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Abstract

In this paper we present functional Id and Haskell versions of a large Monte Carlo radiation
transport code, and compare the two languages with respect to their expressiveness. Monte
Carlo transport simulation exercises such abilities as parsing, input/output, recursive data
structures and traditional number crunching, which makes it a good test problem for languages
and compilers. Using some code examples, we compare the programming styles encouraged
by the two languages. In particular, we discuss the effect of laziness on programming style. We
point out that resource management problems currently prevent running realistically large
problem sizes in the functional versions of the code.

Capsule Review

The Monte Carlo technique has a long history. Its importance has grown in tandem with the
availability of cheap computing power. The authors outline the functionality of a large Monte
Carlo simulation program, and demonstrate that a simplified kernel version can be cleanly
coded in a functional style. They illustrate some effects of functional language implementation
on programming style.

It is characteristic of the Monte Carlo method that code validation and debugging depend
on high-statistics results. The authors frankly describe the problems encountered in obtaining
such results from the functional codes. Their experiences highlight the need for future
research to address specific implementation problems. Chief among these needs are effective
debugging tools for inspecting partial results and efficient yet unobtrusive methods of memory
management. Reports of this kind provide important empirical data on the practice of
functional programming that can help guide both application development and language
support research.
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1 Introduction

This paper presents to the functional language community a large Monte Carlo
radiation transport code for language comparison and benchmarking. We also
compare the functional languages Id (Nikhil, 1990) and Haskell (Hudak et al, 1992)
with respect to their expressiveness when used to write a complex scientific code,
and point out the deficiencies which currently prevent this program from executing
realistically large problems. We describe purely functional Id and Haskell versions
of the photon transport simulation code based on the MCNP Fortran code of Los
Alamos National Laboratory (LANL) (Briesmeister, 1993). The Id code discussed
here uses no explicit I- or M-structures. Its only side-effecting is that which is
required to do input/output.

Monte Carlo photon transport simulation is a good test problem for languages
and compilers. It exercises such abilities as parsing, input/output, recursive data
structures and traditional number crunching. While it contains high task parallelism,
its Monte Carlo nature makes execution irregular and highly dependent upon the
user's problem specification. Our codes should therefore be useful as benchmarks
for compilers, run-time systems and machines, and they reveal the capabilities and
deficiencies of a programming language and its implementation.

The MCP-Id code was developed using MIT's Id-World version 115 (Morais,
1986), which includes a compiler, a simulator called 'MINT', and the ability to
execute compiled code on the Motorola/MIT Monsoon dataflow machine (Hicks
et al, 1993); the later stages of development were done on the 16-node Monsoon
at LANL. The MCP-Haskell code was developed using the Chalmers Haskell B
compiler, version 0.999.5, and was run on SUN SPARC machines.

The Id and Haskell codes are structured very similarly. The main differences lie
in the way input/output is handled. The programming styles differ primarily in
that Id encourages the use of loops and arrays, because of efficiency and resource
management reasons, whereas Haskell programs tend to use higher order function
composition and lists. Resource management problems severely limit the problem
size that both the Haskell and Id versions of the code can run.

The rest of the paper is organized as follows. In section 2 we describe the Monte
Carlo photon transport simulation problem. In section 3 the program structure is
introduced. In section 4 the Haskell and Id programming styles are discussed. In
section 5 the Haskell and Id codes are compared using some example code fragments.
Section 6 deals with resource management issues. In section 7 we conclude and
discuss future work.

2 Problem description

Throughout this paper, the name 'MCNP' refers to the original Fortran code
developed at Los Alamos over many years, which simulates the transport of photons,
neutrons and electrons. MCNP is a very general code which allows a myriad of
parameter settings and applications, and is used at over 100 sites worldwide. The
name 'MCP-Functional' refers to the photon transport codes which are based on
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MCNP and written in a pure functional way, called 'MCP-Id' for the functional Id
code and 'MCP-Haskeh" for the Haskell version.

