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Abstract

We prove that a formula for the ‘pluricanonical’ double ramification cycle proposed by
Janda, Pandharipande, Pixton, Zvonkine, and the second-named author is in fact the
class of a cycle constructed geometrically by the first-named author. Our proof proceeds
by a detailed explicit analysis of the deformation theory of the double ramification cycle,
both to first and to higher order.
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1. Introduction

Inside the moduli space Mg,n of smooth pointed curves (C, p1, . . . , pn) there are natural closed
subsets

Hk
g(m) =

{
(C, p1, . . . , pn) : ω⊗k

C
∼= OC

( n∑
i=1

mipi

)}
⊂Mg,n, (1.0.1)

where m = (m1, . . . ,mn) ∈ Zn is a vector of integers summing to k(2g − 2). Since the above
isomorphism of line bundles is equivalent to the existence of a meromorphic k-differential on C
with zeros and poles at the points pi with specified orders mi, these subsets are called strata
of meromorphic k-differentials. These strata appear naturally in algebraic geometry, the theory
of flat surfaces and Teichmüller dynamics and have been studied intensively in the past; see
the surveys [Zor06, Wri15, Che17] and the references therein. Motivated by problems in sym-
plectic geometry, Eliashberg asked whether there was a natural way to extend these strata and
their fundamental classes to the Deligne–Mumford–Knudsen compactificationMg,n and how to
compute the resulting cycle class.

For k = 0 there are two geometric avenues to defining such an extension. The first is via
relative Gromov–Witten theory and the space of rubber maps to P1 [Li01, Li02, LR01, GV05].
This is based on the observation that for a smooth curve C, a meromorphic 0-differential on
C as above corresponds to a morphism C → P1 with given ramification profiles over 0,∞. The
second series of approaches, viable for any k ≥ 0, uses that Hk

g(m) can be obtained by pulling
back the zero section e of the universal Jacobian J →Mg,n via the Abel–Jacobi section

σ :Mg,n → J , (C, p1, . . . , pn) 	→ ωk

(
−

n∑
i=1

mipi

)
.

The map σ does not extend naturally to Mg,n, but various geometric extensions of its domain
and target have been proposed that yield cycles onMg,n [HKP18, AP21, Hol21, KP19, MW20].
These constructions all produce the same cycle class onMg,n, which we denote DRC; an overview
of one construction is given in § 1.2.

Pixton [Pix14] defined a class P g,k
g (m̃) in the tautological ring ofMg,n. The equality

DRC = 2−gP g,k
g (m̃) (1.0.2)
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was conjectured by Pixton for k = 0, and in [Hol21] for all k. An introduction to Pixton’s formula
in the case k = 0 can be found in [Pan18, § 6.4], and in the general case in [JPPZ17]. The con-
jectured equality 2−gP g,k

g (m̃) = DRC for k = 0 was proven in [JPPZ17]. Since the preprint of
the present paper was posted, the equality 2−gP g,k

g (m̃) = DRC for all k has been established in
[BHP+20].

A new geometric approach to extending the cycle appears for k ≥ 1: assuming that one of
the integers mi is negative or not divisible by k, the papers [FP16, Sch18] define a cycle Hk

g,m

obtained as a weighted1 fundamental class of an explicit closed subset H̃k
g(m) ⊂Mg,n extending

Hk
g(m), and propose the following conjecture.

Conjecture A [FP16, Sch18]. Let k ≥ 1 and m = (m1, . . . ,mn) ∈ Zn with m1 + · · ·+mn =
k(2g − 2). Assume that one of the mi is negative or not divisible by k and let m̃ = (m1 +
k, . . . ,mn + k). Then

Hk
g,m = 2−gP g,k

g (m̃) ∈ Ag(Mg,n).

At the time these papers were written the geometric class DRC had not been defined for k > 0;
from our current perspective it seems most natural simply to conjecture that all three classes
(DRC, 2−gP g,k

g (m̃) and Hk
g,m) are equal whenever they are defined.

The main result of our paper is the following theorem.

Theorem 1.1. For k ≥ 1 and at least one of the mi either negative or not divisible by k, the
equality

DRC = Hk
g,m (1.0.3)

holds in the Chow ring ofMg,n.

Combined with the recent proof of 2−gP g,k
g (m̃) = DRC in [BHP+20], this yields a proof of

Conjecture A.
In fact, not only do we prove the equality (1.0.3) of cycle classes, but as a byproduct of

our proof we demonstrate how the weights in the weighted fundamental class Hk
g,m arise from

intersection multiplicities of the Abel–Jacobi section with the zero section in the construction
of [Hol21]. Further, with a little extra work our method allows us not only to compute the
multiplicities of the cycle, but even to give a presentation for the Artin local rings at generic
points of the double ramification locus (Theorem 5.6).

In the remainder of this introduction, we recall the definition of Hk
g,m and the construction

of DRC from [Hol21] before stating a more refined version of our main result in § 1.3. We give
a sketch of the proof in § 1.4 and discuss some future research directions in § 1.5. We finish by
giving a more detailed overview of the relations between the various approaches for defining the
extended cycles that we discussed before.

1.1 The moduli space of twisted k-differentials
A first idea for extending the stratum Hk

g(m) of k-differentials is to consider its closure

Hk
g(m) ⊂Mg,n. Stable curves (C, p1, . . . , pn) in this closure have been characterized in [BCG+18,

BCG+19a] in terms of existence of k-differentials on the components of C satisfying certain
residue conditions. For k = 1 and all mi ≥ 0, the closure H1

g(m) is of pure codimension g − 1,
and [PPZ19] gives a conjectural relation of the fundamental class of this closure to Witten’s
r-spin classes.

1 This means the fundamental classes of the components of H̃k
g(m) are summed with explicit positive integer

weights; see (1.1.2).
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A larger compactification containing the closure H1
g(m), the moduli space of twisted

k-differentials H̃k
g(m), has been proposed by Farkas and Pandharipande in [FP16]. The idea

here is that as the curve C becomes reducible, it is no longer reasonable to ask for an iso-
morphism of line bundles ω⊗k

C
∼= OC

(∑n
i=1mipi

)
, since these line bundles will have different

degrees on the various components of C. However, these multidegrees can be balanced out by
twisting the line bundles by (preimages of) the nodes of C.

The way this balancing happens is encoded in a twist on the stable graph Γ of C. This is
a map I from the set of half-edges of Γ to the integers, satisfying I(h) = −I(h′) if (h, h′) forms
an edge, together with a further combinatorial condition (see Definition 1.6 for details). Given
a twist I on the dual graph Γ of a stable curve C, let νI : CI → C be the map normalizing
the nodes q ∈ C belonging to edges (h, h′) with I(h) 
= 0. Let qh, qh′ ∈ CI be the correspond-
ing preimages of q under νI . Then the curve (C, p1, . . . , pn) is contained in H̃k

g(m) if and
only if there exists a twist I on its stable graph, such that we have an isomorphism of line
bundles

ω⊗k
CI

∼= OCI

(
n∑

i=1

mipi +
∑

(h,h′)∈E(Γ)
I(h) �=0

(I(h)− k)qh + (I(h′)− k)qh′

)
(1.1.1)

on CI . This corresponds to requiring the existence of a k-differential on the components of the
partial normalization CI of C with zeros and poles at markings and preimages of nodes, where
the multiplicities at the node preimages are dictated by the twist I.

The space H̃k
g(m) is a closed subset ofMg,n containingHk

g(m) but possibly having additional
components supported in the boundary of Mg,n. It turns out that these extra components
are essential when trying to associate a natural cycle class to the extension of the strata of
k-differentials. Assume we are in the case where k ≥ 1 and that at least one of the mi is either
negative or not divisible by k. Then it is shown in [FP16] (for k = 1) and [Sch18] (for k > 1) that
H̃k

g(m) ⊂Mg,n has pure codimension g. In this situation, instead of studying the fundamental
class of H̃k

g(m) (as a reduced substack), the papers [FP16, Sch18] consider a certain weighted
fundamental class Hk

g,m ∈ Ag(Mg,n) of H̃k
g(m).

To define this weighted class, let Z be an irreducible component of H̃k
g(m). Denote by Γ the

generic dual graph of a curve C in Z and let I be the2 generic twist on Γ. Then it is shown
in [FP16, Sch18] that Γ and I must be of a particular form. Indeed, the graph Γ is a so-called
simple star graph, having a distinguished central vertex v0 such that every edge has exactly
one endpoint at the central vertex. The remaining vertices are called the outlying vertices. All
markings i with mi negative or not divisible by k must be on the central vertex. Moreover, the
twist I on Γ has the property that for all edges e = (h, h′), with h incident to v0 and h′ incident
to an outlying vertex, we have that I(h′) is positive and divisible by k. By a slight abuse of
notation we write I(e) = I(h′) in this case; see Figure 1 for an example.

With this notation in place, we can define3 the weighted fundamental class Hk
g,m of H̃k

g(m)
as

Hk
g,m =

∑
(Z,Γ,I)

∏
e∈E(Γ) I(e)

k#V (Γ)−1
[Z] ∈ Ag(Mg,n), (1.1.2)

2 It is not a priori clear that there could not be two different twists on Γ which both ensure that (1.1.1) holds for
the generic point C of Z, but we show in Proposition 2.19 that this cannot happen.
3 The papers [FP16, Sch18] give a slightly different definition of the weighted fundamental class. We recall this
definition in § 1.8.4 and comment on why it is equivalent to the formula above.
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g=0

g=1g=2

-3

3
-3

3

-6

6

3

-2
5

12

central vertex

outlying vertices

Figure 1. Example of a simple star graph for g = 4, k = 3 and m = (−2, 5, 3, 12) with the
twists I of the half-edges and the weights mi of the marked points indicated in grey.

where Z runs over the components of H̃k
g(m) and, as above, Γ, I are the generic dual graph and

twist on Z.
Conjecture A above then relates these weighted fundamental classes to the explicit tautolog-

ical cycles P g,k
g (m̃) proposed by Aaron Pixton in [Pix14]. In our paper, we show how both the

twisted differential space H̃k
g(m) and its weighted fundamental class Hk

g,m naturally arise from
a construction presented by the first-named author in [Hol21].

1.2 Extending the Abel–Jacobi map
Let J be the universal semi-abelian Jacobian over Mg,n, often written Pic0

C/Mg,n
. It has con-

nected fibres, and parametrizes line bundles of multidegree zero on the fibres of the universal
curve C →Mg,n. Inside the open set Mg,n ⊂Mg,n the strata Hk

g(m) of k-differentials can be
obtained as the pullback of the zero section e of J via the Abel–Jacobi section

σ :Mg,n → J , (C, p1, . . . , pn) 	→ ωk

(
−

n∑
i=1

mipi

)
=: ωk(−mP ).

While σ does not in general extend overMg,n, in [Hol21] the first author defines a ‘universal’ stack
M♦→Mg,n, birational over Mg,n, on which σ does extend to a morphism σ♦ :M♦→ JM♦ ,
where JM♦ is the pullback of J to M♦. Moreover, the scheme-theoretic pullback DRL♦ of
the unit section e of JM♦ along σ♦ is proper over Mg,n. Denote by DRC♦ the cycle-theoretic
pullback of the class [e] under σ♦, supported on DRL♦, and by DRC ∈ Ag(Mg,n) its pushforward
under the proper map DRL♦→Mg,n.

1.3 Main result
Refining Theorem 1.1, the next theorem is the main result of our paper.

Theorem 1.2. The image of the double ramification locus DRL♦ under the map M♦→Mg,n

is the moduli space H̃k
g(m) ⊂Mg,n of twisted k-differentials. Moreover, for k ≥ 1 and at least

one of the mi either negative or not divisible by k, we have that

DRC = Hk
g,m ∈ Ag(Mg,n). (1.3.1)
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In fact, this is true in the strong sense that these two cycles supported on H̃k
g(m) have the same

weight at each irreducible component (they are equal as cycles, not just cycle classes).

For the last point of the theorem, the equality of DRC and Hk
g,m on the cycle level, observe

that formula (1.1.2) allows us to define Hk
g,m as a cycle, not just a cycle class. And, under the

assumptions of the theorem, the locus DRL♦ has the expected codimension, and so DRC makes
sense as a cycle, not just a cycle class. Then in fact the equality (1.3.1) holds as an equality of
cycles, not only up to rational equivalence (in contrast to Conjecture A above, which only makes
sense up to rational equivalence).

We give an outline of the proof in § 1.4, where we will also discuss in more detail how
the multiplicities in formula (1.1.2) come up for the cycle DRC. Our method of proof actually
yields more precise information than required for the conjecture; we can not only compute the
multiplicities of the cycle, but even give a presentation for the Artin local rings at generic points
of the double ramification locus (see Theorem 5.6).

The above theorem gives a concrete interpretation for the weights appearing in the definition
of Hk

g,m. It is also a crucial component of the proof of Conjecture A.

Corollary 1.3. Conjecture A is true.

Proof. The equality DRC = 2−gP g,k
g (m̃) is proven in [BHP+20], so this follows from Theorem 1.2.

�
At the time the preprint of the present paper was posted to the arXiv the equality DRC =

2−gP g,k
g (m̃) was known over the locus of compact-type curves by previous work [HPS19] with

Pixton, showing Conjecture A to be true when restricted to the locusMct
g,n ⊂Mg,n of compact

type curves.

1.4 Sketch of the proof
The main difficulty in the proof of Theorem 1.2 is to compute the intersection multiplicity of the
Abel–Jacobi map σ♦ :M♦→ JM♦ with the unit section e of JM♦ along the different components
of DRL♦. For this, we use classical deformation theory to first compute the Zariski tangent space
at a general point and then show how to extend this study to higher-order deformations.

To set up the deformation theory, we first need to choose local coordinates on M♦. Here,
it turns out that it is more convenient to work with a slight variant Mm,1/k →Mg,n of M♦,
for which it is easier to write down local charts around the general points of DRL. The precise
construction ofMm,1/k is given in § 2 (where we also make more concrete the relationship with
the construction of Marcus and Wise [MW20]), but for us the two key properties are as follows.

(i) The map Mm,1/k →Mg,n is log étale and birational and the map σ :M→ J sending

(C,P ) to [ωk(−mP )] extends uniquely to a map σ̄ :Mm,1/k → J .
(ii) We can compute the tangent space to Mm,1/k explicitly.

The double ramification locus is then DRL = σ̄∗e, where e is the unit section in J . The concrete
local charts for Mm,1/k can be used to show that the image of DRL in Mg,n is exactly the
twisted differential space H̃k

g(m).
With this set-up established, the equality of weights in Theorem 1.2 comes about in an

interesting way. Let Z be an irreducible component of H̃k
g(m) with generic stable graph Γ and
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twist I. Then a general point p ∈ Z has exactly

#{p′ ∈ DRL over p} = k#E(Γ)−#V (Γ)+1 = kb1(Γ)

preimages p′ in DRL. This is something that can be easily checked in the local charts ofMm,1/k.
In Definition 2.11, we define a cycle DRC supported on DRL. At each preimage, its multiplicity
is

multp′ DRC =
∏

e∈E(Γ)

I(e)
k

=

∏
e∈E(Γ) I(e)

k#E(Γ)
.

Hence, the pushforward DRC of DRC has multiplicity

multp DRC = k#E(Γ)−#V (Γ)+1

∏
e∈E(Γ) I(e)

k#E(Γ)
=

∏
e∈E(Γ) I(e)

k#V (Γ)−1
,

which is exactly the weight of [Z] in the class Hk
g,m. It is also easy to see that the cycle DRC on

DRL equals the fundamental class of (the possibly non-reduced) DRL (see Lemma 2.17), so we
are left with studying the multiplicity of DRL at its generic points.

Section 3 is concerned with the computation of the tangent space to DRL. Suppose we are
given a point p ∈ DRL ⊆Mm,1/k, which is a general point of some irreducible component of
DRL. Let Γ be the generic stable graph and I be the generic twist on this component.

The maps e and σ̄ induce maps on tangent spaces

TpMm,1/k
Te(p)J

Tpσ̄

Tpe

and the difference b = Tpσ̄ − Tpe factors via the tangent space TeJp to the fibre Jp of J over p.
This induces an exact sequence

0→ Tp DRL→ TpM
m,1/k b→ TeJp;

it thus remains to analyse carefully the map b. For Cp the stable curve corresponding to the point
p, the domain and target of b are easily identified in terms of cohomology groups of sheaves on
Cp. Instead of studying the cokernel of b, it will be more convenient to use Serre duality and
compute the kernel of the linear dual b∨, which is dual to coker(b). In Theorem 4.2 we show that
ker(b∨) has a natural basis, with one element for each outlying vertex v of Γ connected to the
central vertex only by edges with twists I > k. In Theorem 4.3 we conclude that

dimTp DRL = dimp DRL +#{e ∈ E(Γ) : I(e) > k},
so we have one ‘direction of non-reducedness’ for each edge e with I(e) > k, corresponding to an
infinitesimal deformation smoothing the corresponding node.

While this description is quite simple, the deformation-theoretic computation that derives
it is fairly long and involved. We decompose the tangent space TpM

m,1/k into a direct sum of
four pieces, corresponding to different types of deformations. Then the dual b∨ decomposes into
four summands accordingly and we compute the intersection of their kernels. In the course of
these computations, we need to show that for the k-differential on the central component of Cp,
we have that sums of kth roots of its k-residues4 at (subsets of the) nodes of Cp are generically
non-vanishing. We show a corresponding general result, which might be of independent interest,
in Appendix C.

4 A generalization of the residue of a 1-differential; see Appendix C for a definition.
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That the tangent space to the double ramification locus can be computed via first-order
deformation theory is unsurprising, but in order to prove Theorem 1.2 we need to compute the
local rings of the double ramification locus, which is much more involved. It is not hard to show
that an Artin local ring is determined by its functor of deformations, but reconstructing the
Artin ring from the deformations is in practice often difficult.

Write E for the set of edges of the dual graph of the tautological stable curve Cp over p. The
universal deformation of Cp comes with a natural projection map to SpecK[[xe : e ∈ E]], which
we can see as the space of deformations which smooth the nodes. Here K is our base field, which
we assume to be of characteristic zero. We slice DRL with a generic subvariety of codimension
equal to the dimension of DRL, obtaining a space DRL′ whose tangent space has dimension equal
to the number of edges e with twist I(e) > k. We use our tangent space computation to show
that the natural map DRL′ → SpecK[[xe : e ∈ E]] is a closed immersion; it remains to identify
the image. From the explanation above, one can reasonably guess that the image might be cut
out by the ideal

(xI(e)/k
e : e ∈ E) ⊆ K[[xe : e ∈ E]].

We conclude the proof by showing that for an Artin ring A′, a map SpecA′ → SpecK[[xe :
e ∈ E]] lifts along DRL′ → SpecK[[xe : e ∈ E]] if and only if the elements xI(e)/k

e are sent to zero
under the corresponding ring map K[[xe : e ∈ E]]→ A′. The proof works by writing A′ as an
iterated extension of Artin rings and lifting the map one step at a time. That is, we have Artin
rings A0 = K,A1, . . . , AM = A′ and short exact sequences

0→ Ji → Ai → Ai−1 → 0

of K-vector spaces, such that Ai → Ai−1 is a morphism of K-algebras with kernel Ji ⊂ Ai satis-
fying JimAi = 0 for the maximal ideal mAi of Ai. Then we show that for each i, the obstruction
of lifting an Ai-point of DRL′ to an Ai+1-point of DRL′ over SpecK[[xe : e ∈ E]] is exactly that
all elements xI(e)/k

e are sent to zero in Ai.

Remark 1.4. If we had worked with M♦ instead of Mm,1/k, a similar description would be
possible, but both the multiplicities and the cardinalities of fibres of the double ramification locus
over the twisted differential space would have to be expressed in terms of the greatest common
divisor/least common multiple of the twists (though in the end everything would of course
cancel to give the same answer). This would have made the deformation-theoretic calculation
more complicated, and seemed to us better avoided.

Once again, the key input is our result in Appendix C on the generic non-vanishing of
k-residues.

1.5 Relation to previous work and outlook
Compactification via log geometry. In the paper [Gué16], Guéré uses logarithmic geometry

to construct a moduli space of k-log canonical divisors sitting over H̃k
g(m) and carrying a natural

perfect obstruction theory and virtual fundamental class. For k = 1 and one of the mi negative,
the pushforward of this virtual class equals the weighted fundamental class Hk

g,m. However, for
general k the multiplicity of this pushforward at a component with stable graph Γ and twist I is
equal to

∏
e∈E(Γ) I(e), and thus different from the multiplicities obtained here and conjectured

in [Sch18]. This could indicate that for k > 1 the definition of the space in [Gué16] needs to
be adapted. We hope that the computations in the present paper may shed some light on the
necessary modifications.
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The cases of excess dimension. Until now, our paper has focused on the case k ≥ 1 and one
of the mi negative or not divisible by k, in which case H̃k

g(m) was of pure codimension g. In
general, by [FP16, Theorem 21] all components of the space H̃k

g(m) have at most codimension g.
In these remaining cases, the behaviour is as follows:

– for k = 0, the principal component Hk
g(m) is of codimension exactly g (unless all mi = 0),

but there are components in the boundary ofMg,n of various excess dimensions;
– for k = 1 and all mi ≥ 0, the principal component H1

g(m) is of pure codimension g − 1, with
all other components supported in the boundary and of codimension g;

– for k > 1 and all mi = km′
i ≥ 0 divisible by k, the space Hk

g(m) decomposes as a disjoint
union

Hk
g(m) = H1

g(m
′) ∪Hk

g(m)′,

where H1
g(m

′) is the locus where the k-differential is a kth power of a 1-differential, and

Hk
g(m)′ is the complement. ThenH1

g(m
′) ⊂ H̃k

g(m) is a union of components of codimension

g − 1, with all other components (i.e. Hk
g(m)′ and those supported in the boundary) having

codimension g.

