of $A_1 \cap \partial X_{\Phi}$ are joined by an arc $\alpha \subseteq \partial X_{\Phi}$. Clearly $\alpha \cap S = \emptyset$. Now $\partial A_1 \cup \alpha$ forms a Jordan curve outside S. Since S carries π_1 this Jordan curve must bound a disk. But then X_{Φ} - int S would have a compact component and S would not be tight. This contradiction shows that the exterior angle formed by w_1 , w_2 must be $2\pi/n$, and so $w_1 \cup w_2$ is an outlet of an arm lying outside int S. This arm connects X_{Φ} - int S to S. In particular X_{Φ} - int S has only one component. From the remarks in (2.7) it is now clear that $int(X_{\Phi} - int S)$ is homeomorphic to a disk and $\partial(X_{\Phi} - int S)$ has two components each sharing one endpoint of $\partial S - A$.

(2.10) The above proposition may be used to get an intuitive understanding of a Neumann subgroup Φ with $r < \infty$. Let $S_1 \subset S_2 \subset \cdots$ be an exhaustion of X_{Φ} by characteristic subsurfaces. Each S_{k+1} – int S_k is homeomorphic to a closed disk. Also each S_k has exactly one pair of half-outlets with exterior angle $2\pi/n$. Inserting an appropriate $\mathbf{B}_i(1)$ in this outlet we obtain a new diagram $\tilde{S}_k \approx X_{\Phi_k}$ where Φ_k is a 1-cycloidal subgroup. Thus we get a sequence Φ_k , $k = 1, 2, \ldots$, of 1-cycloidal groups so that X_{Φ_k} contains some $\mathbf{B}_i(1)$ and $X_{\Phi_{k+1}}$ is obtained from X_{Φ_k} by removing some $\mathbf{B}_i(1)$, and inserting some $\mathbf{B}_i(d)$, d > 1, together with some outer building blocks so that the union of the newly inserted building blocks is a subset homeomorphic to a closed disk. We express this by saying that Φ is obtained by unfolding a sequence of 1-cycloidal subgroups Φ_k .

(2.11) We shall now describe a special "unfolding" of a single 1-cycloidal subgroup. It will be important in the structure theory of Neumann subgroups in Section 4. Suppose we have two m_i 's, say m_a , m_b , which are even integers. Let Φ_0 be a 1-cycloidal subgroup so that X_{Φ_0} contains either $B_a(1)$ or $B_b(1)$, say the first. Then we can obtain a Neumann subgroup Φ as follows, which is best described by its diagram X_{Φ} .

Suppose

(2.11.1) $X_{\Phi_0} =$ m_a Let (2.11.2) $X_{\Phi} =$ $m_{a/2}$ $m_{b/2}$ $m_{a/2} \to \infty$ Here all the unlabelled building blocks in the newly inserted portion are $B_i(1)$'s, $i \neq a, b$. We shall say that Φ is a simple (m_a, m_b) -unfolding of a 1-cycloidal subgroup Φ_0 .

(2.12) REMARK. Let Φ as (2.7.1) be a Neumann subgroup with $r = \infty$. Then X_{Φ} contains no characteristic subsurface. But it is not difficult to see that still X_{Φ} admits an exhaustion S_k , k = 1, 2..., by tight subsurfaces which satisfy the property stated in (2.8.1) and such that ∂S_k may contain several pairs of half-outlets. Filling these pairs by suitable $\mathbf{B}_i(1)$'s we obtain $\tilde{S}_k \approx X_{\Phi_k}$ where Φ_k is a 1-cycloidal subgroup. In this sense Φ can still be considered as an "unfolding of a sequence of 1-cycloidal subgroups."

3. Eulerian paths

Let G be a graph. Each edge of G can be directed in two ways and so corresponds to two *directed edges*, each of which is the *inverse* of the other. A path in G is *reduced* if it contains no consecutive pair of inverse edges. An Eulerian path in G is a path which contains each directed edge once and which is reduced except at the terminal vertices.

(3.2) Let G be a (m_1, \ldots, m_n) -semiregular graph; cf. (2.4). An *admissible* path in G is a path in which the vertices occur in the following consecutive order:

 $(3.2.1) \qquad \cdots v_1 w_1 v_2 w_2 \cdots, \qquad v_i \in \alpha_0, \ w_i \in \alpha_{k+i},$

where k is some fixed integer and $\alpha_{k+i} = a_j$, where j is the unique positive integer such that $1 \le j \le n$, k + i = j(n).