2.1 Overview of Monte Carlo photon transport

The Monte Carlo radiation transport problem involves simulating the statistical
behavior of certain particles while they travel through objects of specified shapes,
consisting of certain materials. It is used to model problems in areas such as
nuclear reactors, radiation shielding and medical physics (Whalen et ah, 1991).
MCP-Functional deals only with photon radiation. Simulating the behaviour of
particles and their collisions with the nuclei of the material that the particles
travel through is called tracking. A nucleus is the kernel of a specific atom, and a
nuclide is a certain element. While tracking takes place, statistical information about
certain events is gathered in histograms in a process called tallying. The user of a
Monte Carlo transport code describes a problem geometry, a radiation source and
the information that needs to be tallied. The program simulates individual source
photons as they collide with the nuclei of the materials in the problem geometry, and
each photon contributes information to the tallies being collected. The accuracy of
the tally results is proportional to the square root of the number of source particles
simulated. Figure 1 shows an example of a photon track. Each intermediate event is
a collision or a surface crossing. The exact nature of these events is described in the
following sections. Because photon splitting can occur, a source photon's track forms
an irregular tree. Track lengths and the degree of splitting are highly dependent on
the the user's problem specification.

2.2 Photon tracking

The essence of photon simulation is the tracking of a photon through a series of
movements and collisions with nuclei. Each collision has the potential for absorbing
some of the photon's energy and changing the photon's direction of travel. It is
also possible for a photon to split into multiple photons, each of which must be
separately tracked. Splitting can be either physical (see section 2.2.1) or statistical
(see section 2.2.2). Eventually, every photon's track ends due to one of three reasons:
its energy or weight falls below a specified threshold, the photon reaches a region
of little or no interest with regard to the tallies being collected, or the photon is
absorbed by a nucleus.

2.2.1 Collisions

There are four kinds of collision possible when a photon interacts with a nucleus:

1. Compton (incoherent) scatter, in which a new angle and energy result.
2. Thomson (coherent) scatter, in which a new angle but unchanged energy result.
3. Pair production, in which the photon is absorbed and two new photons are

produced, each with 0.511008 Mev of energy and opposite directions.
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user-specified
plane

surface crossing
with importance splitting

Fig. 1. Example of a source photon's track

4. Photoelectric effect, in which zero, one or two new photons may be produced
by photofluorescence.

It is possible to specify different physics treatments, simple and detailed, to handle
collisions. The simple model ignores coherent scattering and photofluorescence, and
uses rougher (and computationally faster) approximations in computing the new
energy and scatter angle for an incoherent scatter. This simple treatment can be
useful for high-energy photons but is not accurate enough for low energies or heavy
nuclides. The user can specify, based on an understanding of the problem being
simulated, a threshold energy below which the simulation will switch to detailed
physics routines.

For each of the 94 nuclides, empirically derived cross sections have been collected
and refined over the years. Determining accurate cross section data is an ongoing
activity. "The main limitation in MCNP's ability to model problems correctly is the
lack of well known cross sections" (Whalen et al., 1991). The cross sections of a
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nuclide are stored in a table, indexed by energy, with values (in units called barns)
for each of the four collision types. For an arbitrary photon energy, the cross sections
are to be interpolated. The sum of the four cross section values for a given energy,
and the density of the material, allow the mean free path length to be calculated;
this is the average distance to the next collision. This value can then be used, along
with a random number, to select the actual distance to the next collision. The ratios
of the four cross section values indicate the relative likelihoods of the four kinds of
collision, allowing a random selection of the collision type. Also, in the case of a
collision in a composite material, a random selection is made to determine which of
the material's nuclides was involved in the collision.

In addition to the cross section tables, each nuclide has two tables of data which
relate to interpolations in scatter collisions when selecting a new energy and angle
of deflection. Finally, there are four small tables which relate to probabilities of
photofluorescence for the heavier nuclides. Since the cross section data for all 94
nuclides is large, MCP-Functional expects to read a cross section file which contains
only the data for the nuclides used in the problem being run.

A user describes geometric cells for a problem, each with a specified shape and
material composition. Every step in a photon's track is a move either to a cell
boundary or to a collision location. To select the photon's next move, two distances
are computed: the distance to the cell boundary given the photon's current direction
of travel, and the distance to the next collision given the cell's material composition
and the photon's energy. The smaller of the two selects the one which actually takes
place. If it is a collision, the photon is moved along its trajectory by the collision
distance, and a new energy and direction are computed. Otherwise, the photon is
simply moved to the cell's boundary.