In all of these cases, the cycle DRC still makes sense and by Theorem 1.2 it is indeed supported
on the locus H̃k

g(m) ⊂Mg,n. Similarly, the formula of Pixton’s cycle P g,k
g (m̃) makes sense in

these cases, and in [Hol21] the first author shows that for k = 0 we have DRC = 2−gP g,k
g (m̃).

We expect that in the cases k ≥ 1 and m = km′ ≥ 0 the cycle DRC should behave as
follows:

– on a component Z of H̃k
g(m) of codimension equal to g, it should be∏

e∈E(Γ)) I(e)

k#V (Γ)−1
[Z]

as before (where Γ, I are the generic twist and dual graph);
– on the components H1

g(m
′) of codimension g − 1 it should be given by the first Chern class

of an appropriate excess bundle (for the Abel–Jacobi section meeting the unit section) times
the fundamental class of H1

g(m
′).

It seems likely that the deformation-theoretic tools in the present paper can be applied to prove
these expectations, and explicitly identify the excess bundle.

The perspective above could also help shed further light on a second conjecture made in
[Sch18]. There, for a non-negative partition m′ of 2g − 2, a class [H1

g(m
′)]vir was defined by the

formula

[H1
g(m

′)]vir +
∑

(Z,Γ,I)

( ∏
e∈E(Γ))

I(e)
)

[Z] = 2−gP g,1
g (m̃′),

where Z runs through the boundary components of H̃1
g(m

′) and m̃′ = (m′
1 + 1, . . . ,m′

n + 1).

The idea was that [H1
g(m

′)]vir should be a contribution to the double ramification cycle of the

partition m′, supported on H1
g(m

′). From our perspective, this should just be the contribution

of DRC supported there. Then, since the locus H1
g(m

′) appears as a component of Hk
g(km

′) for
any k > 1, the following conjecture was made.
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Conjecture A
′ [Sch18]. Let k ≥ 1 and m = km′ for a non-negative partition m′ of 2g − 2.

Then we have

[H1
g(m

′)]vir + [Hk
g(m)′] +

∑
(Z,Γ,I)

∏
e∈E(Γ)) I(e)

k#V (Γ)−1
[Z] = 2−gP g,k

g (m̃),

where Z runs through the boundary components of H̃k
g(m).

From the perspective of defining the double ramification cycle via an extension of the
Abel–Jacobi map, this behaviour is expected: the space M♦ for the partition km′ of k(2g − 2)
agrees with the space for the partition m′ of 2g − 2, and the Abel–Jacobi section for km′ is
simply the composition of the section for m′ with the étale morphism

J → J , (C,L) 	→ (C,L⊗k).

Thus, over the locus H1
g(m

′), the intersection of the Abel–Jacobi section with the unit section
should produce the same contribution to the cycle DRC.

Smoothing differentials. The papers [BCG+18, BCG+19a] give criteria for a nodal curve
(C, p1, . . . , pn) to lie in the locus Hk

g(m). Being contained in this closure is equivalent to
having some one-parameter deformation (Ct, p1,t, . . . , pn,t)t∈Δ with the general curve being con-
tained in Hk

g(m). The criteria of [BCG+18, BCG+19a] are phrased in terms of the existence of
k-differentials on the components of C satisfying some vanishing conditions for sums of kth roots
of their k-residues at nodes of C. On the other hand, in our deformation-theoretic computations
in § 5 we see that for a point in a boundary component of the double ramification locus, the
obstruction to smoothing the nodes while remaining in the double ramification locus is exactly
related to a non-vanishing of such sums of kth roots of k-residues. While these computations are
not directly applicable to the problem of classifying Hk

g(m), it seems plausible that the methods
of our paper can be applied in this direction. We thank Adrien Sauvaget for pointing out this
connection and plan to pursue this in forthcoming work.

In a related direction, the recent paper [BCG+19b] constructs a smooth compactification of
the closure Hk

g(m) and gives a modular interpretation for this new compactification. Here, it is
an interesting question how this relates to the compactification obtained by taking the closure
of Hk

g(m) ⊂ DRL♦ inside the double ramification locus ofM♦.

1.6 An overview of different definitions of double ramification cycles
In this subsection we want to summarize the existing definitions of double ramification cycles in
the literature and the known equivalences between them.

Several authors gave elementary geometric constructions of the DR class on partial com-
pactifications of Mg,n inside Mg,n (e.g. the compact-type locus), and computed them in the
tautological ring. Examples include [Hai13], [GZ14b], [GZ14a], and [Dud18].

The following are the different constructions of a DR cycle on all ofMg,n:

– In the case k = 0, Li, Graber and Vakil gave a construction as the pushforward of a virtual
fundamental class on spaces of rubber maps ([Li01, Li02, GV05]; see also [LR01]).

– Pixton [Pix14] proposed the formula 2−gP g,k
g (m̃) for the DR class as an explicit tautological

class, defined via a graph sum.
– Kass and Pagani proposed extending the cycle as the pullback of a universal Brill–Noether

class on a compactified Jacobian via the Abel–Jacobi section ([KP19] and [HKP18, § 2.4]).
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Log/Tropical
geometry

Extension
of AJ map

Compactified
Jacobian
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Graph
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for k ≥ 1 and some mi < 0 or k � mi

for k = 0

[AP21]

[Hol21]

[HKP18]

[MW20]

[JPPZ17]

Conj. ATheorem 1.1

[BHP+20]

Figure 2. Equivalences between different definitions of double ramification cycles.

– Marcus and Wise used techniques from logarithmic and tropical geometry [MW20] to
construct a space on which the Abel–Jacobi map extends.

– The first-named author gave a definition using a universal extension of the Abel–Jacobi map
as described above [Hol21].

– Abreu and Pacini gave an explicit tropical blowup of Mg,n (i.e. a blowup dictated by an
explicit refinement of Mtrop

g,n ) resolving the Abel–Jacobi map to the Esteves’ compactified
Jacobian overMg,n and use this to define a double ramification cycle [AP21].

– Finally, for k ≥ 1 and one of the mi negative or not divisible by k, there is the definition of
the DR cycle as the weighted fundamental class Hk

g,m, proposed by Janda, Pandharipande,
Pixton, and Zvonkine for k = 1 [FP16] and the second-named author for k > 1 [Sch18].

In Figure 2 we illustrate the known equivalences between these definitions. In particular,
[BHP+20] (which came out after the preprint of the present paper) completes the proof that
they are all in fact equivalent.

1.7 Outline of the paper
The main purpose of this paper is to analyse very carefully the infinitesimal structure of the
double ramification locus, eventually enabling us to compute the multiplicities of its components
and thus compare it to the cycle of twisted differentials. In § 2 we describe the construction of
the space Mm,1/k, the variant of M♦ on which we perform our computations (see § 1.4 above).
We also make more concrete the relationship with the construction of Marcus and Wise [MW20].
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Sections 3 and 4 are devoted to the computation to the tangent space to the double ram-
ification locus. In the brief § 3 we compute the tangent space of the space Mm,1/k, in which
the double ramification locus naturally lives. Section 4 is much more substantial, and contains
the computation of the tangent space of the double ramification locus itself. A key technical
lemma on the non-vanishing of certain residues is postponed until Appendix C, as it may be of
independent interest and we wished to keep its exposition self-contained.

Once we understand the tangent space to the double ramification locus, in § 5 we can
explicitly compute its local ring, and in particular the length of the local ring. In § 5.1 we use
this to deduce the desired formula of the double ramification cycle as a weighted fundamental
class.

Finally, in the Appendices A and B we recall some standard results on Serre duality and
deformation theory via Čech cocycles that are used in several places in the proof. This material
is well known, but we include it to fix notation, and because the very explicit forms of these
results that we need are somewhat scattered about in the literature.

1.8 Notation and conventions
Notation.

K the ground field, assumed to be of characteristic zero
M the moduli space Mg,n of smooth curves of genus g with n marked

points
M the moduli spaceMg,n of stable curves of genus g with n marked points
J →M the universal semi-abelian Jacobian overMg,n

ωk(−mP ) the twisted k-canonical line bundle ωk
C

(
−
∑n

i=1mipi

)
of a curve C

I a twist, given by a function I on the half-edges of a stable graph Γ as
described in Definition 1.6

V out the outlying vertices (i.e. those that are not the central vertex) in a
simple star graph, as described in Definition 1.9

M f←− U g−→ AE a combinatorial chart ofM, as described in § 1.10
M♦ the universal stackM♦/M on which the Abel–Jacobi map σ :M→ J

extends, constructed in [Hol21]
σ♦ :M♦→ J the extension of σ :M→ J to M♦

DRL♦ the scheme-theoretic pullback DRL♦ ⊂M♦ of the unit section e ⊂ J
under σ♦

DRC♦ the double ramification cycle on DRL♦

DRC the cycle in M obtained by the pushforward of DRC♦ via the proper
morphism DRL♦→M

AE
I an affine toric variety AE

I → AE associated to a fixed combinatorial

chart M f←− U g−→ AE and twist I on Γ, with equations as given in
§ 2.3

Mm
I,U the pullback of AE

I → AE under the map g : U → AE from the combi-
natorial chart

Mm the stack Mm →M obtained by gluing the patches Mm
I,U for a cover

ofM by combinatorial charts
σm :Mm → J the extension of σ :M→ J to Mm

DRLm,DRCm the double ramification locus and cycle constructed insideMm
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Mm
k|I the open substack inMm where the twist I is divisible by k

Mm,1/k the partial normalization of Mm
k|I obtained by taking kth roots in the

defining equations of AE
I , pulling back to the combinatorial charts U

and gluing
I ′ the divided twist I ′(e) = I(e)/k for the case where I is divisible by k
σ̄ :Mm,1/k → J the extension of σ :M→ J to Mm,1/k

Mm,k,′′ the normalization ofMm
k|I , an open substack of the normalizationM♦

ofMm

DRL1/k,DRC1/k the double ramification locus and cycle constructed insideMm,1/k

Uu the spectrum SpecOU,u of the local ring of a point u ∈ U inside a

combinatorial chartM f←− U g−→ AE

zh, zh′ coordinates in a singular coordinate chart of the curve CUu/Uu, for an
edge e = h, h′ of the stable graph Γ of CU,u, where zh vanishes on the
component of CU,u incident to h

T the ‘correction’ line bundle on the universal curve CI/M
m,1/k
I,U described

in § 2.5
H1(Γ,K) the first cohomology group of the graph Γ with coefficients in K,

isomorphic to Kb1(Γ)

γ(e, e′) cycle of length 2 given by the composition of the directed edge e with
the inverse of the directed edge e′, assuming e, e′ : v → v′ have same
source and same target

Lv sub-vector space of TuM of dimension at most 1 defined in § 3
Jp the fibre of the universal Jacobian J →Mm,1/k over the point p :

SpecK →Mm,1/k

b : TpM
m,1/k → TeJp the difference Tpσ̄ − Tpe of the differential of the Abel–Jacobi map σ̄

and the unit section e of J
bΩ, bΓ, b>1, bLv the restrictions of b to the direct summands

H1(Cp,Ω∨(−P )), H1(Γ,K),
⊕

e:I′(e)>1K,Lv of TpM
m,1/k in § 4.1

Ω the sheaf of relative differentials
ω the relative dualizing sheaf

Generalities. We have fixed integers g ≥ 0, n > 0, k > 0 with 2g − 2 + n > 0, and integers
m1, . . . ,mn summing to k(2g − 2) with at least one mi negative or not divisible by k. We will
write M for Mg,n, M for Mg,n etc. We write J for the universal semi-abelian Jacobian over
M, often written Pic0

C/M. Then the section

σ :M→ J , (C, p1, . . . , pn) 	→ ωk

(
−

n∑
i=1

mipi

)
=: ωk

(
−mP

)
lives naturally in J (M), but in general does not extend to the whole of M.

We work throughout over a fixed field K, which we assume to have characteristic zero. Our
proof is entirely algebraic, except for the crucial application of a result of Sauvaget [Sau19,
Corollary 3.8] in Appendix C, which we expect to admit an algebraic proof. When k > 1 we
very often use the characteristic-zero assumption, but for k = 1 it can often be avoided; its main
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purpose is in allowing us to apply Sauvaget’s result mentioned above, and in Lemma 4.10 where
we use that a function with vanishing differential is locally constant. As such it may well be
possible with the methods here to determine what happens in small characteristic; it seems very
likely that the multiplicities of the twisted differential space will be different in this case.

Remark 1.5. Our results do not require the ground field K to be algebraically closed. When
we talk about the graph of a curve over a field, we are implicitly saying that the irreducible
components are geometrically irreducible, and the preimages of the nodes in the normalization
are all rational points. At later points we will assert that various k-differentials locally have
kth roots; this should be interpreted over a suitable finite extension (our characteristic-zero
assumption ensures that adjoining kth roots yields an étale extension, and thus does not affect
the deformation theory). Alternatively, because the computations of the tangent spaces and
lengths of local rings are invariant under étale extensions, the reader may assume without loss
of generality that the ground field k is algebraically closed throughout §§ 4 and 5.

We expect that most readers will be mainly interested in the case of algebraically closed
fields, so to minimize clutter we do not explicitly discuss these field extensions, but allow the
interested reader to insert them when necessary.

1.8.1 Graphs and twists. A graph Γ consists of a finite set V of vertices, a finite set H of
half-edges, a map ‘end’ from the half-edges to the vertices, an involution i on the half-edges, and
a genus g : V → Z≥0. Graphs are connected, and the genus g(Γ) is the first Betti number plus
the sum of the genera of the vertices.

Self-loops are when two distinct half-edges have the same associated vertex and are swapped
by i. Edges are sets {h, h′} (of cardinality 2) with i(h) = h′. Legs are fixed points of i, and L
denotes the set of legs. A directed edge h is a half-edge that is not a leg; we call end(h) its source
and end(i(h)) its target, and sometimes write it as h : end(h)→ end(i(h)). We write E = E(Γ)
for the set of edges.

The valence val(v) of a vertex is the number of non-leg half-edges incident to it, and we
define the canonical degree can(v) = 2g(v)− 2 + val(v), so that

2g(Γ)− 2 =
∑

v

can(v).

A closed walk in Γ is a sequence of directed edges so that the target of one is the source of
the next, and which begins and ends at the same vertex. We call it a cycle if it does not repeat
any vertices or (undirected) edges.

A leg-weighted graph is a graph Γ together with a function m from the set L of legs to Z

such that
∑

l∈L m(l) = k(2g(Γ)− 2).

Definition 1.6. A twist of a leg-weighted graph is a function I from the half-edges to Z such
that:

(i) for all legs l ∈ L, we have m(l) = I(l);
(ii) if i(h) = h′ and h 
= h′ then I(h) + I(h′) = 0;
(iii) for all vertices v,

∑
end(h)=v I(h)− k · can(v) = 0.

We write Tw(Γ) for the (non-empty) set of twists of a leg-weighted graph Γ.

Remark 1.7. In [Hol21] these twists were called ‘weightings’, and were denoted w. The present
notation is much closer to that used by [FP16]; we have made this change to facilitate comparison
to [FP16], and because the letter w was already overloaded.
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Remark 1.8. Farkas and Pandharipande impose two additional conditions (which they call ‘van-
ishing’ and ‘sign’), which together state that Γ cannot contain any directed cycle for which every
directed edge h has I(h) ≥ 0, and at least one h has I(h) > 0.

We do not need to impose this condition as it will drop out automatically from our geometric
set-up; more precisely, the fibre of a chartMm

I,U ofMm over the origin in AE (see § 2.2 for this
notation) is easily seen to be empty if either of these conditions is not satisfied.

If one forgets the values of the integers I(h) and remembers only their signs and whether
they vanish, the above condition is exactly equivalent to ‘Suzumura consistency’, a condition
arising in decision theory [Bos08].

Definition 1.9. We say that a leg-weighted graph Γ is a simple star graph if all legs with
negative weight or weight not divisible by k are attached to the same vertex (which we call
the central vertex ), and every edge has exactly one half-edge attached to the central vertex (in
particular, there are no self-loops). We call the non-central vertices the outlying vertices, and the
set of them is V out.

1.8.2 The weighted fundamental class of the space of twisted differentials. Here we recall the
definition of the class Hk

g,m ∈ Ag(M) given in [FP16, § A.4] (for k = 1) and [Sch18, § 3.1] (for
k > 1) and explain why it is equivalent to the definition as a weighted fundamental class of
H̃k

g(m) presented earlier in this introduction.
First, recall that given any integer k ≥ 1 and a partition m of k(2g − 2) of length n, we have

Hk
g(m) =

{
(C, p1, . . . , pn) : ωk

C

(
−
∑

i

mipi

)
∼= OC

}
⊂Mg,n,

the corresponding stratum of k-differentials. This closed, reduced substack has pure codimension
g − 1 if k = 1 and all mi ≥ 0, and pure codimension g if there exists i such that mi is negative
or not divisible by k. As before we denote by Hk

g(m) its closure inMg,n.
Write S for the set of simple star graphs of genus g (see Definition 1.9). We say that a twist

I of a simple star graph is positive (writing Tw+(Γ) for the set of positive twists) if I(h) > 0
and k divides I(h) for every half-edge h attached to an outlying vertex. In this case, by a slight
abuse of notation, we write I(e) = I(h) for the edge e = (h, h′) to which h belongs.

With this notation, Janda, Pandharipande, Pixton, Zvonkine (for k = 1) and the second
author (for k > 1) define

Hk
g,m =

∑
Γ∈S

∑
I∈Tw+(Γ)

∏
e∈E(Γ) I(e)

|Aut(Γ)|k#V out ξΓ∗
[[
Hk

g(v0)(m|v0 ,−I|v0 − k)
]

·
∏

v∈V out(Γ)

[
H̄1

g(v)

(
m
k
|v,
I

k
|v − 1

)]]
.

Here Hk
g(v0)(m|v0 ,−I|v0 − k) denotes the cycle in Mg(v0),n(v0) with n(v0) the number of half-

edges attached to v0, and with weighting given by restricting the weighting m to those legs
attached to v0, and given by −I(e)− k at the half-edge belonging to the edge e of Γ. The cycles
H1

g(v)(m/k|v, I/k|v − 1) on the outlying vertices v are defined analogously, where we use that
all markings on them have weights mi divisible by k and all twists I are likewise divisible by k
(again, see [Sch18] for details).

Now we comment on why this is a weighted fundamental class of the space H̃k
g(m). Given

a boundary component Z of this space, let Γ be the generic dual graph of a curve C in Z
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and let I be the twist on Γ such that condition (1.1.1) is satisfied for this generic curve C. By
[Sch18, Proposition A.1] every node of C such that the corresponding edge has twist I = 0 can
be smoothed while staying in H̃k

g(m). Thus since Z is assumed a generic point of H̃k
g(m), all

edges of Γ must have non-zero twist. Then this condition tells us that the various components
Cv of C vary within appropriate strata of k-differentials. But the codimension of Z is at most g
by [FP16, Theorem 21]. A short computation shows that this is only possible if at all but one
of the vertices v, the curve Cv varies in a stratum of kth powers of holomorphic 1-differentials
(which is the case of excess dimension). This implies that all twists must be divisible by k and
that there is exactly one vertex carrying all the negatively twisted half-edges as well as markings
i with mi negative or not divisible by k. This easily implies that the generic dual graph Γ of Z
is a simple star graph and that the twist I on Γ is positive.

Conversely, one checks that condition (1.1.1) is satisfied on all the loci on which the cycle
Hk

g,m above is supported. This shows that it is indeed a weighted fundamental class of H̃k
g(m).

On the other hand, the weights agree with those given earlier in this introduction: the closures of
strata of differentials (which are pushed forward via ξΓ) are generically reduced and thus all have
multiplicity 1. The factor 1/|Aut(Γ)| exactly accounts for the fact that the gluing morphism Γ
has degree |Aut(Γ)|.

Thus the definition of Hk
g,m given earlier coincides with the definitions from [FP16, Sch18].

1.8.3 Combinatorial charts. If p : SpecK →M is a geometric point corresponding to a curve
C, the associated graph ΓC comes with a leg weighting from the integers mi. If a node of the
curve over p has local equation xy − r for some r ∈ Oet

M,p
, then the image of r in the monoid

Oet
M,p

/(Oet
M,p

)× is independent of the choice of local equation. In this way, for each edge e ∈ E(Γp)
we obtain an element �e ∈ Oet

M,p
/(Oet

M,p
)×, recalling that edges of the graph correspond to nodes

of the curve.
Given a leg-weighted graph Γ with edge set E, define5

AE = SpecK[ae : e ∈ E].

To any point a in AE we associate the graph Γa obtained from Γ by contracting exactly those
edges e such that ae is a unit at a. Denote by [ae] ∈ Oet

AE ,p
the image of the function ae on AE

in Oet
AE ,p

.

Definition 1.10. A combinatorial chart of M consists of a leg-weighted graph Γ and a diagram
of stacks

M f←− U g−→ AE

satisfying the following six conditions.

(i) U is a connected scheme.
(ii) g : U → AE is smooth.
(iii) f : U →M is étale.
(iv) the pullbacks of the boundary divisors inM and AE to U coincide.
(v) 0 ∈ AE is in the image of g.

Let p : SpecK → U be any geometric point, yielding natural maps

Oet
M,f◦p

f�

→ Oet
U,p

g�

← Oet
AE ,g◦p.