(3.3) THEOREM. Let Γ be as (1.4.1). Then the conjugacy of Neumann (respectively 1-cycloidal) subgroups of Γ are in one-to-one correspondence with the admissible Eulerian paths in infinite (respectively finite) (m_1, \ldots, m_n) -semiregular graphs.

PROOF. Let Φ be a Neumann (respectively 1-cycloidal) subgroup Γ . Then Y_{Φ} is an (m_1, \ldots, m_n) -semiregular graph. Since Φ is Neumann (respectively 1-cycloidal), Y_{Φ} is infinite (respectively finite). Now orient X_{Φ} ; this also orients ∂X_{Φ} . If A is an arm of a building block of X_{Φ} then $A \cap \partial X_{\Phi}$ consists of two edges, which, under the canonical projection $X_{\Phi} \to X_{\Phi} \to Y_{\Phi}$, project onto a pair of mutually inverse directed edges. It follows that the image of ∂X_{Φ} in Y_{Φ} is an admissible Eulerian path.

Conversely, let G be an infinite (respectively finite) (m_1, \ldots, m_n) -semiregular graph, and E an admissible Eulerian path in G. Let $v \in \alpha_i$, $i \ge 1$. Introduce a cyclic order among the (undirected) edges incident with v as follows: an edge f cyclically follows e if and only if in E the directed edge e ending in v follows the directed edge f beginning at v. By the remark in (2.5) we can construct an infinite (respectively finite) diagram X which corresponds to a conjugacy class of a subgroup Φ . But the existence of E also shows that ∂X is connected and is non-compact (respectively compact) so Φ is Neumann (respectively 1-cycloidal).

It is easy to see that this establishes the one-to-one correspondence asserted in the theorem.

4. A structure theorem

(4.0) Throughout this section Γ is as in (1.4.1) and Φ is as in (1.7.1) and we use the notation used there. If $\Gamma \approx \mathbb{Z}_2 * \mathbb{Z}_2$ it is easy to see that the two conjugacy classes of subgroups isomorphic to \mathbb{Z}_2 precisely consist of all the Neumann subgroups in Γ . Henceforth we shall assume that $\Gamma \not\cong \mathbb{Z}_2 * \mathbb{Z}_2$.

(4.1) **PROPOSITION.** If $r = \infty$ then Φ is realizable as a Neumann subgroup.

PROOF. The details of this proof are similar to (and simpler than) those of [5, Theorem (1.5)], which deals with the case of 1-cycloidal subgroups. So we shall be brief. First of all, the diophantine condition (see [5, (3.2)]), needed there is no longer necessary since the "difficulties can be thrown off to infinity." Recall that for $d|m_i$, $d < m_i$

$$\mathbf{r}_i(d) = \#\{\phi_{ij} | \mathbf{\Phi}_{ij} \simeq \mathbf{Z}_{m_i/d}\},\$$

which may be infinite. We set $r_i(m_i) = \infty$. Choose $r_i(d)$ copies of $B_i(d)$'s; cf. (2.2.2). The objective is to construct a diagram X with these building blocks so that X has infinite genus and ∂X is connected and non-compact. Using all $B_1(*)$'s and some of the $B_2(*)$'s construct a complex H homeomorphic to the closed upper half space so that ∂H contains infinitely many pairs of half-outlets. (*Note.* That H contains infinitely many pairs of half-outlets is obvious for $n \ge 3$. For n = 2 this would fail exactly when $m_1 = 2 = m_2$. We have explicitly excluded this case in (4.0).) Now attach the remaining building blocks appropriately at these half-outlets so as to get X with the required properties.

(4.2) **PROPOSITION.** If Φ with $r < \infty$ is realizable as a Neumann subgroup then r is an even integer.

PROOF. Indeed, $F_r \approx \pi_1(\mathbf{X}_{\Phi})$. If S is a characteristic subsurface, we observed in (2.7), (2.8) that $\pi_1(S) \approx \pi_1(\mathbf{X}_{\Phi})$ and S is a compact orientable surface with one boundary component. So r = 2g where g is a genus of S.