2.2.2 Variance reduction

To get better accuracy with less compute time, variance reduction is used. Cells are
assigned importance values which the user must devise in a somewhat ad hoc way.
Each time a photon crosses from one cell to another, one of three things happens:

• If the two cell importances are equal, the photon simply crosses over into the
new cell.

• If the new importance is higher, the photon splits into multiple photons.
Each has the same energy, location and direction of travel, but each is seeded
with a different random number, and the weight of the old photon is equally
apportioned among the new ones.

• If the new importance is lower, then Russian roulette takes place: a random
choice (weighted by the cell importance ratio) is made to decide whether the
photon will continue to be tracked or whether it will 'die'. If it survives, its
weight is increased proportionate to the cell importance ratio. Crossing into
a zero importance cell simply means that the probability of death by Russian
roulette is 100%, i.e. that a photon's track ends when it crosses into a zero
importance cell.
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It is important to understand that a photon's weight is statistical, not physical.
The weight tells what fraction of its source the photon represents. All source photons
begin with a weight of one. A photon's contributions to tallies are scaled down by its
weight. Intuitively, when importance splitting occurs, the apportioning of a photon's
weight among its split daughter photons maintains a 'conservation of photons'.

Typically, a user will represent a physical object by multiple cells, rather than
one cell, and will assign importances to those cells in such a way as to keep a
reasonable number of photons alive as they travel away from the source. The
idea is that every source photon should 'push' some photon or photons (which
by then have reduced weights) across the tallied surfaces or through the tal-
lied cells. The number of cells, their spacing, and the importances are chosen
so that the degree of photon splitting approximately compensates for the pho-
tons which die due to absorption or energy cutoff as they migrate toward the
tally locations. The exact techniques for choosing importances and cell specifica-
tions are learned by experience. A user will experiment with the problem spec-
ification, doing small runs and noting the rate of statistical convergence of the
tallies. When the user is satisfied with the behaviour of the simulation, a full run
will be performed. In general, the cell partitioning and importances should af-
fect the speed of convergence but not the answer itself. However, it is possible
for some specifications to result in badly-behaved simulations. The documenta-
tion of LANL's MCNP describes the selection of importances as something of an
art.

It is possible for the user to set up a geometry such that a cell may be a vacuum
of non-zero importance. If a photon enters such a cell and there is no surface to be
found on its present trajectory, then it simply travels forever. Our code detects this
and aborts with an error message. Such errors can be avoided simply by surrounding
the problem geometry by a cell of zero importance.

2.3 User's specification of problem

We now describe how a user sets up and describes a problem to be simulated. This
is aided by an example which will be followed through the rest of the paper.

2.3.1 Geometry

A three-dimensional geometry is built up from a number of cells, each of a certain
material and shape. Our running example's geometry consists of a sheet of carbon
steel with an aluminum half sphere shell on top of it, and a gamma radiation source
just above its center. A two dimensional slice is shown in figure 2, while figure 3
shows its MCP-Haskell specification file with comments explaining the information
in the file. The Haskell-style comments are ignored because the lex function in the
standard prelude was used in parsing the input.

In MCP-Functional each cell has associated with it the following information:

1. Its region, describing the space the cell occupies.
2. Its material composition.
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Fig. 2. Vertical slice (at y=0) through the example geometry.

3. Its material density.
4. Its statistical importance (see section 2.2.2).

Regions are defined using surfaces such as planes, spheres and cylinders. A surface
defines two primitive regions, one positive and one negative, such as the two half
spaces defined by a plane or the inside and outside regions of a cylinder or sphere.
More complex regions can be defined using intersection, union and complement
operators. In defining the regions for the cells, the user has the responsibility to
ensure that no point in the three-dimensional space is in more than one cell.
Also, it is a run time error for a photon to reach a location which is not in
any of the defined cells. If it is impossible for a photon to reach a given point,
then that point does not have to be in a cell. However, most users will specify
a zero-importance cell whose region contains all points not covered by the other
cells.