5 In [Hol21] this was denoted MΓ.
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(vi) Let C = f(p) and a = g(p). Then we require an isomorphism

ϕp : ΓC → Γa

such that f �(�e) = g�([aϕp(e)]) up to units in Oet
U,p for every edge e (which necessarily makes

this ϕp unique if it exists). Moreover, the map ϕp sends the leg weighting on Γf◦p coming
from the −mi to the leg weighting on Γg◦p coming from that on Γ.

This definition is as in [Hol21] but with the logarithmic structures excised (since we do not
need them). We see in [Hol21] that M can be covered by combinatorial charts.

2. Constructing suitable moduli spaces

2.1 Recalling the construction of DR
We begin by recalling the basic construction of the cycle DR from [Hol21]. First one constructs a
certain stackM♦/M such that the rational map σ :M→ J extends to a morphism σ♦ :M♦→
J . Writing e for the unit section of J (viewed as a closed subscheme) and [e] for its Chow class,
it is shown in [Hol21] that the scheme-theoretic pullback DRL♦ of e along σ♦ is proper overM.
We would now like to take the cycle-theoretic pullback of the class of e along σ♦, but the latter
is not (known to be) a regular closed immersion, so we do not know how to make sense of this
pullback. Instead, we consider the induced sectionM♦→ JM♦ = J ×MM♦, and pull back the
class of the unit section along this section (using that the latter is a regular closed immersion as
J is smooth overM) to obtain a cycle DRC♦ onM♦. This cycle DRC♦ is naturally supported
on DRL♦, and so by properness can be pushed down to a cycle onM, which we denote DRC, the
compactified double ramification cycle. Many more details and properties of the construction,
and a comparison to other constructions in the literature, can be found in [Hol21], [HPS19] and
[HKP18].

In this paper we will work with a slight variant of the stack M♦ of [Hol21]; this is only for
convenience, but the intricacy of the calculations we have to carry out makes every available bit
of notational efficiency worth using. We also note that M♦ depends not only on g and n, but
also on the mi and k, hence the notation is not good; we will take the opportunity to correct
this.

The stack M♦ is built by gluing together normal toric varieties; in particular, it is normal.
We will begin by introducing a ‘non-normal’ analogueMm ofM♦ which is close to (but not yet
quite) what we want. The resulting double ramification cycle will be unchanged, by compatibility
of the refined Gysin pullback with the proper pushforward; see § 2.6 for more details.

2.2 Construction of Mm

Fix a combinatorial chart
M f←− U g−→ AE

and a twist I on Γ. If e = {h, h′} is an edge of Γ, and γ is a cycle in Γ, we define

Iγ(e) =

⎧⎨⎩
0 if h /∈ γ and h′ /∈ γ
I(h) if h ∈ γ
I(h′) if h′ ∈ γ.

(2.2.1)

In the free abelian group on symbols ae : e ∈ E we consider the submonoid generated by the ae

and by the expressions ∏
e∈E

a
Iγ(e)
e (2.2.2)
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as γ runs over cycles in Γ, and we denote the spectrum of the associated monoid ring by AE
I .

Equivalently, AE
I is the spectrum of the subring of K[a±1

e : e ∈ E] generated by the ae and by
the expressions in (2.2.2). Note that this is slightly different from the monoid rings constructed
in [Hol21], where we worked with sub-polyhedral cones of QE

≥0, cut out by equations: monoids
coming from cones are always saturated, and so yield normal varieties, whereas here we want
to work with not necessarily saturated monoids. In § 2.3 we give explicit equations for (a slight
variant on) the AE

I .
We write Mm

I,U for the pullback of AE
I to U . We want to argue that these Mm

I,U naturally
glue together to form a stack Mm over M. The first part of the gluing can even be done over
AE . Indeed, fixing a graph Γ, as I runs over twists of Γ the AE

I naturally glue together as I; cf.
[Hol21, § 3].6 We denote the glued object by ÃE → AE .

Example 2.1. In the case k = 0, suppose the graph Γ has two edges and two (non-loop) vertices
u and v. Suppose the leg weighting is +n at u and −n at v. Twists consist of a flow of a along
edge e from u to v, and n− a along the other edge e′ (again from u to v), for a ∈ Z:

u v
+n

I(e)=i

I(e′)=n−i

+n

(2.2.3)

In this setting AE = SpecK[ae, ae′ ]. There are two directed cycles, and expression (2.2.2)
yields ai

ea
i−n
e′ and a−i

e an−i
e′ . The form of AE

I then depends on I: we have

i < 0 : AE
I = SpecK[a±1

e , a±1
e′ ],

i = 0 : AE
I = SpecK[ae, a

±1
e′ ],

0 < i < n : AE
I = Spec

K[ae, ae′ , s
±1]

(an−i
e′ s− ai

e)
= Spec

K[ae, ae′ , t
±1]

(ai
et− an−i

e′ )
,

i = n : AE
I = SpecK[a±1

e , ae′ ],

i > n : AE
I = SpecK[a±1

e , a±1
e′ ].

(2.2.4)

A more detailed explanation of these equations can be found in (2.3.3) below. These patches
are then all glued together along the torus SpecK[a±1

e , a±1
e′ ] to form ÃE . Note that (in the case

where n is not prime) this differs slightly from the example in [Hol21, Remark 3.4] (where a toric
interpretation is given) as the rings above are not normal for 0 < i < n whenever n and i have
a common factor.

These patches can naturally be seen as charts of a (non-normal) toric blowup. In more
involved examples (e.g. [Hol21, Remark 3.5]) there is no canonical way to embed the patches in
a blowup, though see also [AP21] for a general approach to compactifying.

While there are infinitely many charts glued together, only those for 0 ≤ i ≤ n are relevant;
the others do not enlarge the space. This is how we glue infinitely many patches to obtain a
quasi-compact space.

We now return to the general construction. For a fixed combinatorial chart U , pulling these
ÃE back to U we obtain a stack covered by patches Mm

I,U . Then running over a cover of M

6 Note that the hard thing in that reference is proving quasi-compactness of the resulting object, but since it is
clear that the normalization of the object constructed here is that built in [Hol21] the quasi-compactness comes
for free here.
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by combinatorial charts yields a collection of stacks over M which are easily upgraded to a
descent datum. We denote the resulting ‘descended’ object by Mm. Comparing with the con-
struction of M♦ in [Hol21], one sees that the normalization of Mm is M♦. Imitating the proof
of [Hol21, Theorem 3.5] shows that the map Mm →M is separated, of finite presentation, rel-
atively representable by algebraic spaces, and an isomorphism over M. If we equip the above
objects with their natural log structures, it is also log étale. From separatedness and the impli-
cation (1) =⇒ (2) of [Hol21, Lemma 4.3], we see that the map σ :M→ J extends (uniquely)
to a morphism σm :Mm → J .

Definition 2.2. We define the double ramification locus DRLm �Mm to be the schematic
pullback of the unit section of J along σm.

NowM♦→Mm is proper, and by [Hol21, Proposition 5.2] the map DRL♦→M is proper.
But since DRL♦→ DRLm is surjective, by [Sta13, Tag03GN] DRLm →M is also proper.

Definition 2.3. We define the double ramification cycle DRCm to be the cycle-theoretic pull-
back of the unit section of J ×MM

m along the section induced by σm, yielding a cycle on
DRLm.

The pushforward of DRCm toM makes sense by properness of DRLm →M, and the com-
patibility of the refined Gysin pullback with the proper pushforward (see Lemma 2.12) implies
that the pushforward of DRCm to M coincides with pushforward of DRC♦ to M. See § 2.6 for
further details.

2.3 A partial normalization of Mm

As discussed in § 1.8.4, on the components of the double ramification locus supported in the
boundary, the twist I is generically divisible by k. If we restrict the construction in § 2.2 to
twists I taking values in kZ, we obtain an open substack Mm

k|I of Mm. We can define a finite

surjective mapMm,1/k →Mm
k|I by replacing the generators in (2.2.2) by∏

e∈γ

a±I(e)/k
e . (2.3.1)

More concretely, we obtainMm,1/k by gluing together patchesMm,1/k
I,U similarly to the procedure

in § 2.2. But now, the patchMm,1/k
I,U is the pullback of the space AE

I′ → AE to U , where I ′(e) =
I(e)/k. For clarity and later use, we now give explicit equations for the AE

I′ (and hence implicitly

forMm,1/k
I,U since it arises by pulling back AE

I′ to U).
Let Υ be the set of cycles γ in Γ and recall that E is the set of edges in Γ. Then naturally

we can see AE
I′ as a subscheme of AΥ × AE cut out by explicit equations. Let ((aγ)γ∈Υ, (ae)e∈E)

be coordinates on AΥ × AE . Then the generators (2.3.1) translate into a system of equations in
the aγ , ae. Indeed, given f ∈ ZΥ and e ∈ E, define the integer

Me,f =
∑

γ

fγI
′
γ(e), (2.3.2)

where I ′γ = Iγ/k (cf. (2.2.1)). Then a set of equations cutting out AE
I′ ⊂ AΥ × AE is given by the

vanishing of the

Ψf =
( ∏

γ∈Υ:fγ>0

a
fγ
γ

)
·

∏
e∈E:Me,f <0

a
−Me,f
e −

( ∏
γ∈Υ:fγ<0

a
−fγ
γ

) ∏
e∈E:Me,f >0

a
Me,f
e (2.3.3)
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as f runs through ZΥ. In particular, for any cycle γ we have for the inverted cycle i(γ), walking
in the opposite direction, that aγai(γ) = 1, which forces aγ 
= 0. Apart from that, the simplest
equations in the system above are of the form

aγ

∏
e∈γ:I(e)<0

a−I′(e)
e =

∏
e∈γ:I(e)>0

aI′(e)
e . (2.3.4)

We will see later that these are the only equations that matter for computing the tangent space
to Mm,1/k.

To get the description ofMm,1/k
I′,U over U one inserts for the variables ae the components of the

function g : U → AE from our combinatorial chart, and obtains equations forMm,1/k
I′,U ⊂ U × AΥ.

Remark 2.4. A shorter but less explicit description of the polynomials Ψf of (2.3.3) can be
obtained by saturating an ideal obtained from (2.3.4). Let R := K[aγ : γ ∈ Γ][ae : e ∈ E], and
let A be the R-algebra obtained by formally adjoining inverses to the ae. Let I be the ideal of A
generated by

aγ −
∏
e∈γ

aI′(e)
e , (2.3.5)

and let IR be the intersection of I with R. Then IR is exactly the ideal generated by the Ψf of
(2.3.3). Note that this is not in general equal to the ideal generated by polynomials coming from
expressions in the form (2.3.4).

The mapMm,1/k →Mm
k|I is finite birational, but in general neither the source nor the target

is normal, thus the map need not be an isomorphism. Indeed, we have the following lemma.

Lemma 2.5. Let p ∈Mm
k|I lie over a simple star graph Γ with outlying vertex set V out. Then

the fibre over p of the mapMm,1/k →Mm
k|I contains exactly k#E(Γ)−#V out

= kb1(Γ) points.

Proof. Let Mm
I,Γ be a chart containing p with I = k · I ′ (here we use p ∈Mm

k|I). Then the

preimage of Mm
I,Γ in Mm,1/k is Mm,1/k

I′,Γ and the map Mm,1/k
I′,Γ →Mm

I,Γ is a base change of the
map

AE
I′ → AE

I , ((aγ)γ , (ae)e) 	→ (((aγ)k)γ , (ae)e). (2.3.6)

Now p corresponds to a point where all the ae = 0, and the values of aγ for γ in a basis of
H1(Γ,Z) can be chosen freely. Once these values of aγ are fixed, all other aγ′ are determined by
(2.3.3). Thus the number of preimage points under the map (2.3.6) is exactly kb1(Γ), and so the
same is true for the pullbackMm,1/k

I′,Γ →Mm
I,Γ. �

Remark 2.6. The reader only interested in the case k = 1 will note that in this case the maps

Mm,1/k →Mm
k|I →M

m

are all isomorphisms, and I ′(e) = I(e).

Lemma 2.7. Suppose that Γ is a simple star graph. ThenMm,1/k
I′,U is a local complete intersection

over K.

As in [Hol21], the stack Mm,1/k
I′,U can be defined relative to Z, in which generality the same

lemma holds, with the same proof. The requirement that Γ be a simple star seems necessary;
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the graph

◦ ◦ ◦ ◦ (2.3.7)

seems to give a counterexample in general, though we have not checked all details.

Proof. Recall the notion of a syntomic morphism [Sta13, Tag01UB] generalizing the definition of
being a local complete intersection over a field. In particular, the stackMm,1/k

I′,U is a local complete

intersection over K if and only if Mm,1/k
I′,U → SpecK is syntomic. Now the class of syntomic

morphisms is closed under composition and base change, and the morphism Mm,1/k
I′,U → SpecK

factors as
Mm,1/k

I′,U → AE
I′ → SpecK;

moreover, the first morphism is smooth (and hence syntomic) as a base change of the smooth
morphism U → AE . Thus it suffices to check that AE

I′ → SpecK is syntomic, that is, that AE
I′ is

a local complete intersection.
Step 1. Choosing a spanning tree in Γ induces a collection Υ′ ⊆ Υ of cycles in Γ forming a

basis of H1(Γ,Z). Given a cycle γ ∈ Υ, writing γ as an integral linear combination of elements
of Υ′ induces an element of ZΥ′

(with all coefficients in {−1, 0, 1}), whose image in ZΥ under the
natural inclusion ZΥ′ → ZΥ we denote by fγ . We denote by δγ ∈ ZΥ the indicator function for
γ. Then the corresponding expression Ψfγ−δγ (as defined in (2.3.3)) contains no terms ae with
non-zero exponents.

Step 2. Consider the collection of polynomials consisting of the Ψfγ−δγ for γ ∈ Υ. We then
claim that the subscheme Z of AΥ × AE cut out by these polynomials is smooth over K of
dimension #Υ′ + #E. First, for γ ∈ Υ′ the equation Ψfγ−δγ = 0 can be rewritten as 1 = 1, so
can be ignored. Then if i(γ) ∈ Υ′, the equation Ψfγ−δγ = 0 yields aγai(γ) = 1, so ai(γ) is inverted.
For all other γ ∈ Υ′ we can move all the aγ′ with γ′ ∈ Υ′ to the left-hand side of the equation
(perhaps inverting them), thus writing aγ as a product of a±1

γ′ . Thus in fact Z is a graph of a
suitable function (A1 \ {0})Υ′ × AE → AΥ\Υ′

, obtained by solving for those coordinates aγ for
γ ∈ Υ \Υ′. In particular, Z is smooth of the claimed dimension.

Step 3. Since AE
I′ has dimension #E, it suffices to show that it is cut out from Z by the Ψδγ′

as γ′ runs over Υ′. First, given γ ∈ Υ, we claim that Ψδγ is contained in the ideal of Γ(Z,OZ)
generated by the Ψδγ′ : γ′ ∈ Υ′. We may assume that neither γ nor i(γ) lies in Υ′. Then γ consists
of two directed edges, say γ = e1 ◦ i(e2), with the ei going from the central vertex to an outlying
vertex. Suppose that the spanning tree contains the edge e0 to that outlying vertex. Then γ can
be written as a difference of two cycles in Υ′: γ = γ1 − γ2 with γ1 = e1 ◦ i(e0) and γ2 = e2 ◦ i(e0).
Then

Ψδγ = aγa
I′(e2)
e2

− aI′(e1)
e1

,

which is evidently contained in the ideal generated by

Ψfγ−δγ = aγ1 − aγ2aγ , Ψδγ1
= aγ1a

I′(e0)
e0

− aI′(e1)
e1

, Ψδγ2
= aγ2a

I′(e0)
e0

− aI′(e2)
e2

,

using that all aγ are invertible on Z.
Step 4. It remains to treat the case of a Ψf coming from an arbitrary element f ∈ ZΥ. The

element f induces an element of H1(Γ,Z), which we can view as a subset of ZE ; write F for the
image of f in ZE . If F is zero then the equation Ψf = 0 already holds on Z. If F is non-zero
then there exists a cycle γ ∈ Υ satisfying the assumptions of Lemma 2.8, and Ψδγ is in our ideal
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by Step 3, so we may replace f by f − δγ . Now the sum of the absolute values of the coefficients
of F is a positive integer strictly greater than the corresponding term for f − δγ , so this process
must terminate. �
Lemma 2.8. Let f ∈ ZΥ, and let γ ∈ Υ; write γ = (h1, h2), and set ej = {hj , i(hj)}. Assume
that Me1,f ≥ 1 and Me2,f ≤ −1. Then Ψf is contained in the ideal generated by Ψδγ and Ψf−δγ .

Proof. A small calculation with expressions (2.3.3). �

2.4 Charts and coordinates on the universal curve
For the deformation-theoretic computations later, it will be necessary to fix a system of coor-
dinates on the universal curve in the neighbourhood of a given point. Suppose we have a
combinatorial chart

M f←− U g−→ AE

and a point u ∈ U(K) mapping to the origin in AE (if desired we make a finite separable extension
of K so that this exists). Write Uu = SpecOU,u. A smooth coordinate chart of the tautological
stable curve CUu/Uu consists of an open subscheme V ↪→ Csm

Uu
of the smooth locus of CUu over Uu

with connected fibre over u. A singular coordinate chart of CUu/Uu consists of an isomorphism
from the strict henselization7 of CUu at a non-smooth point (corresponding to an edge e = {h, h′}
of Γ) to the strict henselization ofOU,u[zh, zh′ ]/(zhzh′ − �e) at the non-smooth point over u, where
zh (respectively, zh′) vanishes on the component to which h (respectively, h′) connects.

We will repeatedly make use of the following situation.

Situation 2.9. We fix:

– a combinatorial chartM f←− U g−→ AE with Γ a simple star;
– a twist I of Γ;
– a K-point u of U lying over the origin of AE ;
– a K-point p ofMm,1/k

I,U lying over u;
– an fpqc cover of the universal stable curve CUu/U

u consisting of a finite collection of smooth
and non-smooth charts as described above.

2.5 The universal section σ̄
Composing with the map σm :Mm → J yields a map σ̄ :Mm,1/k → J extending the section
σ ∈ J (M); this is the same as the Abel–Jacobi map of [MW20, § 4]; cf. § 2.7. Here we make this

map explicit. We fix a combinatorial chartM f←− U g−→ AE and a twist I, and we work on the
chart Mm,1/k

I,U ofMm,1/k.

Write CI for the universal stable curve overMm,1/k
I,U . On CI we have the line bundle ωk(−mP )

which has total degree zero on every fibre, but need not have multidegree 0 (the zero vector)
if the fibres are not irreducible, and so we cannot define σ = [ωk(−mP )]. The idea behind the
definition of Mm,1/k

I,U is that the multidegree of ωk(−mP ) can be ‘corrected’ to 0 by adding on
vertical divisors supported over the boundary (‘twistors’); details can be found in [Hol21].

Later we will need an explicit description of the pullback of this ‘corrected’ bundle to the tau-
tological curve over a (connected) scheme T →Mm,1/k

I,U such that the composite T →Mm,1/k
I,U →

U factors via the strict henselization at the point u (this is to ensure that the local coordinates

7 The strict henselization is the local ring for the étale topology; intuitively, it can be thought of as playing a
similar role to that of an ε-neighbourhood in the complex analytic world.
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zh, zh′ below make sense on T ). We will describe this line bundle by giving its pullback to the
fpqc cover chosen above, together with transition functions. We first define a ‘correction’ line
bundle T . Begin by choosing a function

λ : {directed edges of Γ} → OT (T )×

such that λ(−e) = λ(e)−1, and such that for every loop γ in Γ we have∏
e∈γ

λ(e) = aγ .

This is possible: choose a spanning tree Γ′ ⊂ Γ. Then the edges e in Γ but not Γ′ correspond to
a basis γe of the space of cycles (where γe first takes the edge e and then takes the unique path
inside Γ′ closing the loop). Given this, a possible choice of λ is to set λ = 1 on all edges of Γ′

and λ(e) = aγe on the remaining edges.
Choose also an orientation on each non-loop edge. The bundle T will then be trivial on each

chart of the cover, and we will choose a generating section 1 on the smooth charts, and τe on the
non-smooth chart corresponding to an edge e of Γ. The transition function on an intersection
of smooth charts sends 1 to 1. When a non-smooth chart corresponding to an oriented edge
e = {h, h′} meets a smooth chart, the connected components of the intersection will be contained
in V (zh) or V (zh′). On a connected component contained in V (zh′) the transition function on
the overlap is given by τ = λ(e)kz

I(h)
h 1, and on a connected component contained in V (zh) the

transition function is given by τ = z
I(h′)
h′ 1.

When two non-smooth charts meet their intersection is necessarily contained in a smooth
chart, and so the transition functions are uniquely determined by the previous cases. Then the
section σ̄ is defined by the line bundle ωk(−mP )⊗ T ; the reader can check that it has multidegree
0, or can find the details in [Hol21, § 5]. Moreover, one verifies that for a family with generically
smooth fibre, the bundle T restricts to the trivial bundle on this smooth fibre. This means that
on the smooth fibre, ωk(−mP )⊗ T is just the Abel–Jacobi section and from the separatedness
of J it follows that ωk(−mP )⊗ T is indeed the unique extension to the whole family.

Later on we will want to make some of these choices in a ‘natural’ way on a simple star
graph. Suppose therefore that Γ is a simple star (see Definition 1.9), and for each outlying vertex
v choose one edge ev to v. We take the orientation to be the ‘outgoing’ one from the centre to
the outlying vertices. And we uniquely determine λ by requiring it to take the value 1 on ev.
A basis of cycles is given by going out along ev and back along a different edge. If a cycle γ is
given by ev and e′ then the gluing at the node corresponding to e′ gets ‘adjusted’ by exactly
aγ . Because of the choice of orientation, it is only the gluing on the outlying vertices that gets
adjusted by the aγ .