(4.3) **PROPOSITION.** Let Φ with $r = 2g < \infty$ be realizable as a Neumann subgroup. Then either

PROOF. Let $S_1 \subset S_2 \subset \cdots$ be an exhaustion of X_{Φ} by characteristic subsurfaces. Let $D_k = S_{k+1} - \operatorname{int} S_k$, $k = 1, 2, \ldots$ As observed in (2.10), D_k is a closed disk and

(4.3.1) $\partial D_k = \{D_k \cap \partial \mathbf{X}_{\Phi}\} \cup \{\text{the two pairs of half-outlets in } \partial S_k \cup \partial S_{k+1}\}.$

The projection of D_k in Y_{Φ} has the following two possible forms.

Here O_1 , O_2 are the projections of the pairs of half-outlets in ∂D_k and C is the shortest path joining O_1 to O_2 . (Since D_k is homeomorphic to a closed disk, C is unique.) The large dark vertices are in $\bigcup \alpha_i$, $i \ge 1$, and the small ones are in α_0 . The two forms are distinguished by the following fact. In (4.3.3) all vertices in α_0 lie on C—hence each is subterminal (cf. (2.3)) and is incident with n-2 terminal vertices. In (4.3.2) there are some vertices in α_0 which do not lie on C, and so there are some subterminal ones among them which are incident with n-1 terminal vertices. Now each terminal vertex is an image of a $B_i(1)$ and hence contributes to $r_i(1)$. So it follows that $r_i(1) = \infty$ for at least n-2 values of *i*. Suppose if possible that there actually exist two distinct values *a*, *b* of *i* such that $r_a(1) < \infty$, $r_b(1) < \infty$. Then the infinitely many building blocks $\mathbf{B}_a(1)$'s and $\mathbf{B}_b(1)$'s are contained in some characteristic subsurfaces S_{k_0} . But then for $k > k_0$, D_k is necessarily of the form (4.3.3) and the building blocks with two arms in D_k are necessarily $\mathbf{B}_a(2)$'s and $\mathbf{B}_b(2)$'s. Since X_{k_0} is compact it follows that $r_i(d) < \infty$ for $d \neq 1$, $i \neq a$, *b*, as well. Finally the discussion in (2.11) shows that in this case Φ must be an (m_a, m_b) -unfolding of a suitable 1-cycloidal subgroup.

(4.4) PROPOSITION. Let $r = 2g < \infty$, and suppose $r_i(1) = \infty$ for at least n-1 values of *i*. Then Φ is realizable as a Neumann subgroup.

PROOF. Suppose $r_i(1) = \infty$ for $i \neq 1$. The objective is to construct a diagram X with $r_i(d)$ copies of $B_i(d)$'s, $d < m_i$, and any (possibly infinite) number of copies of $B_i(m_i)$'s so that the thickening diagram X is an orientable surface of genus g with ∂X connected and noncompact. Now using finitely many $B_i(d)$'s we can clearly construct a complex S whose thickening S is a compact, orientable surface of genus g such that ∂S is connected. (*Note*: if $(m_1, m_2) \neq (2.2)$ or if g = 0 we can do this using only $B_i(d)$'s, $i \leq 2$. Otherwise we shall need to use $B_i(d)$'s, $i \leq 3$. Here again we are using the assumption that $\Gamma \not\cong \mathbb{Z}_2 * \mathbb{Z}_2$.) Now using all the remaining $B_1(d)$'s and $B_i(f)$'s, $i \geq 2$, $f \neq 1$, construct a connected complex V whose thickening V is an orientable surface of genus g such that ∂V is connected, and contains infinitely many pairs of half-outlets where the infinitely many $B_i(1)$'s, $i \geq 2$, can be inserted to form X. Clearly ∂X is connected and $X = X_{\Psi}$ where Ψ is a Neumann subgroup isomorphic to Φ .