To describe the material composition of the cells, a separate array of materials
is defined and referenced by the cells. Each material consists of a list of (nuclide,
fraction) pairs where the nuclide is in the range 1 (hydrogen) through 94 (plutonium).
The user must ensure that the fractions for each material add up to 1. The atom
density of the cell's material is expressed in 1024atoms /cm3. The statistical importance
is a float value; its use is described in section 2.2.2 on variance reduction.
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500
1.0
0.005
0.000001
(0.0, 0.0, 0.01)
iso
7

—
—
—
—
—
—
—

— source energy histogram
[(1.0, 0.00),
(1.0001, 0.4999),
(1.4999, 0.5001),
(1.5, 1.00)]

— surface definitions
[(Pz 0.0),
(Pz -1.0),
(Pz -1.5),
(Pz -2.5),
(So 100.0),
(So 100.5),
(So 100.7),
(So 101.0),
(Pz -2.0)]

— cells:
geometry

[*[#-l, #2]
*[#-2, #3]
*[#-3, #9]
*[#5, #-6, #1]
*[#6, #-7, #1]
*[#7, #-8, #1]
*[#-5, #1]
+ [#-4, *[#8, #1]]
*[#-9, #4]
— materials:
[[(0.6, 2), (0.4, 1)],
[(1.0, 3)]]

— z list:

—
—
—
—

—
—
—
—
—
—
—
—
—

mat'
1
1
1
2
2
2
0
0
1

[6, 26, 13] — carbon,
— cross sections file
( phot_bench_3 )

— tallies:

flux [8]

— random seed:
300506

3 4

number of photons
simple/detailed threshold
energy
weight
source

cutoff
cutoff
location

isotropic source
source

1.0
1.0001
1.4999
1.5

sfc 1
sfc 2
sfc 3
sfc 4
sfc 5
sfc 6
sfc 7
sfc 8
sfc 9

is in cell 7

Mev
Mev
Mev
Mev

plane
plane
plane
plane
sphere
sphere
sphere
sphere
plane

1 importance
1
2
4
1
2
3
1
0
7

—
—

iron, c

, 5, 6,

0
0
0
0
0
0
0
0
0

- matl 1
- matl 2

iluminum

9]

at z = 0.0
at z = -1.0
at z = -1.5
at z = -2.5
(origin), dia =
(origin), dia =
(origin), dia =
(origin), dia =

at z = -2.0

density
0.125,
0.125,
0.125,
0.0892765,
0.0892765,
0.0892765,
0.0,
0.0,
0.125 ]

: 607. iron, 407.
: 100'/, aluminum

[1.5],
[0.8, 1.25, 1.

100.0
100.5
100.7
101.0

- cell
- cell
- cell
- cell
- cell
- cell
- cell
- cell
- cell

1
2
3
4
5
6
7
8
9

carbon

5]]

Fig. 3. Example input file
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In our running example the sheet of carbon steel is defined using boundary planes
parallel to the z = 0 plane, and it consists of multiple cells so that they can have
different statistical importances. Cell 1 is defined as the intersection (*) of the region
below surface 1 (#-1) and the region above surface 2 (#2), and has an importance
of 1.0. The aluminum half sphere is defined by a number of cells using sphere and
plane surfaces. For example, cell 4 is the intersection of the region outside surface 5
(the smallest sphere), the region inside surface 6 (the next smallest sphere), and the
region above surface 1 (the plane at z = 0). The importances of the cells grow as
they are further from the source, to compensate for photons which are absorbed in
the closer cells.

2.3.2 Photon source distribution

The photon source is described by three properties:

1. Location.
2. Direction - unidirectional or isotropic.
3. Energy distribution in the form of a cumulative histogram.

An isotropic source emits photons evenly in all directions. In the example we have
an isotropic gamma (high energy photon) source just above the center of the sphere,
at (0,0,0.01). The energy histogram produces half of the source photons with 1.0
Mev and half with 1.5 Mev of energy.

2.3.3 Tallies

The user specifies a list of desired tallies, which describe the histograms which will be
gathered during simulation and output at the end of the program execution. Some
tally types are inherently related to surface crossings; others are related to collisions
in the interior of cells. It can be useful to partition a tally by energy bands, or bins.
Each tally consists of the following information:

1. Kind of tally (current, flux, collision count, etc.).
2. List of locations (surfaces or cells, depending on the kind of tally).
3. A list of energy bin partition values.