Remark 2.10. Because we work on this particular normalization Mm,1/k, we can also define
canonically a kth root of T . The construction is similar to that of T ; we choose generating
sections on the smooth and non-smooth charts (denoted 11/k and τ

1/k
e , respectively), then glue

on overlaps by the formulae τ1/k = λ(e)zI′(h)
h 11/k and τ1/k = z

I′(h′)
h′ 11/k. We denote this new line

bundle by T 1/k; there is then a unique isomorphism (T 1/k)⊗k → T sending (11/k)k 	→ 1 and
(τ1/k

e )k 	→ τe.

Definition 2.11. We define the double ramification locus DRL1/k to be the schematic pullback
of the unit section of the universal Jacobian along the map σ̄. We define DRC = DRC1/k to
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be the cycle-theoretic pullback of the unit section of the base change J ×MM
m,1/k along the

section Mm,1/k → J ×MM
m,1/k induced by σ̄, as a cycle class on DRL1/k.

By [Sch18] we know that all the generic points of H̃k
g(m) lie in the locusMm

k|I ofMm where
the twists are divisible by k. We will use this to show in § 2.6 that to compute DRCm it suffices
to compute the multiplicities of DRC1/k. For most of the rest of this paper, we will be working
to compute the multiplicities of DRC1/k.

2.6 Comparing the various double ramification cycles and loci
Recall from § 2 that we have various moduli spaces and double ramification loci (with associated
cycles), which we summarize in the following diagram:

DRL♦

M♦

DRL1/k DRLm
˜Hk

g(m)

Mm,1/k Mm
k|I Mm M

⊂
proper

⊂ proper

⊂ ⊂

proper open imm.

In Lemma 2.13 below we will show that DRLm →M factors set-theoretically through H̃k
g(m).

Note that (unless k = 1) we do not have a map M♦→Mm,1/k, since Mm,1/k is a partial
normalization of an open subscheme ofMm. In § 5 we compute the lengths of the local rings of the
subscheme DRL1/k �Mm,1/k. Ultimately we want to show an equality of cycles DRC = Hk

g,m

on M (recalling that DRC is by definition the pushforward of DRC♦ to M), so we need to
compare the cycles on these various spaces, and to compare the length with the intersection
multiplicity. We begin with a general lemma.

Lemma 2.12. Let X
f→ Y →M be birational representable morphisms of reduced stacks, with

f proper (here ‘birational’ means inducing isomorphisms between some dense open substacks).
Suppose that the morphism σ extends to σX : X → J and σY : Y → J (necessarily unique, by
reducedness). Define DRLX � X and DRLY � Y by pulling back the unit section of J along
σX (respectively, σY ), and assume that they have the expected codimension g.

Define DRCX and DRCY as cycles supported on DRLX (respectively, DRLY ) as in
Definition 2.3. Then f∗ DRCX = DRCY , an equality of cycles on DRLY .

Proof. We proceed as in the proof of [Hol21, Theorem 6.7]. Namely, we have a commutative
diagram

JX JY

X Y

fJ

f

σX eX σY eY
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(here the upward-pointing arrows are closed immersions, by separatedness of J , so we can
also see them as cycles). Since f is proper and birational, we see that fJ∗[eX ] = [eY ]. By
the commutativity of proper pushforward and the refined Gysin homomorphism,8 we see
that

σ!
Y fJ∗[eX ] = f∗σ!

X [eX ]

(an equality of cycles on DRLY ), hence

DRCY = σ!
Y [eY ] = σ!

Y fJ∗[eX ] = f∗σ!
X [eX ] = f∗ DRCX . �

Unfortunately, since the map Mm
k|I →M

m is not proper, we cannot apply this lemma to
compare the double ramification cycles onMm

k|I and onMm.
Recall that by the discussion of § 1.8.4, the underlying (reduced) substack ofM corresponding

to Hk
g,m is the twisted differential space H̃k

g(m).

Lemma 2.13. The maps DRLm →M and DRL1/k →M factor set-theoretically via
H̃k

g(m) �M.

Proof. This is clear from the description of the universal bundle in § 2.5 (noting that the same
construction of the latter works onMm as on Mm,1/k). �
Lemma 2.14. The maps DRL1/k →M and DRLm →M are quasi-finite.

Proof. The mapMm,1/k →Mm is quasi-finite, so it suffices to check this for DRLm →M. The
map is finitely presented (since there are only finitely many combinatorial charts to consider,
by [Hol21, Lemma 3.8]). For a given chart over a given point in M, moving in the fibre of the
chart corresponds to shifting the gluing map of the line bundle T at the nodes. In particular, it
is clear that at most one point of the fibre of the chart can lie in DRLm. �

Lemma 2.15. The subscheme DRL1/k has pure codimension g inMm,1/k
, and DRLm has pure

codimension g in Mm
.

Proof. We give the proof for DRL1/k; the other case is almost identical. Recall that DRL1/k is
constructed by intersecting two sections in the universal Jacobian over Mm,1/k, and the latter
is smooth over Mm,1/k of relative dimension g. As such, every generic point of DRL1/k has
codimension at most g, since DRL1/k can be cut out locally by g equations. The substack H̃k

g(m)
has pure codimension g in M by construction, so we are done by combining Lemmas 2.13 and
2.14. �

Combining Lemmas 2.13–2.15 also yields the following result.

Lemma 2.16. Every generic point of DRL1/k and of DRLm lies over a generic point of H̃k
g(m).

Lemma 2.17. Let p be a generic point in H̃k
g(m). Then the multiplicity of the cycle DRC at p is

equal to the sum of the lengths of the Artin local rings of DRL1/k at (necessarily generic) points
p in DRL1/k lying over p.

8 Here we were not able to find the precise compatibility result we require in the literature (for example, [Vis89,
Theorem 3.12] would require that JX and JY be schemes). However, since our DRL loci have the expected
codimension, the cycle DRCs make sense as actual cycles, not just rational equivalence classes. The stated equality
can thus be checked locally on M, so we may reduce to the case where all objects in sight are schemes, whereupon
we can simply apply [Ful84, Theorem 6.2(a)].
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This lemma is almost obvious from the definition of the proper pushforward, but we must
take a little care as the mapMm,1/k →Mm is not in general proper, and we must compare the
cycle-theoretic multiplicity with the length.

Proof. First, Lemma 2.12 implies that pushforwards of DRC♦ and DRCm coincide, so we are
reduced to showing the same statement where we replace DRC by the pushforward of DRCm

to M. By Lemma 2.16, every generic point of DRLm lies over a generic point of H̃k
g(m),

so by the discussion of § 1.8.4 we know that every generic point of DRLm is contained in
Mm

k|I .
Now Mm

k|I ↪→M
m is an open immersion and not (in general) proper. But we can still push

forward cycles (not cycle classes) along it, simply taking the closure of the image of a prime
cycle, and equipping it with the same multiplicity (thus, the same formula as used for a proper
pushforward). Since DRLm

k|I = DRLm ∩Mm
k|I is of pure codimension g, we see that DRCm

k|I on
it makes sense as a cycle, not just a cycle class. Since every generic point of DRLm is con-
tained in Mm

k|I , we see that this ‘naive pushforward’ of DRCm
k|I to DRLm coincides with the

cycle DRCm.
Now we apply Lemma 2.12 to the proper morphism Mm,1/k →Mm

k|I , to see that the push-
forward of DRC1/k to DRLm

k|I yields DRCm
k|I . Thus, we see that the composite of maps on cycles

(not just classes):

– proper pushforwardMm,1/k →Mm
k|I ;

– naive pushforwardMm
k|I →M

m;
– proper pushforwardMm →M

sends DRC1/k to DRC′.
To conclude the proof, we just need to check that the cycle-theoretic multiplicity of DRC1/k at

a generic point p of DRL1/k coincides with the length of DRL1/k at p. This holds by [Ful84, Propo-
sition 7.1], if we can show thatMm,1/k is Cohen–Macaulay at the generic point of each component
of DRL1/k. Since generic points of DRL1/k lie over generic points of H̃k

g(m) (Lemma 2.16), and

the graphs at the latter are simple stars, the local rings ofMm,1/k are local complete intersections
(and hence Cohen–Macaulay) by Lemma 2.7. �
Lemma 2.18. Let p be a generic point of H̃k

g(m). Then there exists a generic point of DRL1/k

mapping to p.

Proof. Combining Lemmas 2.14 and 2.15 shows that any point in DRL1/k mapping to p must
be a generic point.

Fix a (minimal) combinatorial chart containing p. From § 2.2, the twist I on the dual graph
of Cp determines an affine patch of Mm,1/k whose image in M contains p. Now in the fibre

of Mm,1/k over that point, the universal line bundle runs over all possible ways of gluing the
bundle on the partial normalization from [FP16, Definition 1] to a bundle on the curve Cp itself.
In particular, one of those ‘gluings’ yields the bundle ωk(−mP )⊗ T itself, so DRL1/k meets that
fibre. �
Proposition 2.19. Let p be a generic point of H̃k

g(m) and let Γ be the dual graph of Cp, such

that Γ is a simple star graph. Then there are exactly k#E−#V out
points of DRL1/k mapping

to p.
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Proof. Recall that we have the following diagram of maps and inclusions:

DRL1/k DRLm
˜Hk

g(m)

Mm,1/k Mm M

⊂ ⊂ ⊂

For every point p′ ∈ DRLm over a generic point p ∈ H̃k
g(m), by Lemma 2.5 there are k#E−#V out

points of DRL1/k mapping to p′. Thus it suffices to show that there is a unique point p′ ∈ DRLm

mapping to p.
By Lemma 2.18 there is at least one such p′. On the other hand, fixing a combinatorial chart

M← U → AE , the spaces Mm
I,U (as I runs over twists of Γ) cover the fibre of Mm over p. We

claim that for a fixed I there is at most one preimage point of p inMm
I,U .

To see this, note that the Abel–Jacobi map σm :Mm → J is injective on the fibres of
Mm

I,U →M. Indeed, we haveMm
I,U ⊂ U × AΥ and the additional coordinates in AΥ parametrize

different ways to glue the line bundles on the components Cv of the normalization of Cp. At most
one of them maps to the trivial bundle under the Abel–Jacobi map, so at most one preimage
point of p can lie in DRLm.

So it is enough to check that for a general point p of a component Z of H̃k
g(m) supported in

the boundary, there is at most one positive twist I satisfying the twisted-differential condition.
Let Γ be the generic dual graph of Z, which is a simple star graph.

Let (C,P ) be a general point of Z, so we have an identification of the components/nodes of
C with the vertices/edges of Γ. By assumption there is some mi with mi < 0 or mi not divisible
by k. Then the vertex v0 carrying the marking pi must be the central vertex of the star graph.
Thus from the abstract dual graph Γ we know uniquely which was the central vertex and which
the outlying vertices v ∈ V out.

For each outlying vertex v we take the corresponding component Cv ⊂ C together with its
inherited markings and preimages of nodes. As explained in § 1.8.4, this is a generic point of
some H1

g(v)(μ
′) for a non-negative partition μ′ of 2g(v)− 2. In particular, g(v) ≥ 1. If we knew

all such μ′, this would allow us to reconstruct the positive twist I on Γ. But by Lemma 2.20,
knowing a general point Cv of the space H1

g(v)(μ
′) uniquely determines the partition μ′. Thus

indeed the twist I is uniquely determined. �
Lemma 2.20. Fix g ≥ 1, n ≥ 0 and non-negative partitions μ1, μ2 of 2g − 2 of length n. Then
H1

g(μ1) and H1
g(μ2) have a common irreducible component Y if and only if μ1 = μ2.

Proof. Assume μ1 
= μ2. By the dimension results [FP16] Y is of pure codimension g − 1. By
reordering we can ensure μ1 = (m1,m2, . . .), μ2 = (m̃1, m̃2, . . .) with 0 ≤ m1 < m̃1 (since parti-
tions are not identical). Now on the general point (C, p1, . . . , pn) ∈ Y we have two equalities of
line bundles

ωC
∼= OC(m1p1 +m2p2 + · · ·+mnpn),

ωC
∼= OC(m̃1p1 + m̃2p2 + · · ·+ m̃npn).

Taking the first equation to the power m̃1, the second to the power −m1 and tensoring both, we
obtain

ωm̃1−m1
C

∼= OC((m̃1 ·m1 −m1 · m̃1)︸ ︷︷ ︸
=0

p1 + (m̃1 ·m2 −m1 · m̃2)p2 + · · · ). (2.6.1)
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Thus the general point of Y lies in the space Hm̃1−m1
g (μ̂) for μ̂ = m̃1 · μ1 −m1 · μ2. By [Sch18,

Theorem 1.1] the space Hm̃1−m1
g (μ̂) has at most codimension g − 1, so in fact Y must also be

a component of this space. But clearly, condition (2.6.1) is independent of the position of p1

(the first entry of μ̂ vanishes). Thus for (C, p1, . . . , pn) ∈ Y we also have (C, q, p2, . . . , pn) ∈ Y for
all q ∈ C \ {p2, . . . , pn}. However, the condition ω = O(m̃1p1 + · · · ) to be contained in H1

g(μ2)
does depend on p1. Indeed, since g ≥ 1, for any fixed p1 ∈ C there are only finitely many points
p′1 ∈ C such that O(m̃1p1) = O(m̃1p

′
1). This implies that Y cannot be a component of H1

g(μ2),
a contradiction. �

Together, the results of this section reduce the problem of computing the double ramification
cycle to that of computing the length of its local ring at a generic point. This computation will
occupy the remainder of the paper.

2.7 Relation to the construction of Marcus and Wise
The construction of Marcus and Wise [MW20] produces a stack Divg,m overM; we will explain
how it is related to ourMm. We will not need this in what follows, but we feel it may be useful
to sketch the connection.

We begin by outlining the construction of Divg,m. First, we define the tropical multiplicative
group to be the functor on log schemes sending X to G

trop
m (X) = Γ(X,Mgp

X ), and a tropical line
over a log scheme S to be a G

trop
m -torsor over S. Then Div is the stack in the strict étale topology

on logarithmic schemes whose S-points are triples (C,P, α) where C is a logarithmic curve over
S, P is a tropical line over S, and α : C → P is an S-morphism. We write Divg,m for the open
substack where the underlying curve has genus g, the marked points are labelled 1, . . . , n and
the outgoing slope at the marked point labelled i is given by mi.

Now Divg,m comes with a natural forgetful map to the stack of all log curves, and we write
Divst

g,m for the pullback of the locus of stable log curves. It also comes with an ‘Abel–Jacobi’ map
aj : Divg,a → Picg,n, described in [MW20, § 4]. Write Π for the fibrewise connected component in
Picg,n of the section ωk(−

∑
imipi). We write Divst,Π

g,m for the pullback of Π along aj to Divst
g,m.

Then unravelling the definitions yields a natural isomorphism of log stacks

Divst,Π
g,m

∼−→Mm
.

In particular, combining with Lemma 2.12 yields the following lemma.

Lemma 2.21. The double ramification cycle DRC ∈ A∗(M) coincides with that constructed in
[MW20].

This generalizes [Hol21, Theorem 7.3] to arbitrary k.

3. The tangent space to Mm,1/k a simple star

In this section we will give an explicit description of the tangent space TpM
m,1/k. Since étale

maps are isomorphisms on tangent spaces we will not distinguish between tangent spaces to a
stack and tangent spaces to its charts. We will write TuM and TuAE in place of Tf◦uM and

Tg◦uAE . The natural mapMm,1/k →M induces a map TpM
m,1/k → TuM, and we will describe

its kernel and image.
An element of TuM

m,1/k is given by a pointed map from the spectrum of K[t]/t2 toMm,1/k.
Suppose we are given a pointed map from SpecK[t]/t2 to M. For each edge e of Γ we denote
by ae ∈ tK[t]/t2 the image of �e under the given map OM → K[t]/t2 (see § 1.10 for the �e; in
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particular, the choice of these coordinates means �e is really well defined, not only up to units).
By the description given in § 2.2, the point p corresponds to giving an element (aγ)p ∈ K× for

every cycle γ, subject to some compatibility conditions. Then, to specify a vector in TpM
m,1/k

is to give an element aγ ∈ (K[t]/t2)× for every cycle γ in Γ, lifting the element (aγ)p ∈ K×, and
subject to the relations (2.3.3).

This description is valid for graphs of any shape, but we now specialize to the case where
Γ is a simple star graph (cf. § 1.8.4), for which things become simpler. For each outlying vertex
v write Ev for the set of directed edges from the central vertex v0 to v, and choose one edge
ev ∈ Ev. For e, e′ ∈ Ev distinct edges, let γ(e, e′) be the directed cycle going out along e and back
along e′. Then the cycles γ(ev, e′) for v ∈ V out, e′ ∈ Ev \ {ev} yield a basis of the homology of Γ.

For each outlying vertex v there are exactly three possibilities:

(i) all e ∈ Ev have aI′(e)
e = 0;

(ii) all e ∈ Ev have aI′(e)
e non-zero;

(iii) there exist e and e′ ∈ Ev such that aI′(e)
e = 0 and aI′(e′)

e′ 
= 0.

In cases (i) and (ii), the lifts of aγ from K× to (K[t]/t2)× can be chosen completely freely for γ
in a basis of the cycles between v0 and v, and these determine all the other aγ . To see this, we
can split (2.3.3) into two types. We consider first those where the element f ∈ ZΥ corresponds to
a trivial class in the homology of Γ. Then the resulting equation does not contain any instances
of the ae, and simply imposes that the product of the aγ is 1 (i.e. the group homomorphism from
the free abelian group on cycles to (K[t]/t2)× factors via the homology). On the other hand, if
f ∈ ZΥ does not correspond to a trivial class in homology, then the resulting equation will have
terms ae appearing on both sides (since twists are positive on outgoing edges). Since the ae lie in
tK[t]/t2, any lift of (aγ)p from K× to (K[t]/t2)× will automatically satisfy these equations (as
t2 = 0). Summarizing, we can choose the lifts aγ freely for γ in a basis of the homology, and the
rest are uniquely determined.

In case (iii) we consider the equation

aγ(e,e′)a
I′(e′)
e′ = aI′(e)

e . (3.0.1)

The terms aI′(e)
e and aI′(e′)

e′ do not differ by multiplication by a unit aγ(e,e′) in K[t]/t2, so no lift

of K[t]/t2 fromM to Mm,1/k (i.e. choice of aγ) exists.

Using this analysis, we easily determine the kernel and image of the map TpM
m,1/k → TuM.

The kernel is given by the set of lifts of the zero tangent vector, that is, all ae = 0 in the above
discussion. Then it is clear that we are always in case (i), and the lift of aγ from K× to (K[t]/t2)×

can be freely chosen. The set of these choices yields a copy of K, and we see that the kernel of
TpM

m,1/k → TuM is given by H1(Γ,K).

To understand the image of TpM
m,1/k → TuM we must distinguish carefully between cases

(i), (ii) and (iii). Since each ae ∈ tK[t]/t2, we know that aI′(e)
e = 0 whenever I ′(e) > 1. Thus, at

a vertex v with at least one incident edge e satisfying I ′(e) > 1, we can never be in case (ii).
Then we are in case (i) if and only if ae′ = 0 for all e′ at v with I ′(e′) = 1, and we can choose
ae ∈ tK[t]/t2 arbitrarily for all e with I ′(e) > 1.

It remains to understand the contribution of the vertices v with all edges e satisfying I ′(e) = 1.
We define Lv ⊆

⊕
e∈Ev

K to be {0} if there exists an e ∈ Ev with I ′(e) > 1, and otherwise to be
the set of tuples (le)e satisfying the linear equations

(aγ(e,e′))ple′ = le for all e, e′ ∈ Ev.
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Note that in this latter case, Lv has dimension 1. Then the image of TpM
m,1/k → TuM is given

by

H1(Cp,Ω∨(−P ))⊕
⊕

e:I′(e)>1

K ⊕
⊕

v

Lv .

Here the first factor corresponds to the locally trivial deformations, not smoothing the nodes.
These correspond to setting ae = 0 for all e and thus can always be lifted by the analysis above.
The second factor corresponds to the free choices of ae ∈ tK[t]/t2 ∼= K for I ′(e) > 0, and the last
factor to the contribution from vertices with all incident edges e satisfying I ′(e) = 1. This yields
an exact sequence

0→ H1(Γ,K)→ TpM
m,1/k → H1(Cp,Ω∨(−P ))⊕

⊕
e:I′(e)>1

K ⊕
⊕

v

Lv → 0, (3.0.2)

but we can write down a ‘natural’ splitting by setting aγ = (aγ)p for all γ, so we get

TpM
m,1/k ∼−→ H1(Γ,K)⊕H1(Cp,Ω∨(−P ))⊕

⊕
e:I′(e)>1

K ⊕
⊕

v

Lv. (3.0.3)

This ‘natural’ splitting depends heavily on the choices of coordinates in Situation 2.9. See-
ing Mm,1/k

I,U ⊂ U × AΥ as in § 2.3, this splitting is just sending the vector v ∈ TuU to (v, 0) ∈
TpM

m,1/k
I,U ⊂ TpU × AΥ.

4. The tangent space to the double ramification locus

In this section we will compute the tangent space to the double ramification cycle at the generic
point of an irreducible component. Having in § 3 analysed the tangent space to Mm,1/k and
decomposed it into direct summands, we will begin by describing the Abel–Jacobi map on the
tangent space. We will decompose the dual of the tangent map of the Abel–Jacobi map into four
factors (§ 4.1), and then in §§ 4.2–4.5 compute the intersection of the kernels of these four maps.
Along the way we will need a result on the non-vanishing of sums of kth roots of k-residues of
k-differentials, which we state and prove in Appendix C as it is somewhat disjoint from the rest
of our story, and may be of some independent interest.