(4.5) Combining (2.11), (4.1)-(4.4), we get the following

STRUCTURE THEOREM. Let Γ be as in (1.4.1), $\Gamma \not\cong \mathbb{Z}_2 * \mathbb{Z}_2$ and Φ be given as an abstract group as in (1.7.1). Then Φ is realizable as a Neumann subgroup of Γ if and only if one of the following three conditions holds:

- (1) $r = \infty;$
- (2) (A) r is an even non-negative integer,

(B) $r_i(1) = \infty$ for $\ge n - 1$ values of *i*;

(3) (A) r is an even non-negative integer,
(B) r_i(1) = ∞, r_i(d) < ∞, d ≠ 1, for n - 2 values of i ≠ a, b say,
(C) r_i(2) = ∞, r_i(d) < ∞, d ≠ 2 for i = a, b,
(D) there exists Φ₀, realizable as a 1-cycloidal subgroup such that Φ is a simple (m_a, m_b)-unfolding of Φ₀.

(4.6) REMARK. Suppose Φ is as in (1.7.1) and (3) (A)-(C) are satisfied. Let Ψ_0 be the finite free product of F_r and $\Phi_{ij} \approx \mathbb{Z}_{m_i/d}$, $i \neq a, b$ and $d \neq 1$, or $i = a, b, d \neq 2$. If Φ is realizable as a Neumann subgroup then Φ_0 referred to in (3) (D) is isomorphic to $\Psi_0 * \Theta_0$ where Θ_0 is a finite free product of groups conjugate to Γ_i , $i \neq a, b$, or conjugate to the subgroups of Γ_a (respectively Γ_b) isomorphic to $\mathbb{Z}_{a/2}$ (respectively $\mathbb{Z}_{b/2}$). Moreover Φ_0 must contain at least one factor isomorphic to Γ_a or Γ_b . From the way X_{Φ_0} would be constructed (cf. (2.11)) it is clear that there are only *finitely many* possibilities for Θ_0 , and hence, also only finitely many possibilities for Φ_0 . Now [5, Theorem (1.5)] gives an effective procedure for deciding whether any of these Φ_0 can be realized as a 1-cycloidal subgroup. Thus one has an effective procedure for deciding realizability of Φ as a Neumann subgroup.

(4.7) REMARK. The condition (3) (D) is *not* a consequence of (3)(A)–(C). For example, take $\Gamma = \mathbb{Z}_4 * \mathbb{Z}_4$ and $\Phi = \prod^* \mathbb{Z}_2$ (infinite product). Write Φ as

$$\prod_{i=1}^{*2} \left(\prod_{j\in J_i}^* \Phi_{ij} \right), \quad \Phi_{ij} \approx \mathbb{Z}_2, \quad |J_i| = \infty.$$

It is easy to see that (3)(A)-(C) hold, but Φ is not realizable as a Neumann subgroup.

(4.8) REMARK. We should point out two possible interpretations for the phrase " Φ as in (1.7.1) is realizable as...". If m_i 's are pairwise coprime then there is a *unique* value of *i* for a finite factor of Φ to be conjugate to a subgroup of Γ_i . If two or more m_i 's have common factors then there may be a choice for a finite factor of Φ to be interpreted as a particular Φ_{ij} . In our statement of the structure theorem we have tacitly assumed that these choices have already been made. Thus if Φ is only given as an abstract group there may be a bit more freedom first to put it in the form (1.7.1) and then realize as a

(4.9) REMARK. The condition (3)(C) of course requires that m_a and m_b are *even* integers. So if there is at most one M_i which is an even integer then the condition (3) is not applicable.

5. Maximal subgroups

(5.0) In [3] and [13] there are constructions of subgroups of the classical modular group which are maximal among nonparabolic subgroups, and which are different from the ones discovered by Neumann [8], or which are not

Ravi S. Kulkarni

Neumann subgroups in the sense of (1.1). These constructions are rather elaborate and require a very careful analysis. In terms of the diagrams X_{Φ} 's one can give such constructions more readily, and in fact one may construct maximal, or maximal and Neumann, or maximal and 1-cycloidal, or maximal and non-parabolic but not Neumann... subgroups.

(5.1) Let Γ be as in (1.4.1) and $\Phi \leq \Gamma$. A symmetry of X_{Φ} is simply a branched-covering-transformation of $p: X_{\Phi} \to X_{\Gamma}$, that is, a homeomorphism $\sigma: X_{\Phi} \to X_{\Phi}$ such that

commutes. Then σ preserves orientation and carries building blocks into building blocks.

Notice that in an unbranched covering space a non-identity covering transformation has no fixed points. But in a branched covering it is not necessarily so.