Every time a photon passes through a tallied surface or collides with a nucleus
in a tallied cell, it contributes information to the appropriate tally. The nature of
the information depends on the kind of tally being performed. For example, a
current tally simply counts the number of photons crossing a surface, so the tally is
incremented by the photon's weight. If the tally was specified with more than one
bin, then the appropriate bin is chosen to be incremented based on the photon's
energy (i.e. it chooses the first bin whose partition value is > the photon's energy).
It is an error if a photon's energy exceeds the largest bin, so the user should always
make the largest bin value at least equal to the largest possible source energy.

Our example shows two tallies being performed. The first is a collision count
(which does not use the photon's weight) in cells 1, 2, 3, 4, 5, 6 and 9. There is
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one all-inclusive bin for this tally, set equal to the largest photon energy which can
occur. The second tally measures flux (which takes into account photon weight and
crossing angle) across surface 8. It is partitioned into three energy bins.

2.3.4 Other information

The remaining pieces of input information are:

1. Simple/detailed threshold (described in Section 2.2.1).
2. The energy threshold below which a photon will no longer be tracked.
3. The weight threshold below which a photon will no longer be tracked.
4. The starting random seed.
5. The name of the file containing the cross section information for the nuclides

used in the simulation.

2.4 Output

The output of MCP-Functional reports the average source photon energy, the
various kinds of photon creates and losses, and the values and error estimates for
each of the user's tallies. The creates and losses give the user some insight into the
kinds of tracks which are taking place, and demonstrate that all photons have been
accounted for (i.e. the number of creates equals the number of losses).

Figure 4 shows the output for our running example, with 500 source photons. As
expected, the average source energy is almost exactly 1.25 Mev, since about half
of the photons should be 1.0 and half 1.5 Mev. The photon creates and losses are
equal. (Inequality would indicate a program bug.) The first tally gives the number of
collisions per source photon in each of the non-vacuum cells (cells 1, 2, 3, 4, 5, 6 and
9). The second tally gives the photon flux across the outside of the aluminum shell
(surface 8), subdivided into three energy bins. For each tally line, the first number
is the value and the second number is the error estimate. All tallies are normalized
per source photon.

2.5 Comparison of MCP-Functional and MCNP

2.5.1 Capabilities

MCP-Functional implements a subset of MCNP's photon part. Here some of the
differences between the programs are noted. LANL's MCNP is an impressive code,
with over 400 person-years of effort already devoted to it. It simulates the transport
of photons, neutrons and electrons. Its primitive surfaces include cones and toruses
in addition to those in MCP-Functional. It also has a great deal of user flexibility,
including six photon tally types and 13 kinds of variance reduction. Tally bins can
be specified based on a variety of parameters, not just energy. Photon sources can
have probability distributions for energy, position and direction as well as energy
as a function of angle, etc. Flux can be tallied on point and ring detectors as well
as across surfaces. Each tally bin gets ten pass/no-pass tests applied to determine
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average energy = 1.2489999512730641

photon_creation

source 500

cell importance 1518

p_annihilation 0

first fluor 62

second fluor 0

photon loss

escape 1627

energy cutoff 0
weight cutoff 0
cel l importance 166
capture 287
pair 0

t a l ly 1:
[1]
[2]
[3]
[4]
[5]
[6]
[9]

t a l ly 2:

bin 8.
[8]

bin 1.
[8]

bin 1.
[8]

7.7363059728494610e-2
1.1467677941655713e-l

9.3200000000000005e-l
5.6800000000000006e-l

9.7399999999999998e-l 9.2940754703784670e-2
1.5400000000000000e-l 1
9.4000000000000000e-2 1
2.5000000000000000e-l 1
1.1380000000000001 1.0599562042694273e-l

,5966210737350792e-l
.9335029558804326e-l
.9689591158782346e-l

0000000000000004e-l
3.2259257224815835e-l

2500000000000000
2.0607260608766872e-1

5000000000000000
2.1157410637032456e-l

1.2769247563478950e-l

8.6165062944350668e-2

8.4882237007883735e-2

Fig. 4. Example output file

whether the simulation is well-behaved. The hundreds of pages in MCNP's users
manual attest to its capabilities.