4.1 The Abel–Jacobi map on the tangent space
Assume we are in Situation 2.9 with p lying in DRL1/k, so σ̄(p) = e(p) ∈ J (K). Taking the
difference of the induced maps Tpσ̄ and Tpe on tangent spaces yields another map TpM

m,1/k →
Te(p)J , and the composite map with the projection to TuM,

TpM
m,1/k Tpσ̄−Tpe−→ Te(p)J → TuM,

is evidently the zero map. Write Jp for the fibre of J over p. Then TeJp is the kernel of the
projection Te(p)J → TuM, so we have an induced map

b : TpM
m,1/k → TeJp.

The kernel of b consists of exactly those vectors on which Tpσ̄ and Tpe agree, hence ker b =
Tp DRL1/k. Dualizing the natural exact sequence, we obtain an exact sequence

0→ (coker b)∨ → TeJ ∨
p →

(
TpM

m,1/k)∨ → (Tp DRL1/k)∨ → 0.
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In the following we compute

(coker b)∨⊆TeJ ∨
p =H1(Cp,OCp)

∨=H0(Cp, ω),

where the latter equality holds by Serre duality.
To describe the proof strategy, note that from (3.0.3) we have a chosen isomorphism

TpM
m,1/k ∼−→ H1(Γ,K)⊕H1(Cp,Ω∨(−P ))⊕

⊕
e:I′(e)>1

K ⊕
⊕

v

Lv.

We write the restrictions of b to each subspace appearing as a direct summand as

bΓ : H1(Γ,K) → H1(Cp,OCp),
bΩ : H1(Cp,Ω∨(−P )) → H1(Cp,OCp),
b>1 :

⊕
e:I′(e)>1K → H1(Cp,OCp),

bLv : Lv → H1(Cp,OCp).

Elementary linear algebra yields the following lemma.

Lemma 4.1. Inside TeJ ∨
p = H0(Cp, ω) we have

(coker b)∨= ker(b∨) = ker(b∨Ω) ∩ ker(b∨Γ) ∩ ker(b∨>1) ∩
⋂

v∈V out

ker(b∨Lv
).

In §§ 4.2–4.5 we compute the intersection on the right.
To describe the final result, note that for a stable curve C = Cp with dual graph Γ there

exists a natural inclusion ⊕
v∈V (Γ)

H0(Cv, ωCv)→ H0(C,ω), (4.1.1)

taking differentials on the normalizations Cv of the components of C and descending them to C.
The image is exactly the space of differentials on C with vanishing residues at all nodes.

As a second ingredient, recall from § 1.8.4 that for p a general point of a boundary component
of DRL1/k, the stable graph of Cp is a simple star, and on the components of Cp correspond-
ing to the outlying vertices the twisted k-differential on Cp is the kth power of a holomorphic
abelian differential. To be more precise, recall that p lying in DRL1/k means the line bundle
ωk(−mP )⊗ T is trivial on Cp. Let

ϕ0 ∈ H0(Cp, ωk(−mP )⊗ T )

be a generating section (unique up to scaling). Recall from § 2.5 that the bundle T has a gener-
ating section 1 on the smooth part of Cp. Let 1v be the restriction of 1 to the components Cv of
C = Cp. Then ϕ0/1v is a meromorphic section of ωk(−mP ) on Cv. As described in § 1.8.4, for
v an outlying vertex, this section is actually a holomorphic k-differential, which is, moreover, a
kth power of a holomorphic differential. Denote one such choice of a kth root by (ϕ0/1v)1/k.

As a final piece of notation, let V >1 ⊂ V (Γ) denote the set of outlying vertices such that at
least one edge e incident to v has I ′(e) > 1, and denote by V 1 the remaining outlying vertices.
Then we can state the main result of this section (whose proof follows Lemma 4.13).

Theorem 4.2. Let p be the generic point of a boundary component of DRL1/k. Then the kernel
of b∨ inside H0(Cp, ω) is given by the injection⊕

v∈V >1

K → H0(Cp, ω)
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sending (cv)v to the section given by 0 on the smooth locus of the central vertex, and cv(ϕ0/1v)1/k

on the smooth locus of the outlying vertex v.

Theorem 4.3. In the situation of Theorem 4.2, for the exact sequence

0→ Tp DRL1/k → TpM
m,1/k b→ TeJp → coker(b)→ 0,

the cokernel of b has dimension equal to #V >1. The dimension of Tp DRL1/k is given by
dim DRL1/k plus the number of edges e in the star graph having I ′(e) > 1.

Proof. The assertion about the cokernel of b comes from Theorem 4.2, and the equality of
dim ker(b∨) with dim coker b. To compute the dimension of Tp DRL1/k we must first compute the

dimension of TpM
m,1/k; following (3.0.3), it is given by

h1(Cp,Ω∨(P )) + h1(Γ) + #{e : I ′(e) > 1}+ #V 1,

where we use that Lv has dimension 1 for v ∈ V 1. Then

– h1(Cp,Ω∨(P )) = 3g − 3 + n−#E (locally trivial deformations);
– h1(Γ) = 1−#V + #E;
– dimTeJp = g;
– dim DRL1/k = 3g − 3 + n− g (by Lemma 2.15).

We see that

dimTp DRL1/k = (3g − 3 + n−#E) + (1−#V + #E) + #{e : I ′(e) > 1}
+ #V 1 + #V >1 − g

= (3g − 3 + n− g) + #{e : I ′(e) > 1}

= dim DRL1/k +#{e : I ′(e) > 1}
as required. �

4.2 Computing the kernel of b∨
Γ

Lemma 4.4. For any point p ∈Mm,1/k
with underlying curve Cp, the kernel of b∨Γ is given by

the inclusion ⊕
v∈V (Γ)

H0(Cv, ωCv)→ H0(C,ω),

as described in (4.1.1).

Proof. We start by recalling some generalities about line bundles on nodal curves. Let C be a
nodal curve with dual graph Γ = (V,E). Choose some orientation for the edges e ∈ E such that
we can uniquely identify source and target s(e), t(e) ∈ V of each edge. Moreover, let (Cv)v∈V be
the set of components of the normalization of C and for an edge e let n′(e) ∈ Cs(e), n′′(e) ∈ Ct(e)

be the preimages of the nodes corresponding to the edge.
Then a line bundle L on C is given by a collection of line bundles (Lv)v∈V on all components

of its normalization together with identifications of the fibres (σe : Ls(e)|n′(e)
∼−→ Lt(e)|n′′(e))e∈E

of these line bundles at the pairs of points mapping to the same node. These identifications
(σe)e∈E have a natural action by the group (Gm)E by componentwise multiplication. The set of
such identifications is a torsor under this action. Moreover, different identifications can give
the same line bundle: multiplying all the fibres on a given vertex v ∈ V by the same con-
stant μ, that is, going from (σe)e∈E to (σe · μδv,t(e)−δv,s(e))e∈E , does not change the line bundle.
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Moreover, multiplying all fibres by the same constant does not even change the set of identifica-
tions (σe)e∈E . This means we have an effective action of the group GV

m/Gm on GE
m which does

not change the line bundle on C. Making suitable choices, we can identify the quotient of GE
m

by GV
m/Gm with the torus T = Hom(H1(Γ,Z),Gm).

Now let p ∈Mm,1/k with underlying stable curve C = Cp; this determines a kth root T 1/k

of the correction bundle T on C as described in Remark 2.10. In fact, in the local charts for
Mm,1/k, the additional coordinates aγ exactly parametrize the gluing data for T 1/k. Allowing T

to act on the bundle T 1/k as described above yields a faithful action of T on the fibre ofMm,1/k

over C, whose orbit is open (it is exactly the fibre of Mm,1/k
I,U for the relevant weighting I at

p and any neighbourhood U of p). Hence the summand H1(Γ,K) in Tp′M
m,1/k is canonically

identified with the tangent space to T at 1. On the other hand, there is also an action of T
on the Jacobian of C, where elements of T act on line bundles on C in the way described
above. However, we want to take the action obtained from this usual action by composing with
the group morphism T → T, t 	→ tk. With respect to this new action, the Abel–Jacobi map is
equivariant. This follows since, on the fibre in Mm,1/k over C ∈M, the Abel–Jacobi map just
sends T 1/k 	→ ωk

C(−mP )⊗ (T 1/k)k. Hence the tangent map bΓ : H1(Γ,K)→ H1(C,OC) to the
Abel–Jacobi map on this fibre is given by the tangent map for the action of T on the Jacobian
of C. One then verifies that for the map

ψ : H1(Γ,K) =
KE

KV
=
H0(C,Knodes)
H0(C, π∗OC̃)

→ H1(C,OC),

coming from the long exact sequence of 0→ OC → π∗OC̃ → Knodes → 0, where C̃ → C is the
normalization, we have bΓ = kψ. Thus, for computing kernels and cokernels we may as well work
with the map ψ above.

The kernel of b∨Γ is then equal to the left kernel of the Serre duality pairing

H0(C,ω)× ψ
(
H1(Γ,K)

)
→ H1(C,ω) = K.

This left kernel is equal to the inclusion
⊕

v H
0(Cv, ωCv) ⊂ H0(C,ω) from the statement of the

lemma. To see that
⊕

v H
0(Cv, ωCv) is contained in the left kernel, note that the cocycles in

the image of ψ are represented by constant functions on the overlaps of the Čech cover, so
multiplying them with holomorphic differentials from

⊕
v H

0(Cv, ωCv) does not produce poles.
Hence the residue pairing indeed vanishes. However, note that the map ψ is injective from the
long exact sequence we used to define it. Thus, the dimension of the left kernel is

dimH0(C,ω)− dimH1(Γ,K) = g − b1(Γ) =
∑

v

g(v) =
∑

v

dimH0(Cv, ωCv),

so indeed
⊕

v H
0(Cv, ωCv) is equal to the left kernel. �

Though we will not need it in what follows, we mention the following lemma.

Lemma 4.5. The projection map Tp DRL1/k → TpM is injective.

Proof. We have Tp DRL1/k ⊂ TpM
m,1/k → TpM, and the kernel of TpM

m,1/k → TpM is given
by H1(Γ,K). On the other hand, Tp DRL1/k is the kernel of b, the differential of the Abel–Jacobi
map, and the restriction of b to H1(Γ,K) is bΓ = kψ. So an element of the kernel of Tp DRL1/k →
TpM is an element of the kernel of ψ and ψ is injective. �
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4.3 Computing the kernel of b∨
Ω

We put ourselves in Situation 2.9 with p a K-point of DRL1/k. As described in § 4.1, we can
choose a generating section

ϕ0 ∈ H0(Cp, ωk(−mP )⊗ T ).

We will use the description in Appendix A to compute explicitly the map

bΩ : H1(Cp,Ω∨(−P ))→ H1(Cp,OCp).

Recall that for covers of Cp as in Situation 2.9, all non-trivial intersections of charts map to the
smooth locus of Cp/K, and the line bundle T comes with a trivialization on that smooth locus,
described by a generating section 1.

Lemma 4.6. Working in Čech cohomology for a cover of Cp as in Situation 2.9, the map

bΩ : Ȟ1(Cp,Ω∨(−P ))→ Ȟ1(Cp,OCp)

is induced by the map

gij 	→ −gij

d(gk
ijϕ0/1)

gk
ijϕ0/1

= −gij d log
(
gk
ij

ϕ0

1

)
on 1-cocycles (gij)ij of Ω∨(−P ).

For an interpretation of this formula, note that on the smooth locus of Cp we can interpret
the gij as tangent fields on the overlaps Uij of the cover. Thus the pairing gk

ij(ϕ0/1) of gk
ij

with the meromorphic differential ϕ0/1 makes sense as a meromorphic function. Applying the
external derivative d gives a meromorphic differential, which we again pair with gij to obtain a
meromorphic function. Given the simple nature of the formula, it feels as if there should be a
simple conceptual proof of this lemma. But our description of the line bundle T was somewhat
ad hoc, making it necessary to keep careful track of all the gluing data. Since this bookkeeping
is quite subtle, we have written the proof out in a painful amount of detail.

Proof. To prove the statement, we make (more) explicit the calculations from Appendix A. Our
short exact sequence 0→ J → A′ → A→ 0 of K-modules is just

0→ tK → K[t]/t2 → K → 0,

and we represent an element g ∈ Ȟ1(Cp,Ω∨(−P )) as a cocycle (gij)ij on the cover {Vi}i of Cp.
Then ϕ0 is a generating section of the line bundle LK = ωk(−mP )⊗ T .

Recall that g encodes a locally trivial deformation CA′/A′ of Cp. To obtain it, define Ui =
Vi ×K K[t]/t2, then we can choose isomorphisms Uij → Vij ×K K[t]/t2 such that the inclusion
fi : Uij → Ui is just the base change of Vij → Vi to K[t]/t2, and the inclusion fj : Uij → Uj is
given by applying Spec to the ring homomorphism r 	→ r + tgij(dr). Gluing the Ui together along
the Uij yields the desired locally trivial deformation CA′/A′.

Recall from Appendix A that, to compute the image of g in Ȟ1(Cp, ωk(−mP )⊗ T ), we should
consider the line bundle LA′ = ωk

CA′ (−mP )⊗ T , choose generating sections ϕi on Ui, ϕj on Uj ,
then pull them both back to Uij and compare. It will be very important to ensure that the
pullback is performed in a functorial way, so we can effectively compare these pullbacks.

For the first tensor factor of LA′ , we identify f∗i (ωCA′ |Ui) with ωUij via the differential dfi

(and similarly with dfj). The fact that the differential is naturally functorial later ensures that
this gives compatible identifications.
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The second factor T is, in a sense, trickier, because we defined T in terms of a cover with
gluing maps and thus we need to be extra careful how to identify pullbacks of T under various
compositions of maps. First, to fix terminology we recall the following very standard description
of the pullback of a line bundle given by gluing data.

Digression (Pullbacks of line bundles). Let f : X → Y be a morphism of schemes and Y =
⋃

i Ui

an open cover. Assume a line bundle L on Y is given by fixing

– a generating section 1Ui of L on Ui,
– functions ρij on Uij = Ui ∩ Uj , telling us that 1Uj |Uij = ρij1Ui |Uij .

Giving a section s of L on Y means giving local sections si1Ui satisfying sj1Uj |Uij = sjρij1Ui |Uij ,
or in other words sjρij = si on Uij .

Then the pullback of L under f is given by the cover X =
⋃

i f
−1(Ui) with new generating

sections 1f−1(Ui) and gluing functions ηij = f∗ρij = ρij ◦ f . The pullback of the section s is
specified by the local sections (si ◦ f) · 1f−1(Ui).
End digression.

Now for the line bundle T on CA′ we use the cover by the Ui above. For smooth Ui we
have a trivializing section 1, which we here call 1Ui to be more precise. For the singular chart Uj

associated to an edge e = {h, h′} we have the trivializing section τe. The transition functions were
1 between two smooth charts, and for a smooth chart Ui and a singular chart Uj , the transition
function is τe = λ(e)kz

I(h)
h 1Ui if Ui is a chart on an outlying vertex and τe = (zh′)I(h′)1Ui if Ui is

a chart on the central vertex. Since the formula uses the coordinates zh, zh′ on Uj , we implicitly
identify Uij as a subset of Uj here (since on Ui the expression zh has no meaning). Note that
overlaps between singular charts are already contained within the overlaps of smooth and singular
charts, so the values of the cocycles on these patches are uniquely determined by those we have
already listed.

Now we proceed to choose generating sections ϕi on Ui, ϕj on Uj , pull them both back to Uij

and compare. We consider the case when Ui is a smooth chart and Uj is a singular chart on an
outlying vertex. Denote by πi : Ui → Vi and πj : Uj → Vj the natural projections. Also, denote by
1Vi and τe,Vj the trivializing sections of T |Cp on Vi, Vj . Then the section ϕ0/1Vi is a generating
section of ωk

Vi
(−mP ) on Vi and so ϕ̃i := π∗i (ϕ0/1Vi) is a generating section of ωk

Ui
(−mP ) on

Ui. Denoting by 1Ui the trivializing section of T |Ui , we choose ϕi := ϕ̃i ⊗ 1Ui as the generating
section of ωk(−mP )⊗ T on Ui.

For Uj something different happens: on Vj we have that ϕ0/τe,Vj is a generating section of
ωk

Vj
(−mP ). Denote by ϕ̃j := π∗j (ϕ0/τe,Vj ) the section of ωk

Uj
(−mP ) and by τe,Uj the section of

T on Uj . Then ϕj := ϕ̃j ⊗ τe,Uj is our chosen generating section of ωk(−mP )⊗ T on Uj .
Now since fi is just an inclusion, indeed f∗i ϕi = ϕ̃i|Uij ⊗ 1Uij . On the other hand, fj is

the composition of the automorphism Ψgij : Uij → Uij (obtained as Spec of the ring map r 	→
r + tgij(dr)) with the inclusion Uij ⊂ Uj . But now note that when restricting ϕj to Uij we obtain

ϕj |Uij = ϕ̃j |Uij ⊗ τe,Uij .

However, by the original gluing data of T we have

τe,Uij = λ(e)kz
I(h)
h 1Uij .

The crucial thing to observe is that the transition function λ(e)kz
I(h)
h is actually a pullback from

Vij (it ‘does not contain the variable t’). Denote by πij : Uij → Vij the projection. Using again
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that ϕ̃j = π∗j (ϕ0/τe,Vj ), we make a quick sanity check:

ϕj |Uij = ϕ̃j |Uij ⊗ τe,Uij

= π∗j (ϕ0/τe,Vj )|Uij ⊗ λ(e)kz
I(h)
h 1Uij

= π∗j (ϕ0/τe,Vjλ(e)kz
I(h)
h )|Uij ⊗ 1Uij

= π∗ij(ϕ0/τe,Vjλ(e)kz
I(h)
h |Vij )⊗ 1Uij

= π∗ij(ϕ0|Vij/1Vij )⊗ 1Uij

= π∗ij(ϕ0/1Ui |Vij )⊗ 1Uij

= π∗i (ϕ0/1Ui)|Uij ⊗ 1Uij

= ϕ̃i|Uij ⊗ 1Uij

= ϕi|Uij .

To conclude, by Lemma A.4 the class in Ȟ1(Cp, ωk(−mP )⊗ T ) that we seek is given by
f∗i ϕi − f∗j ϕj . Now f∗i ϕi = ϕ̃i|Uij ⊗ 1Uij and

f∗j ϕj = Ψ∗
gij

(ϕ̃i|Uij ⊗ 1Uij ) = (dΨgij ϕ̃i|Uij )⊗ 1Uij .

Using Lemma 4.7 below, we see that

dΨgij ϕ̃i|Uij = ϕ̃i|Uij + tg1−k
ij d(gk

ijϕ0/1Uij ).

This allows us to conclude that

f∗i ϕi − f∗j ϕj = −tg1−k
ij d(gk

ijϕ0/1Uij )⊗ 1Uij ,

and pulling back along the ‘multiplication by t’ isomorphism from A to J yields the element
[−g1−k

ij d(gk
ijϕ0/1Uij )⊗ 1Uij ]ij in Ȟ1(Cp, ω

q(−mP )⊗ T ). To translate this into an element of

Ȟ1(Cp,OCp) we use the isomorphism ωq(−mP )⊗ T ∼= OCp via dividing by ϕ0. This gives the
desired result

−
g1−k
ij d(gk

ijϕ0/1)⊗ 1

ϕ0
= −gij

d(gk
ijϕ0/1)

gk
ijϕ0/1

. �

Lemma 4.7. Let B be an A′-algebra, and g : ΩBK/K → BK a BK-linear map. Define f :
B → B; r 	→ r + tg(d(r|BK

)), where we use that the map BK → B, u 	→ t · u is well defined.
Then the map fΩ : Ωk

B/A′ → Ωk
B/A′ induced by the differential of f is given by fΩ(w) = w +

tg1−k d(gk(w|BK
)), where we use that Ωk

BK/K → Ωk
B/A′ , η 	→ t · η is well defined.

Proof. We prove the result for local generators w = r0 dr1 · · · drk of Ωk
B. In the computation

below we implicitly use that t drj = t(drj |BK
) and that the restriction to the fibre BK commutes

with taking differentials. We then obtain

fΩ(w) = f(r0) df(r1) · · · df(rk)

= (r0 + tg(dr0|Bk
))
∏

i

(dri + t d(g d(ri|BK
)))

= w + t

(
g(dr0|BK

)
∏

i

dri + r0
∑

i

(
(dg) d(ri|BK

)
∏
j �=i

drj

))
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= w + t

(
g(dr0|BK

) + r0
∑

i

dg

)∏
i

dri|BK

= w + t

(
g(dr0|BK

) + kr0dg

)∏
i

dri|BK

= w + tg1−k d(gk(r0 dr1 . . . drk|BK
)).

Note that in the computation we used a natural extension of the differential d to tensor powers
of the tangent sheaf of B, when we apply it to g and gk. �

Recall that
b∨Ω : H0(Cp, ω)→ H0(Cp,Hom(Ω∨(−P ), ω))

denotes the map induced by applying Serre duality to bΩ. Our next goal is to give an explicit
formula for this map, or rather, for its restriction to ker b∨Γ = ⊕vH

0(Cv, ωCv) ⊆ H0(Cp, ω), since
this is all we need later.

We define a map of coherent sheaves on the smooth locus Csm
p :

βsm : ω → Hom(Ω∨(−P ), ω)

s 	→
[
f 	→ f

(
s1−k

(
ϕ0

1

)
d

((
ϕ0

1

)−1

sk

))
= f

(
sd log

((
ϕ0

1

)−1

sk

))]
.