We say that X_{Φ} has no fixed-point-free symmetry if every non-identity symmetry of X_{Φ} has a fixed point.

Notice also that a symmetry $\sigma: X_{\Phi} \to X_{\Phi}$ induces maps (again denoted by) $\sigma: X_{\Phi} \to X_{\Phi}$ and $\sigma: Y_{\Phi} \to Y_{\Phi}$, and these maps commute with the thinning map and the canonical projection $X_{\Phi} \to Y_{\Phi}$.

(5.2) Orient X_{Φ} ; this also orients ∂X_{Φ} . Let C be a component of ∂X_{Φ} . The *pattern along* C is simply the finite or doubly infinite sequence of $\mathbf{B}_i(d)$'s one meets along C while walking in the "positive" direction. Notice that a block $\mathbf{B}_i(d)$ with d > 1 (see the picture in (2.3)), is counted k times in the patterns along C if C contains k "circular arcs" on $\mathbf{B}_i(d)$, that is, the components $\partial \mathbf{B}_i(d) - \partial \{\cup \operatorname{arms}\}$.

The pattern is finite if and only if C is compact and in that case the number of terms in the pattern is a multiple of n. We say that the pattern along C is not periodic if either (1) C is noncompact and the pattern has no finite period or (2) C is compact, the pattern contains αn elements, $\alpha \in \mathbb{Z}_{>0}$, and (in the cyclic order) the pattern has no period strictly less than αn .

(5.3) Let $B = B_i(d)$ be a building block of X_{Φ} . The *neighbors* of B are the building blocks at the end of the paths containing two edges emanating from B. So, in all B has d(n-1) neighbors.

(5.4) THEOREM. Let Γ be as in (1.4.1) where all m_i 's are primes. Let $\Phi \leq \Gamma$ be as in (1.7.1). Assume that (1) each $B \approx B_i(m_i)$ in X_{Φ} has a $B_j(m_j)$ for each $j \neq i$ as a neighbor, and (2) either (a) r = 0 and X_{Φ} has no fixed-point-free symmetry or (b) the patterns along different components of ∂X_{Φ} are pairwise distinct and none is periodic. Then Φ is maximal.

PROOF. Suppose $\Phi \leq \Psi \leq \Gamma$, and consider the branched covering $q: X_{\Phi} \to X_{\Psi}$. Suppose X_{Ψ} contains a branch point. Since m_i 's are assumed to be primes this means that there is a building block $B \subseteq X_{\Phi}$ such that $B \approx B_i(m_i)$ and $q(B) \approx B_i(1)$. But then (1) implies that $q(X_{\Phi}) = X_{\Gamma}$, that is, $\Psi = \Gamma$.

Now suppose $\Psi \neq \Gamma$. Hence q is unbranched. Under the condition (2a), X_{Φ} is simply connected. But then q is the universal (in particular regular) covering of X_{Ψ} . Since we assumed that X_{Φ} has no fixed-point-free symmetry it follows that degree q = 1, and $\Phi = \Psi$. Under the condition (2b) we see that $q|_{\partial X_{\Phi}}$ is a homeomorphism. Also clearly $q^{-1}(\partial X_{\Psi}) = \partial X_{\Phi}$. So again degree $q = \text{degree } q|_{\partial X_{\Phi}} = 1$ and $\Phi = \Psi$. Hence Φ is maximal.

(5.5) REMARKS. (1) Clearly there are many varieties of sufficient sets of conditions for maximality in terms of X_{Φ} 's. For instance one may assume that all but finitely many building blocks of X_{Φ} have the property stated in (1) and then "mess up" the diagram near these finitely many blocks.

(2) If $n \ge 2$ or two m_i 's ≥ 3 the conditions in (5.4) are easy to ensure. The condition that X_{Φ} has no fixed-point symmetry is ensured if we have a compact subsurface $S \subseteq X_{\Phi}$ satisfying the condition (2.8.1) such that S is homeomorphic to a closed disk and the pattern of the building blocks in S does not repeat in X_{Φ} , or at least the "distances" among its repetitions do not repeat. Then any symmetry of X_{Φ} would leave S invariant and would have a fixed point by Brouwer's theorem.