Note, in particular, that this map makes sense at markings of Cp: while the differential
d log((ϕ0/1)−1sk) can have a pole of order 1 at a marking, we have that f is a local section
of Ω∨(−P ), so a vector field vanishing at the marking. This cancels the possible pole.

Inside H0(Cp, ω) there is the subspace ⊕vH
0(Cv, ωCv) of global sections of ω with vanishing

residues at all nodes. The following result shows that it makes sense to apply βsm to elements
in this subspace.

Lemma 4.8. Let s ∈ ⊕vH
0(Cv, ωCv) ⊂ H0(Cp, ω). Then the section βsm(s|Csm

p
) of

Hom(Ω∨(−P ), ω) on Csm
p extends uniquely to all of Cp and we thus obtain a map

β :
⊕

v

H0(Cv, ωCv)→ H0(Cp,Hom(Ω∨(−P ), ω)).

Proof. What we need to check is that for every local section f of Ω∨(−P ) around a node of Cp,
the section

f

(
sd log

((
ϕ0

1

)−1

sk

))
(4.3.1)

of ω on Csm
p extends over the node. In other words, for each branch of the node we need to show

that this differential has at most a simple pole at the node and that the residues at both sides
of the node add to zero.

For this, we make the following observation about f : working étale-locally we may assume
a neighbourhood of the node is given by the spectrum of R = K[x, y]/(xy), so that ΩR/K =
R〈dx, dy〉/(x dy + y dx). Since f is OCp-linear we have xf(dy) + yf(dx) = 0, and hence f(dx)
(respectively, f(dy)) is divisible by x (respectively, by y). Thus, on both branches of the node,
we can regard f as a tangent field vanishing to order at least 1 at the node.

Then, as before, the term d log((ϕ0/1)−1sk) has at most a pole of order 1, cancelling with
the zero of f . So in fact the differential (4.3.1) is regular at the nodes (it does not even have
simple poles) and, in particular, the residues vanish on both sides and thus add to zero. �
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Lemma 4.9. We have

b∨Ω|⊕v H0(Cv ,ωCv ) = β :
⊕

v

H0(Cv, ωCv)→ H0(Cp,Hom(Ω∨(−P ), ω)).

Proof. Given s ∈ H0(Cv, ωCv) ⊆ H0(Cp, ω) and g = (gij)ij ∈ Ȟ1(Cp,Ω∨(−P )) we want to show

〈s, bΩ(g)〉 = 〈β(s), g〉 ∈ H1(Cp, ωCp) = K

where 〈−,−〉 denotes the respective Serre duality pairings on both sides. Inserting the formulas
above, we obtain

〈s, bΩ(g)〉 − 〈β(s), g〉

=
(
−s · gij d log

(
gk
ij

(
ϕ0

1

))
− sd log

(
sk

(
ϕ0

1

)−1)
· gij

)
ij

=
(
−sgij · d log(gk

ijs
k)
)

ij

= (−kd(sgij))ij .

Thus the difference of the two sides of the equality has the form dη for the element η =
(−ksgij)ij ∈ Ȟ1(Cp,OCp) and thus is zero. Here we use again that on the overlaps of our cover,
we can pair the differential s and the sections gij of Ω∨(−P ) to obtain a local section of OCp .
The computation above is taken from Mondello’s unpublished note [Mon]. �

Recall from § 4.1 that on the components of Cp corresponding to outlying vertices, we could
choose kth roots (ϕ0/1v)1/k of the twisted differential, all unique up to scaling.

Lemma 4.10. The kernel of b∨Ω ⊕ b∨Γ is given by the map⊕
v∈V out

K → H0(Cp, ω) (4.3.2)

sending (cv)v to the section given by 0 on the smooth locus of the component Cv0 of the central
vertex v0, and cv(ϕ0/1v)1/k on the smooth locus of the component Cv for the outlying vertices v.

Note that while the sections (ϕ0/1v)1/k are only unique up to scaling, the image of the map
(4.3.2) is independent of these choices.

Proof. Since every element of the kernel of b∨Ω ⊕ b∨Γ is in particular in the kernel ⊕vH
0(Cv, ωCv)

of b∨Γ, it suffices to know the description of b∨Ω on this subspace.
On the smooth locus we have

Hom(Ω∨(−P ), ω) = ω(P ),

and on this locus b∨Ω(s) = sd log(sk(ϕ0/1)−1). This vanishes if and only if sk(ϕ0/1)−1 is a locally
constant function. In other words, up to scaling, s should be a kth root of ϕ0/1.

On the central vertex, this implies s|Cv0
= 0. Indeed, by assumption there is a marking i

with mi < 0 or mi not divisible by k. By the discussion in § 1.8.4 this marking must be on the
central vertex v0, hence there cannot be a holomorphic differential s with kth power ϕ0/1. On
the other hand, on the outlying vertices there do exist the sections (ϕ0/1v)1/k, so the kernel of
b∨Ω is exactly given by the map (4.3.2). �

4.4 Computing the residue pairing with an element of the kernel of b∨
Ω ⊕ b∨

Γ

In § 4.5 and in Lemma 5.5 it will be important to compute the value of the residue pairing
between an element of the kernel of b∨Ω ⊕ b∨Γ and a particular element δ of H1(C,ωk(−mP )⊗ T ).
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To avoid duplication we will carry out this computation here, in sufficient generality for both
our applications. Let

0→ J → A′ → A→ 0

be a short exact sequence of K-modules, where A and A′ have the structure of (Artin local)
K-algebras, the map A′ → A is a K-algebra homomorphism, and JmA′ = 0 where mA′ is the
maximal ideal of A′.

Suppose we are given a stable marked curve CA′ over A′, whose fibre over mA′ is our curve Cp.
We consider a formally étale fpqc cover of CA′ consisting of charts and gluing morphisms as

follows.

(i) For each irreducible component CA′,v of CA′ (corresponding to a vertex v of Γ), the smooth
locus Uv := Csm

A′,v is a chart. Since Uv is smooth and affine,9 it is (non-canonically) a trivial
deformation of its central fibre Uv,K = Uv ×A′ K, so we have Uv = Uv,K ×K A′. Note that in
particular, Uv is the complement of finitely many A′ points of the smooth projective curve
Cv ×K A′ over A′.

(ii) For each node (corresponding to an edge e of Γ), a formally étale neighbourhood of the
form Ue := SpecA′[[zh, zh′ ]]/(zhzh′ − �e).

(iii) For each half-edge h belonging to an edge e = (h, h′) with h incident to a vertex v, the
choice of a formal neighbourhood D = SpecA′[[t]][t−1] of the preimage of the corresponding
node in (the normalization of) CA′,v and an open immersion D→ Ue given by the ring map

A′[[zh, zh′ ]]/(zhzh′ − �e)→ A′[[t]][t−1]; zh 	→ t, zh′ 	→ �e
t

describing how D is glued into the singular chart.

Note the following important assumption about the smoothing parameters �e.

We assume throughout this section that �I
′(e)

e ∈ J.
This will be the case in our applications and in general for first-order deformations, that is,

those over A′ = K[t]/(t2). Indeed, it is always true that �e ∈ J = tK[t]/(t2), since otherwise the
chart Ue is not nodal.

Now assume CA lies in the double ramification locus, so we can choose a generating section
ϕ0 for the line bundle ωk

CA
(−mP )⊗ T . For each of the charts Ue we choose a lift ϕe of ϕ0,

and for each Uv a lift ϕv. The differences ϕ∗ − ϕ∗′ on the overlaps restrict to 0 over A, hence
give an element δ′ of H1(Cp, ωk

Cp
(−mP )⊗ T )⊗K J (see Appendix A). Using the isomorphism

ωk
Cp

(−mP )⊗ T ∼= OCp via ϕ0|Cp , we can convert this into an element δ ∈ H1(Cp,OCp).
Now let c = (cv(ϕ0/1v)1/k)v be an element of the kernel of b∨Ω ⊕ b∨Γ (recall that we fixed the

kth root of ϕ0/1v on the outlying vertices v). Then the product δc lies in H1(Cp, ωCp)⊗K J ,
which is isomorphic via the residue pairing to J . In this section we make the image of δc in J
explicit.

Recall from Remark 2.10 that we have a canonically defined root T 1/k of T , and on the
smooth charts Uv a generating section 11/k

v of T 1/k which is a kth root of 1v. Multiplying with
the section (ϕ0/1v)1/k, we obtain a well-defined kth root of ϕ0 on the outlying components, which
extends to the nodes. Now, we should not expect this to extend to a root over the whole of the
central component. However, since ϕ0 is a generating section of the line bundle ωk(−mP )⊗ T ,

9 Since p is a point of a boundary component of DRL1/k, the curve Cp is not smooth, hence these charts are indeed
affine.
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this root will extend uniquely to a kth root ϕ1/k
0 of ϕ0 on a small étale neighbourhood of each

node in the central component. Here ϕ1/k
0 is a local section of ω ⊗ T 1/k around the nodes.10

Now the restriction ϕ0|Cv0
/1v0 to the central component extends to an element of

H0

(
Cv0 , ω

k
Cv0

(
−m0P +

∑
e

(I(e) + k)qe

))
,

where qe is the point on Cv0 corresponding to the edge e. Thus when taking the kth root defined
locally around the nodes we see that ϕ1/k

0 |Cv0
/11/k

v0 yields a local section of

ωCv0

(∑
e

(I ′(e) + 1)qe

)
.

Lemma 4.11. The image of δc in J under the residue pairing is given by

−
∑

v∈V out

cv
∑

e:v0→v

aγ(e)�
I′(e)
e Resqe(ϕ

1/k
0 |Cv0

/11/k
v0

) ∈ J. (4.4.1)

where γ(e) is the cycle in Γ going out along the distinguished edge ev : v0 → v and back along e
(in particular, aγ(ev) = 1).

We make some remarks on the statement, before giving the proof.

– This root ϕ1/k
0 (defined above) only makes sense locally around nodes, but this is all we

need for (4.4.1) to make sense.
– We emphasize that in (4.4.1), the residue is taken on the central component Cv0 of C.
– Recall that we assume throughout this section that �I

′(e)
e ∈ J .

Proof. We compute the residue one point at a time, as in Appendix B.
Case 1: smooth points. On the smooth points of Cv0 for the central vertex v0, the section

coming from c vanishes. On the outlying vertices v, the sections ϕv extending ϕ0 do not have a
pole. Hence in both cases the residue vanishes.

Case 2: nodes. Here there is only one possible choice of patch. But to compute the residue we
have to sum the residues coming from the two preimages of our point under the normalization
map π : C̃p → Cp.

Case 2.1: lift to the central vertex. Here again the section coming from c is zero, hence the
residue vanishes.

Case 2.2: lift to an outlying vertex. Let q be the chosen point on the outlying component
Cv mapping to a node. Our strategy will be as follows. As described above, the overlap of the
singular chart and the smooth chart on the outlying vertex is given by D = SpecA′[[t]][t−1],
sitting inside the singular chart Ue = SpecR′ via the ring map

R′ = A′[[zh, zh′ ]]/(zhzh′ − �e)→ A′[[t]][t−1]; zh 	→ t, zh′ 	→ �e
t
,

where the branch zh = 0 corresponds to the central vertex. On the other hand, since Cv is smooth
at q, we can take the inclusion D→ Uv to be the product of a small punctured formally étale
neighbourhood SpecK[[t]][t−1]→ Cv of q ∈ Cv with A′ over K.

We will compute the difference ϕe − ϕv on D and, by the deformation theory in Appendix A,
this gives an element

ϕe − ϕv ∈ H0(DK , ω
k
DK
⊗ T |DK

)⊗K J.

10 Here we use that the marked points P are disjoint from the small étale neighbourhood of the nodes.
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Recall that the collection of such differences exactly describes a cocycle representing the element
δ′ of H1(Cp, ω

k
Cp

(−mP )⊗ T )⊗K J . We obtain δ ∈ H1(Cp,OCp)⊗K J by dividing by ϕ0|Cp .
To compute the pairing with c, we now multiply (ϕe − ϕv)/(ϕ0|Cp) with the restriction of

cv(ϕ0/1v)1/k to DK and obtain

ϕe − ϕv

ϕ0
· cv
(
ϕ0

1v

)1/k

= cv(ϕ0)−1+1/k(ϕe − ϕv)/11/k
v .

Then we can take the residue of this at t = 0 and obtain the contribution to the pairing from
the node q.

Now instead of abstractly using that ϕe − ϕv ∈ H0(DK , ω
k
DK
⊗ T |DK

)⊗K J and multi-

plying with the section cv(ϕ0)−1+1/k1−1/k
v defined over K, we can instead use any section

ρ ∈ H0(D, ω−k+1 ⊗ T −1+1/k) such that ρ restricts to cv(ϕ0)−1+1/k over K and compute the
residues of ρ(ϕe − ϕv)/1

1/k
v on D.

We now propose a particular choice of ρ: by Lemma 4.12 below there is a unique section ϕ1/k
e

of ω ⊗ T 1/k on Ue such that (ϕ1/k
e )k = ϕe and such that ϕ1/k

e |A = ϕ
1/k
0 . We choose the section

ρ = cv(ϕ
1/k
e )−k+1, which obviously has the properties mentioned above. Thus the value of the

pairing at q is given by

cv(rest=0

(
(ϕ1/k

e )−k+1(ϕe − ϕv)/11/k
v

)
(4.4.2)

(lying in J ⊂ A′) and we will see that our choice of ρ allows us to compute the residues from the
terms involving ϕe and ϕv separately.

For the first term we observe that (ϕ1/k
e )−k+1ϕe = ϕ

1/k
e is (the restriction to D of) a section

of ω ⊗ T 1/k on Ue. Thus on Ue it has a representation

ϕ1/k
e = ϕ̃e(zh, z′h)

(
dzh
zh

)
⊗ τ1/k

e

with ϕ̃e(zh, z′h) ∈ R′ = A′[[zh, z′h]]/(zhz′h − le). Pulling this back to D (and using the gluing maps
of the sections of T 1/k) gives us

ϕ1/k
e = ϕ̃e

(
t,
le
t

)(
dt

t

)
⊗ τ1/k

= λ(e)tI
′(e)ϕ̃e

(
t,
le
t

)(
dt

t

)
⊗ 11/k

v .

Dividing by 11/k
v and Taylor expanding yields

aγ(e)t
I′(e)−1

[∑
i≥0

1
i!

(
�e
t

)i∂iϕ̃e(zh, zh′)
∂zh′ i

(t, 0)
]
dt.

Here we use that λ(e) = aγ(e) is a valid choice according to the construction presented in § 2.5
(for the spanning tree Γ′ ⊂ Γ we choose the tree formed by the distinguished edges ev mentioned
in Lemma 4.11).

To compute the residue at t = 0 we look at the terms whose order in t is exactly −1. Since ϕ̃e

is a power series in zh, z′h, this forces i ≥ I ′(e). On the other hand, by our assumption lI
′(e)

e ∈ J
and also le ∈ mA′ , so for i > I ′(e) we have lie = l

i−I′(e)
e l

I′(e)
e = 0 since mA′ · J = 0. Thus all terms

for i > I ′(e) vanish and hence the only term of the above sum making a possibly non-zero
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contribution to the residue occurs when i = I ′(e), and the residue is given by

aγ(e)

I ′(e)!
�I

′(e)
e

∂I′(e)ϕ̃e(zh, zh′)
∂zh′I′(e)

(0, 0).

This finishes the computation of the residue for the term of (4.4.2) involving ϕe. Now we
want to argue that the sum (over the nodes q connecting Cv to Cv0) of the residues of the terms
(ϕ1/k

e )−k+1ϕv/1
1/k
v in (4.4.2) vanishes.

For this, we now choose some splitting of the short exact sequence 0→ J → A′ → A→ 0 of
K-vector spaces, allowing us to write A′ = A⊕ J in some non-canonical way. Then on D we can
write

(ϕ1/k
e )−k+1ϕv/11/k

v = (ϕ−1+1/k
0 +R1) · (ϕ0 +R2)/11/k

v ,

where as before, ϕ−1+1/k
0 and ϕ0 are sections of the base changes of ω−k+1 ⊗ T −1+1/k and ωk ⊗ T

on D to A (i.e. ϕ−1+1/k
0 ∈ A[[t]][t−1] · (dt)−k+1 ⊗ 1−1+1/k

v etc.), and R1, R2 are corresponding
sections which vanish modulo J (i.e. there exist representatives with coefficients in J). We note
here that since Uv = Uv,K ×K A′, and since the map D→ Uv is the pullback of DK → Uv,K to A′,
the section R2 is indeed the restriction of a section R̂2 ∈ H0(Uv, ω

k(−mP )⊗ T ) on Uv (which
is just the J-part of the section ϕv on Uv).

Using that J2 = 0 we can write out the product above and obtain three terms

(ϕ1/k
e )−k+1ϕv/11/k

v = ϕ
1/k
0 /11/k

v + ϕ
−1+1/k
0 R2/11/k

v + ϕ0R1/11/k
v .

By assumption, the first term ϕ
1/k
0 /11/k

v has order I ′(e)− 1 ≥ 0 at t = 0, so it does not contribute
a residue. On the other hand, for the third term we observe that R1 is the restriction to D of a
section R̂1 on Ue killed by J (the ‘J-valued’ part of ϕ−1+1/k

e ). If we write

R̂1 = ψ(zh, zh′) · (dzh)−k+1

z−k+1
h

⊗ τ−1+1/k
e

for some ψ(zh, zh′) ∈ J ·A′[[zh, zh′ ]] then, restricting to D, we have

R1 = R̂1|D = ψ

(
t,
le
t

)
· (dt)

−k+1

t−k+1
⊗ (λ(e)−k+1t−I′(h)k+I′(h)1−1+1/k

v ),

but ψ(t, le/t) = ψ(t, 0) since ψ has coefficients in J and since le ∈ mA′ so that le · J = 0. Looking
at ϕ0, we know that

ϕ0 = ζ(t) · tI(h)−k(dt)k ⊗ 1v

for some ζ(t) ∈ A[[t]]. Combining the two terms (and using I(h) = I ′(h) · k), we obtain

ϕ0R1/11/k
v = ψ(t, 0)ζ(t)λ(e)−k+1 · tk−1−I(h)+I′(h)+I(h)−k︸ ︷︷ ︸

tI
′(h)−1

· dt,

so the order of this term at t = 0 is non-negative and hence the residue vanishes.
Finally, we look at the remaining term ϕ

−1+1/k
0 R2/1

1/k
v . Now using Lemma 4.12 we can find a

section ϕ1/k
v of ω(−(m/k)P )⊗ T 1/k on Uv such that (ϕ1/k

v )k = ϕv and such that (ϕ1/k
v )|Ue×A′A =

ϕ
1/k
0 . Then the section ϕ−1+1/k

v := (ϕ1/k
v )−k+1 on Uv has the same restriction to DA as ϕ−1+1/k

0 .
Since R2 is killed by J , this means that ϕ−1+1/k

0 R2/1
1/k
v = ϕ

−1+1/k
v |DR2/1

1/k
v . Using that R2

is the restriction of the k-differential R̂2, we see that ϕ−1+1/k
0 R2/1

1/k
v is the restriction of the

holomorphic differential ϕ−1+1/k
v R̂2 on Uv. Since Uv ⊂ Cv ×K A′ is the complement of finitely
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many A′-points, we can see this as a meromorphic differential of the smooth projective curve
Cv ×K A′ over A′. The residue of ϕ−1+1/k

0 R2/1
1/k
v at t = 0 is just the residue of this differential

at the A′-point corresponding to the node q. Then, by the residue theorem for curves over Artin
rings [Con00, Appendix B.1, p. 272], the sum of all residues at nodes q connecting Cv to Cv0 is
zero.

Summarizing the above, we see that the image of δc in J under the residue pairing is given
by ∑

v∈V out

cv
∑

e=(h,h′):v0→v

aγ(e)

I ′(e)!
�I

′(e)
e

∂I′(e)ϕ̃e(zh, zh′)
∂zh′I′(e)

(0, 0),

where zh′ is a local coordinate on the central vertex for the node.
Since lI

′(e)
e ∈ J and mA′J = 0 we see that in the formula we can replace ϕ̃e by its restriction

ϕ̃0 to K. Looking back at the definition of ϕ̃e, its restriction ϕ̃0 over K satisfies that on Ue ×A′ K
we have

ϕ
1/k
0 = ϕ̃0(zh, zh′)

dzh
zh
⊗ τ1/k

e

= ϕ̃0(zh, zh′)
(
− dzh′

zh′

)
⊗ (z−I′(e)

h′ 11/k
v0

).

From this it is clear that the expression

− 1
I ′(e)!

∂I′(e)ϕ̃0(zh, zh′)
∂zh′I′(e)

(0, 0) (4.4.3)

is the residue of the differential ϕ1/k
0 |Cv0

/11/k
v0 at the point q on the smooth ‘central’ curve Cv0 . �

Lemma 4.12. Let R′ be an A′-algebra, andM ′ a locally-free R′-module of rank 1. Letm′ ∈M ′⊗k

and l ∈M = M ′ ⊗A′ A = M ′/JM ′ such that l⊗k = m′ + JM ′⊗k in M⊗k. Assume also that the
section m′ is generating. Then there exists a unique l′ ∈M ′ such that l′⊗k = m′ in M ′⊗k and
l′ + JM ′ = l ∈M .

In this lemma our assumption of characteristic zero (or more precisely that k is invertible
on A) is essential.

Proof. Let us first discuss uniqueness. The condition l′ + JM ′ = l means l′ is unique up to an
element of JM ′. For a different l′′ = l′ + jm̃ we have (l′′)⊗k = l′⊗k + kj(l′)⊗k−1m̃ (here we use
M ′ being locally free so we can commute tensor products). The fact that m′ is generating implies
that l′ is generating. Thus (l′′)⊗k = m′ = l′⊗k is only possible for kjm̃ = 0. Since k is invertible
in A′, this implies jm̃ = 0 hence l′′ = l′.

By the uniqueness part, we can work locally and so assume that M ′ is free, so take M ′ = R′,
M = R (and identify M⊗k = R etc. also). Choose any lift l̃ of l to R′, and define ε = l̃k −m′ ∈
JR′. Now l generates R since m′ generates R′, and k is invertible, so there is a unique j ∈ J
such that klk−1j = ε (recall JmA′ = 0). Then

(l̃ + j)k = l̃k + kl̃k−1j (since J2 = 0)

= l̃k + klk−1j (since JmA′ = 0)

= m′. �
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4.5 Intersecting with the kernels of b∨
Lv

and b∨
>1

Recall from § 4.1 the maps

b>1 :
⊕

e:I′(e)>1

K → H1(Cp,OCp)

and
bLv : Lv → H1(Cp,OCp).

The goal of this section is to prove the following lemma, which describes exactly the intersection
of the kernels of b∨Ω, b∨Γ, b∨>1 and b∨Lv

(cf. Lemma 4.1). It immediately allows us to conclude the
proof of Theorem 4.2.

Lemma 4.13. Let Cp be a general element of a boundary component of DRL1/k ⊂Mm,1/k
,

with dual graph Γ. Recall that V 1 is the set of outlying vertices v such that I ′(e) = 1 for each
e : v0 → v. Let c = (cv(ϕ0/1v)1/k)v be an element of the kernel of b∨Ω ⊕ b∨Γ. Then c maps to zero
under the maps b∨>1 and b∨Lv

if and only if cv = 0 for all v ∈ V 1.

Proof of Theorem 4.2. The elements c of the kernel of b∨Ω ⊕ b∨Γ with cv = 0 for v ∈ V 1 are exactly
those parametrized by the cv for v ∈ V >1 appearing in the map from Theorem 4.2. �
Proof of Lemma 4.13. By definition, the element c is in the kernel of b∨>1 and b∨Lv

if and only if
it pairs to zero with the image of each element

a = (ae)e ∈
⊕

e:I′(e)>1

K ⊕
⊕

v

Lv

under the map

b>1 ⊕
⊕

v

bLv :
⊕

e:I′(e)>1

K ⊕
⊕

v

Lv → H1(Cp,OCp).

But recall that b>1 and bLv come from tangent maps of the Abel–Jacobi section for first-order
deformations of Cp locally smoothing various nodes of Cp. This is exactly the situation analysed
in Lemma 4.11. To be more precise, we apply Lemma 4.11 for A = K, A′ = K[t]/t2, and J = tK.
Then from the definition of b∨>1 and b∨Lv

we see that the local smoothing parameters �e are exactly
�e = aet ∈ J and we have

δ =
(
b>1 ⊕

⊕
v

bLv

)
(a)⊗ t ∈ H1(Cp,OCp)⊗ J.

We check that the pairing of c with δ vanishes for all choices of a if and only if cv = 0 for all
v ∈ V 1.

First, we claim that b∨>1 vanishes on the kernel of b∨Ω ⊕ b∨Γ. Indeed, in the formula (4.4.1) from
Lemma 4.11, all terms �I

′(e)
e = a

I′(e)
e tI

′(e) vanish for I ′(e) > 1 since t2 = 0. These are exactly the
contribution of the direct summand

⊕
e:I′(e)>1K above on which b>1 is defined.

Thus it remains to compute the pairing with the image of bLv . Let v ∈ V 1 be a vertex, so
I ′(e) = 1 for each edge e : v0 → v. Let av = (ae)e:v0→v ∈ Lv. Then from Lemma 4.11 the value
of the pairing of c with bLv(av) is given by

− cv
∑

e:v0→v

aγ(e)aetResqe(ϕ
1/k
0 |Cv0

/11/k
v0

) ∈ J. (4.5.1)

Evidently this vanishes when cv = 0. We claim that for av 
= 0 (and recalling that p was gener-
ically chosen in the boundary component), the sum appearing in the formula is non-zero. Thus
c pairs to zero with the image of bLv if and only if cv = 0.
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To show that the sum in (4.5.1) is non-zero, recall that we fixed an edge ev : v0 → v before.
For any edge e from v0 to v we have by definition of Lv that

aγ(e)ae = aev .

Hence to prove that the element (4.5.1) is non-zero for cv, aev 
= 0, we need to show that∑
e:v0→v

Resqe(ϕ
1/k
0 |Cv0

/11/k
v0

) 
= 0. (4.5.2)

But the summands above are just some choice of kth roots of k-residues11 for the meromorphic
k-differential ϕ0|Cv0

/1v0 on Cv0 . Since p was generically chosen in its component, we have that
Cv0 is generic in a suitable stratum of meromorphic k-differentials. Then the non-vanishing of
(4.5.2) follows from Theorem C.1. �

5. The length of the double ramification cycle

In this section we will compute the length of the Artin local ring obtained by localizing DRL1/k

at the generic point of the component. In Lemma 2.17 we checked that this coincides with the
multiplicity of the cycle DRC1/k at the corresponding point.

To compute this length we first choose a combinatorial chartM←− U −→ AE = SpecK[�e :
e ∈ E] inducing a chart Mm,1/k

I,U →Mm,1/k containing the general point p of the component

of DRL1/k ⊂Mm,1/k we want to consider. We can assume that U is affine, say U ⊂ AM for
some M . Recall that in this situation we have thatMm,1/k

I,U ⊂ U × AΥ ⊂ AM × AΥ = AN . For a
generic linear subspace H in AN through our chosen point p ∈ DRL1/k, where H has codimension
2g − 3 + n, we denote DRL′ = (DRL1/k ∩H)p the intersection of DRL1/k with H, localized at
our point p. Since dim DRL1/k = 2g − 3 + n, this is an Artin local K scheme with residue field
K, and its length is exactly the length of DRL1/k along the component containing p, assuming
p sufficiently generically chosen in that component.

The chosen combinatorial chart induces a map from Mm,1/k
I,U to AE sending p to the origin;

composing with the inclusion of DRL′ into Mm,1/k
I,U induces a map DRL′ → AE . Our goal for

this section is to prove the following theorem.

Theorem 5.1. The map DRL′ → AE is a closed immersion, with image cut out by the ideal

(�I
′(e)

e : e ∈ E).

An immediate corollary of this theorem is that the length of DRL1/k at p is given by
∏

e I
′(e).

We will deduce the theorem from the next lemma, for which we need a little notation. Set R =
K[�e : e ∈ E] = OAE (AE), and let b � R be an ideal containing some power of m := (�e : e ∈ E).
Let B = R/b (we think of this ideal as a B-point of AE).

Lemma 5.2. This B-point of AE lifts to a B-point of DRL′ if and only if b contains �
I′(e)
e for

every e.

Proof of Theorem 5.1 assuming Lemma 5.2. Applying Lemma 5.2 with b = (�I
′(e)

E : e ∈ E), we
see that the map DRL′ → SpecR/(�I

′(e)
E : e ∈ E) has a section, so in particular it is surjective

on tangent spaces. Since the tangent spaces have the same dimension by Theorem 4.3, the map
is necessarily bijective on tangent spaces.

11 This terminology is recalled in Appendix C.
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Now, since DRL′ and AE are evidently (locally) of finite presentation over K, by [Sta13,
Tag00UV(8)] injectivity of the tangent map implies that DRL′ → AE is unramified. Since
being a closed immersion is étale local on the target, we conclude that DRL′ → AE is a
closed immersion by applying [Sta13, Tag00UY] together with the fact that the source is Artin
local.

It is then clear from another application of Lemma 5.2 that the image is cut out exactly by
(�I

′(e)
E : e ∈ E). �

We want to apply deformation theory to prove Lemma 5.2, but the kernel of B → K; �e 	→ 0
is not necessarily killed by m. So we decompose it into steps. For every integer r ≥ 2 we have a
short exact sequence

0→ mr−1 + b

mr + b
→ R

mr + b
→ R

mr−1 + b
→ 0.

Fixing some r ≥ 2, denote the non-zero terms in the above sequence by J , A′ and A, respectively
(remembering the R-algebra structures of the latter two). Then we have a surjection A′ → A
of Artin local K-algebras with residue field K, and the kernel J is killed by the maximal ideal
of A′.

Suppose we are given an A-point of DRL′. We want to understand when this lifts to an
A′-point of DRL′ (again, as a map over SpecR). We say an R-algebra B is I-constrained if
for every edge e the element �I

′(e)
e maps to zero in B. Note that K = R/m is automatically

I-constrained.

Lemma 5.3. Suppose A is I-constrained. Then the given A-point of DRL′ lifts to an A′-point
of DRL′ (over SpecR) if and only if A′ is I-constrained.

Proof of Lemma 5.2 assuming Lemma 5.3. By induction on r, Lemma 5.3 shows that the given
K-point of DRL′ lifts to an R/b-point if and only if R/b is I-constrained, that is, all �I

′(e)
e lie

in b. �
We now fix an I-constrained A-point of DRL′ and a compatible A′-point of AE . We write

M(A,A′) for the set of liftings of this A′-point to Mm,1/k
I,U which are still compatible with the

given A-point of DRL′. By Lemma A.3, the set M(A,A′) is naturally a pseudotorsor under the
group H1(Cp,Ω∨(−P )⊗ J)⊕H1(Γ, J); the H1(Cp,Ω∨(−P )⊗ J) term parametrizes lifts from

AE to U , and H1(Γ, J) parametrizes lifts along the mapMm,1/k
I,U → U (cf. § 3).

Lemma 5.4. If A′ is I-constrained then the pseudotorsor M(A,A′) is a torsor (i.e. is
non-empty).

Proof. Firstly, since by assumption the map U → AE from our combinatorial chart is smooth,
we can always lift the A′-point of AE to an A′-point of U compatible with the A-point of U
induced by SpecA→ DRL′ [Sta13, Tag02H6]. In the solid diagram

SpecA Mm,1/k
I,U

SpecA′ U

(5.0.1)

we need to show that a dashed arrow exists. To see this, recall from § 2.3 the equations (2.3.3)
cutting out Mm,1/k

I,U ⊂ U × AΥ. Lifting the map SpecA′ → U to Mm,1/k
I,U requires specifying
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elements (a′γ)γ∈Υ in A′ lifting the elements (aγ)γ∈Υ in A coming from the map SpecA→
Mm,1/k and still satisfying (2.3.3). But note that, as described in § 2.3, in equations (2.3.3)
we must substitute for ae the image of le in A′. Since A′ is I-constrained and since all expo-
nents Me are divisible by I ′(e) it turns out that all of the defining equations, except for
a′γa′i(γ) = 1, become trivial. So indeed we can choose any lift (a′γ)γ∈Υ of (aγ)γ∈Υ satisfying these
equations. �
Lemma 5.5. Assume that M(A,A′) is non-empty, and choose an element μ ∈M(A,A′). Then
A′ is I-constrained if and only if there exists an element δ ∈ H1(Cp,Ω∨(−P )⊗ J)⊕H1(Γ, J)

such that μ+ δ : SpecA′ →Mm,1/k
lands in DRL1/k.

Proof of Lemma 5.3 assuming Lemma 5.5. If M(A,A′) is empty then by Lemma 5.4 we see that
A′ is not I-constrained, and clearly no lift to an A′-point of DRL′ exists. Hence we may as well
assume M(A,A′) to be non-empty, hence a torsor under H1(Cp,Ω∨(−P )⊗ J)⊕H1(Γ, J).

If A′ is not I-constrained then Lemma 5.5 shows that no element of M(A,A′) lands in
DRL1/k.

If A′ is I-constrained then by Lemma 5.5 there exists an element μ′ ∈M(A,A′) which lands
in DRL1/k. To finish the proof we now need to show that, given an element in M(A,A′) con-
tained in DRL1/k, we can construct another element of M(A,A′) which is also contained in
DRL′.

Recall that we have an étale coordinate chart U →M where U ⊂ AM for some M . We have
Mm,1/k

I,U ⊂ U × AΥ ⊂ AM × AΥ = AN and by an affine linear transformation we can assume that

our chosen point p ∈ DRL1/k ⊂Mm,1/k
I,U maps to 0 ∈ AN . Then we can obtain DRL′ by inter-

secting DRL1/k ⊂Mm,1/k
I,U with a generic linear subspace H through the origin of codimension

2g − 3 + n (and localizing at p). Denote by W = T0 DRL1/k
red ⊂ T0A

N the tangent space to the
reduced double ramification cycle, which we consider as a linear subspace of AN . Recall that
since DRL1/k has dimension 2g − 3 + n, the space W also has dimension 2g − 3 + n. As H was
assumed generic and the two linear subspaces W,H are of complementary dimensions, there
exists a linear projection h : AN →W with h|W = idW and h−1(0) = H.

By assumption we have a lift Spec(A′)→ DRL1/k ⊂Mm,1/k
I,U of the given A-point of DRL′.

For this to lie in DRL′ = (DRL1/k ∩H)p we want the composition ϕ : Spec(A′)→Mm,1/k
I,U

h−→W
to be zero. We know this is true on Spec(A), since Spec(A) factored through DRL′. Thus the
difference between ϕ and the zero map is an element ε ∈ (T0W )⊗ J . But note that we can shift
our map Spec(A′)→ DRL1/k ⊂Mm,1/k

I,U around by elements of (T0W )⊗ J ⊂ (T0M
m,1/k
I,U )⊗ J .

Indeed, tangent vectors to the reduced DRL1/k-component are locally trivial deformations (the
reduced DRL1/k-component is contained in the preimage of the boundary of M), so the shift
by W ⊗ J does not change the map to AE we want to lift. Also, clearly it does not change the
composition with the Abel–Jacobi map, so we stay in DRL1/k. But note that the tangent map
(T0W )⊗ J ⊂ (T0M

m,1/k
I,U )⊗ J Th−−→ (T0W )⊗ J of h is the identity, since h was assumed to restrict

to the identity of W . So indeed, we can shift our map Spec(A′)→ DRL1/k by −ε ∈ (T0W )⊗ J ,
to obtain an A′-point of DRL′. �
Proof of Lemma 5.5. The sections e and σ̄ of the universal Jacobian J induce a map Φ :
M(A,A′)→ TeJp ⊗K J , which is a pseudotorsor under the map

α = (bΩ ⊕ bΓ)⊗ idJ : H1(Cp,Ω∨(−p)⊗ J)⊕H1(Γ, J)→ TeJp ⊗ J.
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Choose an element μ ∈M(A,A′). We need to decide when there exists δ ∈ H1(Cp,Ω∨(−p)⊗
J)⊕H1(Γ, J) such that Φ(μ+ δ) = 0, that is, such that μ+ δ : SpecA′ →Mm,1/k

I,U lands in
DRL1/k.

Now the existence of such a δ is equivalent to Φ(μ) mapping to zero in the cokernel of α,
which is in turn equivalent to Φ(μ) pairing to zero with the kernel of α∨. Hence we are reduced
to showing that

(*) A′ is I-constrained if and only if Φ(μ) pairs to zero with the kernel of α∨.
By Lemma 4.10 the kernel of α∨ is given by the injection⊕

v∈V out

K → H0(Cp, ω)

sending c = (cv)v to the section given by 0 on the smooth locus of Cv0 for the central vertex v0,
and cv(ϕ0/1v)1/k on the smooth locus of Cv for the outlying vertices v. By Lemma 4.11 (where
the notation is also defined), the image of Φ(μ)c in J under the residue pairing is given by

−
∑

v∈V out

cv
∑

e:v0→v

aγ(e)�
I′(e)
e Resqe(ϕ

1/k
0 |Cv0

/11/k
v0

) ∈ J. (5.0.2)

Note that the assumption �
I′(e)
e ∈ J of Lemma 4.11 is exactly the fact that A = A′/J is

I-constrained.
Now if A′ is I-constrained, all terms lI

′(e)
e are actually zero in A′, so the entire sum above

vanishes, proving that Φ(μ) pairs to zero with all c.
Conversely assume that (5.0.2) vanishes for all choices of cv. From the fact that μ defines an

A′-point ofMm,1/k
I,U , (3.0.1) tells us that aγ(e)�

I′(e)
e = �

I′(ev)
ev , so (5.0.2) becomes

−
∑

v∈V out

cv�
I′(ev)
ev

∑
e:v0→v

Resqe(ϕ
1/k
0 |Cv0

/11/k
v0

).

But the sums of residues appearing above are non-zero at a general point p within its component
by Theorem C.1. So for this sum to vanish for all choices of cw, it is necessary that lI

′(ev)
ev = 0

for all v, and since aγ(e)�
I′(e)
e = �

I′(ev)
ev with aγ(e) invertible in A′, it follows �I

′(e)
e = 0 ∈ A′ for all

e, finishing the proof. �

5.1 Concluding the proof of the formula
We conclude the proof of the equality of the double ramification cycle DRC and the cycle Hk

g,m

of Janda, Pandharipande, Pixton, Zvonkine and the second-named author (§ 1.8.4) in the Chow
ring Ag(M).

Finally, we can easily deduce the main result of this paper, that DRC = Hk
g,m.

Proof of Theorem 1.2. Let p be the general point of some component of H̃k
g(m). If p lies in the

interior of the moduli space (i.e. Cp is smooth), then DRC has multiplicity 1 at p, agreeing with its
multiplicity in Hk

g,m. This multiplicity follows from the computation in [Sch18, Proposition 1.2].
Thus we can assume that Cp lies in the boundary with associated simple star graph Γ

and positive twist I. Combining Lemmas 2.16 and 2.17, it suffices to show that the sum of
the lengths of the Artin local rings of DRL1/k at points lying over p is given by the formula∏

e∈E(Γ) I(e)/k
#V (Γ)+1 (cf. (1.1.2)). By Proposition 2.19 there are exactly k#E−#V −1 of these

points and by Theorem 5.1 the multiplicity of DRL1/k at each of them is
∏

e∈E I
′(e). Using

I ′(e) = I(e)/k the result is then immediate. �
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5.2 Presentation of the local rings of the double ramification locus
Our strategy for computing the multiplicities of the double ramification cycle was somewhat
indirect, as we began § 5 by slicing with a generic hyperplane. In this section we do a little gentle
bootstrapping to extract a presentation for the local rings of DRL1/k itself at generic points. We
begin by resuming the notation from the start of § 5, and write η for the generic point of DRL1/k

containing the point p in its closure. The local ring ODRL1/k,η admits (by the Cohen structure
theorem [Sta13, Tag0323]) a non-canonical structure as an algebra over κ(η), the residue field of
η (compatible with the K-algebra structure). In this section we show the following theorem.

Theorem 5.6. The κ(η)-algebra structure on ODRL1/k,η can be chosen so that

ODRL1/k,η
∼= κ(η)

[�e : e ∈ E]

(�I
′(e)

e : e ∈ E)
. (5.2.1)

We are very close to proving this in Theorem 5.1, except that latter concerns DRL′, which
is obtained from DRL1/k by cutting with a generic linear subspace (see the discussion at the
beginning of § 5). Noting that we can work over any field of characteristic zero, we can in
particular base-change the whole set-up to the residue field κ(η). The gap is then filled by the
following lemma.

Lemma 5.7. Let Z � AN
K be an irreducible closed subscheme of dimension d, with generic point

η. Write Δ : η → η ×K η for the diagonal (see the diagram below), and let H ⊆ AN
η be a generic

linear subspace of codimension d through Δ (the latter viewed as a point of AN
η ). Then there

exists an isomorphism of complete K-algebras

OZ,η
∼= OZη∩H,Δ. (5.2.2)

Before the proof, we give a diagram (in which all squares are pullbacks) to illustrate the
notation in the lemma:

η η ×K η

Z Zη

AN
K AN

η

SpecK η

Δ (5.2.3)

Since OZη∩H,Δ is naturally a κ(η)-algebra, the isomorphism (5.2.2) naturally equips OZ,η with
the required κ(η)-algebra structure (dependent on the choice of H).

Proof. The hyperplane H is defined over the generic point η, and extends to a family of hyper-
planes over some dense open subscheme U ↪→ Zred. Writing HU � AN

U for this family, we note
that dimK H = N , and we have a diagram of natural maps

AN
K AN

Z AN
U HU H

K Z U U η
id

Δ (5.2.4)
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We claim that, since H is generically chosen, the map HU → AN
K is étale in a neighbourhood of

Δ. Since étaleness is an open condition it is enough to check this for some special H, and the
claim is indeed clear if we take HU to be the normal bundle to U in AN

K .
We then have a diagram

Z Zη ∩H

AN
K HU H η

Δ

Δ (5.2.5)

where the rectangle is a pullback, and the lower row is formally étale along Δ, hence so is the
upper row. Localizing at the image of Δ thus yields a formally étale map of complete local
K-algebras OZη∩H,Δ → OZ,η which is then necessarily an isomorphism. �
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Appendix A. Explicit deformation theory with Čech cocycles

In this appendix we recall some standard results on deformation theory, to fix notation and to
keep this paper reasonably self-contained. We emphasize explicit computations with Čech covers.

Let

0→ J → A′ → A→ 0

be a short exact sequence of K-modules, where A and A′ have the structure of (Artin local)
K-algebras, the map A′ → A is a K-algebra homomorphism, and JmA′ = 0 where mA′ is the
maximal ideal of A′. This generality will only be needed in § 5; for computations of tangent
spaces, it is enough to look at the special case

0→ tK[t]/(t2)→ K[t]/(t2)→ K → 0.

Before we start with deformation theory, we need to introduce some technical results, which
we use later.