(3) If n = 2 and some $m_i = 2$ then the direct application of (5.4) produces only finitely many examples, all of finite index. But excluding the degenerate case $\Gamma \approx \mathbb{Z}_2 * \mathbb{Z}_2$ one may first pass to an appropriate 1-cycloidal subgroup in Γ and then apply the above considerations. For example let $\Gamma = \mathbb{Z}_2 * \mathbb{Z}_3$, and let $\Phi_0 \subset \Gamma$, $\Phi_0 \approx \mathbb{Z}_3 * \mathbb{Z}_3$ whose diagram is

Consider $\Phi \subset \Phi_0$ whose diagram is

(5.5.2)
$$X_{\Phi} = 3^{3/3} 3^{3$$

Clearly Φ is a Neumann subgroup of Φ_0 , and in fact maximal in Φ . Also clearly Φ is a Neumann subgroup of Γ . As a subgroup Γ , the diagram of Φ is obtained from (5.5.2) by sticking in $\binom{2}{2}$ on each edge. If we do this sticking and then replace one $-\binom{2}{2}$ on each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking and then replace one $-\binom{2}{2}$ or each edge. If we do this sticking an edge on the pattern in (5.52) doubly infinite in the obvious way one obtains a subgroup $\Phi_1 \subset \Phi_0$ for which ∂X_{Φ_1} contains two components both noncompact. This Φ_1 is not Neumann and it is maximal among nonparabolic subgroups in Φ_0 and also in Γ but it is not maximal. For clearly $\Phi_1 \leq \Psi_1 \leq \Phi_0$, where

(5.5.3)
$$X_{\psi_1} =$$

so Φ_1 is not maximal. On the other hand if $\Phi_1 < \Psi < \Phi_0$, then $q: X_{\Phi_1} \to X_{\Psi}$ must be unbranched; see the argument in (5.4). Now X_{Φ_1} is simply connected so q must be a regular covering. One sees that the only symmetries of X_{Φ_1} are the obvious "horizontal" translations, and so X_{Ψ} is compact, that is, $(\Phi_0: \Psi) < \infty$. So Ψ contains parabolic elements. Thus Φ_1 is maximal among non-parabolic subgroups. On the other hand one may start with a doubly infinite version of (5.5.2) where the attachment of (3)— non-periodic. Then one would obtain a maximal-and-non-parabolic subgroup of Φ_0 which is not Neumann. By sticking in -(2) somewhere (as described above) one would obtain such subgroups also in Γ .

References

- J. L. Brenner and R. C. Lyndon, 'Nonparabolic subgroups of the modular group', J. Algebra 77 (1982), 311–322.
- [2] J. L. Brenner and R. C. Lyndon, 'Permutations and cubic graphs', Pacific J. Math. 104 (1983), 285-315.
- [3] J. L. Brenner and R. C. Lyndon, 'Maximal nonparabolic subgroups of the modular group', Math. Ann. 263 (1983), 1-11.
- [4] R. S. Kulkarni, 'An extension of a theorem of Kurosh and applications to Fuchsian groups', Michigan Math. J. 30 (1983), 259-272.
- [5] R. S. Kulkarni, 'Geometry of free products', Math. Z. 193 (1986), 613-624.
- [6] W. Magnus, 'Rational representations of Fuchsian groups and nonparabolic subgroups of the modular group', Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 9 (1973), 179-189.
- [7] W. Magnus, Noneuclidean tesselations and their groups, (Academic Press, New York, 1974).
- [8] B. H. Neumann, 'Über ein gruppen-theoretisch-arithmetisches problem', Sitzungsber. Preuss. Akad. Wiss. Math.-Phys. Kl. 10 (1933).
- [9] H. Petersson, 'Über einen einfachen typus von untergurppen der modulgruppe', Arch. Math. 4 (1953), 308-315.
- [10-12] W. W. Stothers, 'Subgroups of infinite index in the modular group I-III', Glasgow Math. J. 20 (1979), 103-114, *ibid.* 22 (1981), 101-118, *ibid.* 22 (1981), 119-131.
- [13] C. Tretkoff, 'Nonparabolic subgroups of the modular group', *Glasgow Math. J.* 16 (1975), 90-102.

Department of Mathematics City University of New York 33 W. 42nd Street New York, New York 10036-8099 U.S.A.