Remark A.1. Now J is an A′-module and A′ a K-algebra, hence J is also a K-module. Writing
ā ∈ K for the reduction of a ∈ A′, we see that āj = aj for all j ∈ J , since the difference between
a and the image of ā in A′ lies in mA′ , and mA′J = 0.
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Lemma A.2. Let M be an A′-module. Then the K-bilinear map

f : M × J → M

(mA′M)
⊗K J ; (m, j) 	→ m̄⊗ j

is in fact A′-bilinear, and the induced map

M ⊗A′ J → M

(mA′M)
⊗K J

is an isomorphism.

Proof. This is a special case of [Bou98, Chapter 2, paragraph 3.6 (p. 254)] �
We will apply the following well-known lemma to the Jacobian of the universal curve.

Lemma A.3. Let X be a K-scheme and η : SpecA→ X a map over K with image point q ∈ X.
Denote

M(η,A′) = {η′ : SpecA′ → X K-morphism : η′|Spec A = η}.
Then M(η,A′) is naturally a pseudotorsor under TX,q ⊗K J . Moreover, for g : X → Y a mor-
phism of K-schemes, the natural map M(η,A′)→M(g ◦ η,A′) is a pseudotorsor under the
natural map

Tg ⊗ idJ : TX,q ⊗K J → TY,g(q) ⊗K J.

Let CA′ → SpecA′ be a family of stable curves (i.e. a map SpecA′ →M) and LA′ a line
bundle on CA′ . Assume that the restriction LA of LA′ to the fibre CA = CA′ ×A′ A is trivial, with
a trivializing section ϕ0 ∈ H0(CA,LA).

In particular, this implies that LA′ has multidegree zero, so the line bundles LA′ and
OCA′ induce maps σ1, σ2 : SpecA′ → J into the universal Jacobian J →M. By the assump-
tion LA

∼= OCA
, the restrictions η : SpecA→ SpecA′ → J of these maps to SpecA agree. Thus

both give elements12 in M(η,A′), in the notation of Lemma A.3, with X = J . Furthermore,
their compositions with the projection J →M to the moduli space of curves agree (on all of
SpecA′), since for both σ1, σ2 the underlying family of curves is CA′ .

Let C = CA′ ×A′ K. Then by Lemma A.3 the set M(η,A′) is a pseudotorsor under the group
T(C,O)J ⊗K J , so the difference of σ1, σ2 gives a unique element δ ∈ T(C,O)J ⊗K J . Furthermore,
it must lie in the kernel of the map

T(C,O)J ⊗ J → TCM⊗ J,
which is exactly TeJC ⊗ J = H1(C,OCK

)⊗ J = H1(C,LK)⊗ J , where JC is the Jacobian of C,
and the last isomorphism is via the restriction ϕ0|C of ϕ0 to the fibre over K.

Our goal here is to describe how to obtain this element δ ∈ H1(C,LK)⊗ J using Čech
cohomology for a suitable cover U = (Ui)i of CA′ .

Suppose there exists U = {Ui}i∈I an fpqc cover of CA′ by affines such that for every i there
exists a section ϕi ∈ H0(Ui,LA′ |Ui) with ϕi|Ui×A′A = ϕ0|Ui×A′A.

We fix a cover U and sections ϕi as above. For the overlaps Ui,j = Ui ×CA′ Uj we see from
the definition of the ϕi that

ϕi|Uij×A′A = ϕ0|Uij×A′A = ϕj |Uij×A′A (A.0.1)

for all i, j. The difference
ψi,j = ϕi − ϕj ∈ H0(Uij ,LA′)

12 J is only étale locally a scheme, but this is enough for these infinitesimal considerations.
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lies in the kernel of the ‘reduction mod J ’ map

H0(Uij ,LA′)→ H0(Uij ,LA). (A.0.2)

We now want to identify this kernel with H0(Uij ,LK)⊗K J . To see this, note that we can
interpret the sequence 0→ J → A′ → A→ 0 as an exact sequence of sheaves on SpecA′. Since
LA′ is flat over A′, we obtain an exact sequence

0→ LA′ ⊗A′ J → LA′ → LA′⊗A → 0.

The map LA′ → LA′⊗A induces (A.0.2) on global sections, so the kernel of that map is given by
H0(Uij ,LA′ ⊗A′ J) = H0(Uij ,LA′)⊗A′ J . Here we use that Uij is affine. By Lemma A.2 applied
to M = H0(Uij ,LA′) this is naturally identified with

(H0(Uij ,LA′)⊗A′ K)⊗K J = H0(Uij ,LK)⊗K J.

Lemma A.4. For the cover (Ui)i of CK = CA′ ×A′ K, the element (ψi,j)i,j defines a 1-cocycle in
H1(C,LK)⊗K J , which represents the class δ ∈ TeJC ⊗ J we want to compute.

Appendix B. Explicit Serre duality

For the convenience of the reader, and to fix notation, we recall here the standard description of
Serre duality on a curve in terms of Čech cocycles.

We consider first the case of a smooth proper (possibly non-connected) curve C/K. We
choose a Čech cover U = {Ui}i of C, where i runs over some indexing set I = {0, . . . , n}. For a
sheaf of abelian groups F on C we write Ci

U (F) for the group of Čech i-cochains, Zi
U (F) for the

group of i-cocycles, and Ȟi(C,F) for the ith Čech cohomology group. The point of Serre duality
is that the ‘residue map’ Ȟ1(C,ω)→ K is an isomorphism of K-vector spaces; our goal here is
to make this residue map explicit. We approximately follow [For91, § 17.2].

Write K for the sheaf of fractions of OC on C. Fix an element w = (wij)i<j ∈ Z1
U (ω). Choose

an element w̃ ∈ C0
U (K ⊗OC

ω) such that for all i < j we have

w̃i − w̃j = wij ∈ ω(Uij) ⊆ K ⊗ ω(Uij).

For example, if all U0 is dense in C we could set w̃0 = 0 and for i 
= 0 let w̃i be any meromorphic
differential extending wi0. For a point p ∈ C, choose i such that p ∈ Ui and define resp w̃ =
resp w̃i. To see that this is independent of the choice of i, note that if p ∈ Uij then w̃i − w̃j is by
assumption holomorphic around p, and so has zero residue. Finally, resp w̃ is not independent of
the choice of w̃, but the global residue

∑
p∈C resp w̃ is independent of all choices, and we define

this to be resw. This gives a well-defined residue map H1(C,ω)→ K.
Now for the case of nodal curves. We resume the notation from above, but we allow C

to have nodal singularities. We write π : C̃ → C for the normalization of C. Suppose again
we are given w = (wij)i<j ∈ Z1

U (ω). Writing Ũ for the cover of C̃ obtained by pulling back U ,
we have a natural pullback map Z0

U (ω ⊗K)→ Z0
Ũ (ω ⊗K). We choose w̃ ∈ Z0

U (ω ⊗K) such that
w̃i − w̃j ∈ ω(Uij) ⊆ K ⊗ ω(Uij), and w̃i − w̃j = wij . Given a point p ∈ C, we choose i with p ∈ Ui,
and define respw =

∑
π(q)=p resq π

∗w̃i. As before, we should check that this is independent of the
choice of i. For p in the smooth locus of C this proceeds exactly as before. If p is a node, write
π−1p = {q, q′}. Assume13 p ∈ Uij . Then we need to show that

resq w̃i + resq′ w̃i = resq w̃j + resq′ w̃j . (B.0.1)

13 Generally in this article we assume that the intersections Uij do not contain any nodes, so we can ignore this
case, but we treat it here from completeness.
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But since w̃i − w̃j ∈ ω(Uij) we have that the residues of w̃i − w̃j at q and q′ sum to zero, giving
exactly the above equality.

Thus for a given choice of w̃ we have a well-defined residue map at all points of C, and
the global residue

∑
p∈C resp w̃ is independent of all choices, giving a well-defined residue map

Ȟ1(C,ω)→ K.

Appendix C. Generic non-vanishing of k-residues

In this section we are concerned with the vanishing of sums of kth roots of k-residues (defined
just below) of k-differentials on smooth curves. We fix integers g ≥ 0, n ≥ 2 with 2g − 2 + n > 0.
Let k > 0, and m a vector of n integers mi summing to k(2g − 2), and assume that some mi

is either negative or not divisible by k. Write DRLg �Mg,n for the locus of (smooth, marked)
curves admitting a k-differential with divisor

∑
imipi, and let Y be an irreducible component

of DRLg (by [Sch18], such a Y is necessarily smooth and of pure codimension g). Let η denote
a general K-point of Y (we assume in this section that K is algebraically closed, so that this
exists; otherwise one simply works with the generic point, but the notation becomes slightly less
convenient), and let ξη be a differential on the curve Cη with the prescribed divisor.

We recall from [BCG+19a, Proposition 3.1] the notion of k-residue of a k-differential ξ on
a smooth curve C. Assume that ξ has multiplicity m < 0 at a point P ∈ C (i.e. a pole of order
|m| at P ). Assume furthermore that k | m. Then after suitable choice of local coordinate z on C
(with z = 0 at P ) we can write

ξ =
(
s

z

)k

(dz)k,

for m = −k, and

ξ =
(
zm/k +

s

z

)k

(dz)k,

for m < −k, respectively. Here s is an element of K whose kth power is well defined, denoted by
Resk

P (ξ) = sk, the k-residue.

Theorem C.1. Let 0 < n′ < n, and assume that mi < 0 and k | mi for all 1 ≤ i ≤ n′. Also
assume that mn′+1 is either negative or not divisible by k. For each 1 ≤ i ≤ n′, let ri be any kth
root of the k-residue of ξη at pi. Then

r1 + · · ·+ rn′ 
= 0, (C.0.1)

independent of the choices of kth roots ri.

For this result to hold, it is essential that the point η be general in Y . In the case k = 1,
we know that the sum of all the residues vanishes, and this result tells us that the sum of
any proper subset of the residues is generically non-vanishing. Our result is closely related to
those of Gendron and Tahar [GT17]. The key difference is that, on the one hand, we need to
treat the connected components Y of DRLg separately, but on the other hand, we are only
interested in the behaviour at the generic point. Note that for k = 1 our result follows from
[GT17, Proposition 1.3].

The proof will occupy the remainder of this section, and we break it into a number of steps.

Step 1: the case dimY = 0. In general we will argue by showing that the sum in (C.0.1) varies
non-trivially in Y , and thus cannot vanish at a general point; this argument fails if dimY = 0,
so we treat this case separately. Now dimY = 2g − 3 + n and n ≥ 2, so we must have g = 0,
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n = 3. Note that in this case necessarily n′ = 1, since for n′ = 2 we have m1,m2 ≤ −k (since
they are negative and divisible by k). But m1 +m2 +m3 = −2k, forcing that k | m3 and m3 =
−2k −m1 −m2 ≥ 0, a contradiction to the assumptions of the theorem.

So we are in the case g = 0, n′ = 1, n = 3. Then we have that DRLg =M0,3 is a single point
and we can assume that C = P1 with (p1, p2, p3) = (0, 1,∞). Then w is uniquely determined (up
to scaling) as

w = zm1(1− z)m2(dz)k.

Let g(z) be a kth root of (1− z)m2 around z = 0 with g(0) = 1. Then for m̃1 = −m1/k we have

w = (z−m̃1g(z)dz)k

and

Resk
0(w) =

(
Res0(z−m̃1g(z)dz)

)k =
(

1
(m̃1 − 1)!

(
d

dz

)m̃1−1

g(z)
∣∣∣∣
z=0

)k

.

One verifies that to compute the derivative of g we can just apply the usual rules for derivatives
for the formula g(z) = (1− z)m2/k and obtain(

d

dz

)b

g(z)
∣∣∣∣
z=0

= (−1)bm2

k
·
(
m2

k
− 1
)
· · ·
(
m2

k
− b+ 1

)
(1− z)m2/k−b

∣∣∣∣
z=0

.

Since m2 is either negative or not divisible by k, this is a non-zero number for b = −m1/k − 1
and thus the k-residue of w at 0 does not vanish, as claimed.

Step 2: Canonical covers of curves with k-differentials. We now move on to the general case,
where dimY > 0. Given a curve Cη with the k-differential ξη, we are going to use its canonical
cover π : Ĉη → Cη (see [BCG+19a]). This is a cyclic cover π : Ĉη → Cη of degree k obtained by
extracting a kth root of the section ξη of the line bundle ω⊗k(−mP ). This means that there
exists a 1-differential ξ̂η on Ĉη with (ξ̂η)k = π∗ξη. Moreover, for τ : Ĉη → Ĉη an automorphism
over Cη generating the Galois group, it satisfies τ∗ξ̂η = ρkξ̂η where ρk is a primitive kth root of
unity. Note that the map π is étale outside of the preimages of the points pi (since over points
where the k-differential ξη is not zero, there are exactly k choices of a root).

There is a unique maximal b ≥ 1 such that ξη is a bth power of a k′ = (k/b)-differential. The
number b is also the number of connected components of the cover Ĉη, and each such component
is the canonical cover for the suitable k′-differential on Cη. The component Y of DRLg is then
just a component of a space of k′-differentials, and the kth roots ri of the k-residues are exactly
k′th roots of the corresponding k′-residues. Since the canonical cover of the k′-differential is
connected, it suffices to show the statement of the theorem for connected canonical covers if we
show it for all k ≥ 1. So from now on we assume that Ĉη is connected.

Let ĝ be the genus of Ĉη. There are gcd(mi, k) preimages of each pi (and ĝ is determined by
Riemann–Hurwitz). Then we write H for the stack of ‘cyclic covers with the same degree and
ramification data as Ĉη → Cη’; more precisely, the objects of H consist of:

– a (smooth, connected, proper) curve C of genus g with n marked points p1, . . . , pn;
– a (smooth, connected, proper) curve Ĉ of genus ĝ with

∑
i gcd(mi, k) marked points qi,j :

1 ≤ i ≤ n, 1 ≤ j ≤ gcd(mi, k);
– a cyclic cover π : Ĉ → C of degree k mapping the qi,j to pi.

For a full definition and the properties of the stacks H that we will use, we refer the reader to
[SvZ20] and the references therein.
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The stack H comes with a map
δ : H →Mg,n

remembering the target curve (C, (pi)i) and a map

φ : H →Mĝ,r

remembering the domain curve (Ĉ, (qi,j)i,j); here r =
∑n

i=1 gcd(mi, k). The map δ is étale and
φ is unramified.

Recall that we write DRLg ⊂Mg,n for the ‘double ramification’ locus where there exists a
k-differential ξ with divisor mP . If qi,j is a marked point on Ĉ mapping to a marking pi on C,
then the canonical cover Ĉ → C has multiplicity fi = k/ gcd(mi, k) at qi,j and the 1-differential
ξ̂ has multiplicity m′

i := (mi + k)/ gcd(mi, k)− 1. We write DRLĝ ⊂Mĝ,r for the locus where
there exists a 1-differential ξ̂ with divisor m′Q =

∑
i,j m

′
iqi,j .

Lemma C.2. Let π : (Ĉ, (qi,j)i,j)→ (C, (pi)i) be a point of H given by the canonical cover of
a curve (C, (pi)i) ∈ DRLg. Then (Ĉ, (qi,j)i,j) ∈ DRLĝ, and inside H, in a neighbourhood of the

point π : (Ĉ, (qi,j)i,j)→ (C, (pi)i) of H, we have

φ−1(DRLĝ) = δ−1(DRLg). (C.0.2)

Proof. For the inclusion φ−1(DRLĝ) ⊆ δ−1(DRLg) let π : (Ĉ, (qi,j)i,j)→ (C, (pi)i) be a point of
H such that (Ĉ, (qi,j)i,j) ∈ DRLĝ, that is, such that there exists a 1-differential w on Ĉ with
multiplicity m′

i at the points qi,j . Then for the cyclic automorphism τ of the cover π we have
τ∗w = λw for some λ ∈ K, since τ∗w has the same pattern of zeros and poles as w. Since τ has
order k, it follows that λ is a kth root of unity. But then the kth power w⊗k of w is invariant
under τ , and hence descends to a k-differential on C with suitable zeros and poles. This shows
φ−1(DRLĝ) ⊆ δ−1(DRLg).

The other inclusion is not true globally, but we only need it on a neighbourhood of our point
π which already lies in φ−1(DRLĝ). If we can show that every infinitesimal deformation of π
which lies in δ−1(DRLg) also lies in φ−1(DRLĝ) then we are done, since all these moduli stacks
are of finite presentation. A deformation (Ĉt, (qi,j;t)i,j) of Ĉ lying in δ−1(DRLg) implies that
the line bundle ω⊗k

Ĉt
(−
∑

i,j km
′
iqi,j;t) is trivial, that is, ωĈt

(−
∑

i,j m
′
iqi,j;t) is k-torsion. Since the

k-torsion points are discrete in the relative Picard of the family Ĉt and since at Ĉ = Ĉ0 this
bundle is trivial (since Ĉ ∈ DRLĝ), it stays trivial in the deformation Ĉt, so Ĉt ∈ DRLĝ. �

Step 3: Tangent space computations. We know that

T(Ĉ,(qi,j)i,j)
Mĝ,r = H1

(
Ĉ,Ω∨

Ĉ

(
−
∑

qi,j

))
and we have an action of Z/kZ on Ĉ induced by the automorphism τ of Ĉ. This in turn induces
an action of Z/kZ on T(Ĉ,(qi,j)i,j)

Mĝ,r, and

T(Ĉ,(qi,j)i,j)
H = (T(Ĉ,(qi,j)i,j)

Mĝ,r)Z/kZ, (C.0.3)

where we see the tangent space toH as a subspace of the tangent space toMĝ,r via the unramified
map φ.

One also checks that the tangent space to DRLĝ (contained in T(Ĉ,(qi,j)i,j)
Mĝ,r) is stable

under the Z/kZ-action (for fixed i, all markings qi,j , which form a Z/kZ-orbit, have the same
weight m′

i in the definition of the double ramification locus DRLĝ).
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Step 4: Residue maps on the tangent space. From now on we focus on a curve C coming from
a general K-point of the component Y in the statement of the theorem, and take the cover
π : Ĉ → C by extracting a kth root of the given differential ξ, as in the previous step. Write ξ̂
for canonical kth root of ξ on Ĉ. Suppose that k | mi. Then there are exactly k markings qi,j
of Ĉ lying over pi (the cover π is unramified there), and the residues of ξ̂ at the markings qi,j
lying over pi are exactly the kth roots of the k-residue of ξ at pi. The chosen roots r1, . . . , rn′ in
the statement of the theorem thus correspond uniquely to certain markings qi,0 lying over the
pi; they are given exactly by the residue of ξ̂ at the qi,0.

Write f̂ : Ĉ → DRLĝ for the universal curve over DRLĝ. After perhaps restricting to an open
subset of Y , on DRLĝ the coherent sheaf f̂∗ωĈ

(
−
∑

i,j m
′
iqi,j

)
is invertible. We write n̂ for the

number of markings qi,j with negative weight, and we let H ⊆ O⊕n̂
DRLĝ

be the subspace defined
by the vanishing of the sum of all the coordinates. Then the (usual) residue gives a map

R : f̂∗ωĈ

(
−
∑
i,j

m′
iqi,j

)
→ H. (C.0.4)

Let Ĉ → C in H lie over a general point in Y , and choose a non-zero section ξ of
ωk(−mP ) over C, leading to a differential ξ̂ over Ĉ. This gives a point in the total space of
f̂∗ωĈ(−

∑
i,j m

′
iqi,j), and we can consider the tangent map TR at such a point.

Step 5: Concluding the proof with a lemma of Sauvaget. Recall that we have reduced to the case
where the curve Ĉ is connected. We can then apply [Sau19, Corollary 3.8] to see that TR is a
surjection.

The morphism τ induces an automorphism of the pair (Ĉ, ξ̂), where it acts on the differential
by pulling back and dividing by ρk. This induces an action of the group Z/kZ on the deformations
of the pair, or in other words on the source of TR. This group also acts on the target (by
permutation of markings and multiplication by suitable roots of unity), and the map TR is then
equivariant for the action. Since Z/kZ is linearly reductive, the induced map on the invariant
subspaces is also surjective.

On the left, the invariant subspace is the fibre of the source of TR over

T(Ĉ,(qi,j)i,j)
H̄ ∩ T(Ĉ,(qi,j)i,j)

DRLĝ = T(C,(pi)i) DRLg

using the combination of (C.0.3) and (C.0.2), and the fact that for a deformation of (Ĉ, ξ̂) leaving
the underlying curve Ĉ fixed, the group Z/kZ also fixes the deformation of the differential. On the
right, the invariant subspace HZ/kZ is the tangent space to the subspace of H with coordinates
of the form [. . . , s, ρks, . . . , ρ

k−1
k s, . . .], and the desired kth roots ri of the k-residues are just some

of these values. We claim that the corresponding projection

πn′ : TR(Ĉ,(qi,j)i,j))
HZ/kZ → Kn′

is surjective. If k > 1, the numbers s, ρks, . . . , ρ
k−1
k s automatically sum to zero, so the coordinates

of H summing to zero places no additional restriction on s. Thus every tuple (r, . . . , rn′) ∈ Kn′

can be obtained from an element of HZ/kZ under the map πn′ . On the other hand, for k = 1
we have HZ/kZ = H and necessarily mn′+1 < 0, so one of the coordinates of H is the residue
at pn′+1 which is forgotten under πn′ . Thus we can use this coordinate to balance the sum of
coordinates in H to be zero and for any choice (r1, . . . , rn′) ∈ Kn′

find a preimage under πn′ .
Since the invariant part of the source of TR is the tangent space to Y , and the differential

of the map taking the residues at the n′ points is surjective, and dimY > 0, we see that at

2335

https://doi.org/10.1112/S0010437X21007557 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007557


D. Holmes and J. Schmitt

a general point of Y the sum of these residues cannot be zero. This concludes the proof of
Theorem C.1.
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