In creating MCP-Functional it would have taken a prohibitive amount of time
to implement all of MCNP's photon capabilities. Instead we have tried to choose
representatives of the things which MCNP can do, so that the code's structure and
behavior faithfully reflect the job being performed.

2.5.2 Use

An MCNP user tends to handle a problem in four steps:

1. Construct the problem by specifying the geometry, source, tallies, etc. Also
specify the variance reduction techniques and parameters, including subdivid-
ing cells and assigning importances to them.

2. Do a small run, yielding information about the convergence and general
behaviour of the simulation.
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3. Use this information to modify the problem specification, especially the vari-
ance reduction parameters.

4. After iterating the previous two steps and obtaining satisfactory behaviour,
execute one or more long runs. Such runs may involve millions of source
particles.

MCP-Functional's feedback to the user during the middle steps of this process
is probably inadequate for real-world use. MCNP produces a large amount of
information which helps give the user a picture of what is happening during the
simulation. For example, since cell importances are manipulated by the user to keep
a reasonable population of photons alive as they migrate toward the tally locations, a
user is interested in the number of photons entering and leaving each cell or crossing
each surface. That information can be used to change the importances appropriately.

3 MCP-Functional - Program structure and correctness

On the top level, the code consists of input parsing, simulation and output formatting.
The simulation part is divided into tracking and tallying, which have a producer-
consumer relationship for which the event list serves as the interface. The event list
provides a clean separation between the tracking and tallying tasks, which means
that new kinds of tallies can be added without touching the tracking code in any way.
As a photon is tracked, each collision and surface crossing appends an event onto
that photon's event list. The event contains all useful information about the photon
at that time: energy, weight, location, direction, angle of crossing, etc. The event list
is traversed by the tallying code to extract the required information for output.

Throughout this section, MCP-Haskell is used when code fragments are shown;
their MCP-Id counterparts are nearly identical except for syntax differences. Figure 5
shows the function map which generates the source photons, tracks them, tallies the
results, and produces the output string; figure 6 shows a flow diagram of that code.
A list of random seeds is generated, and the samplesource function is mapped on
the list, yielding a list of source photons and their seeds. This list is then used
to determine the average source energy, and the track function is mapped on it,
yielding a list of event lists. The user's tally functions are then applied to each of
the event lists, yielding a list of tallies for each source photon. Finally, that list of
lists is transposed and the accumulations are performed. Also, the list of event lists
is used to total up the various photon creates and losses.

3.1 Tracking

The tracking code has two parts: physics and geometry. The physics part of the
tracking code bears strong resemblance to the corresponding Fortran code in MCNP
after the 'spaghetti' is untangled. Some of the Fortran functions have exact coun-
terparts in MCP-Functional. The routines include interpolations of cross sections,
and sampling of statistical distributions through techniques such as direct methods
or rejection sampling. (Chapter 2 of Carter and Cashwell (1975) contains a full
discussion of statistical sampling.)
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mcp :: Userspec-info —* SrcespecJnfo —•
[Tally-entry] -> Seed -> Int -> String

mcp userJnfo srceJnfo all-tallies seed n =
let

recip = 1.0/(fromlntegral n)

particleJist :: [(Particle, Seed)]
particleJist =

map (samplesource srceJnfo) (take n (iterate trand-9973 seed))

avg-e =
(foldl (+) 0.0 (map (\(( e,.),.)^e) particle-list))* recip

eventJists :: [fEventJJ
event Jists = map f particleJist

where
f(particle@( e, .), sd) =

(Createsource e) .(track userJnfo particle [] sd)

tallyJist :: [[Array (Int,Int) Double]]
tallyJist = transpose (map g event-lists)

where
g evs = map (tally.asource evs) all-tallies

accums :: [Array (Int,Int) Double]
accums = map accumJally tallyJist

squares :: [Array (Int,Int) Double]
squares = map accumJallysquares tallyJist

totals :: [Int]

totals = tallyJjal event-lists

final Jallies = zip5 all-tallies accums squares (repeat recip) [1..]

in
shows-results avg.e totals final-tallies ""

Fig. 5. Top level Haskell code

The geometry part of MCP-Functional was developed independently from the
original Fortran code of MCNP, as it was much easier to start from scratch and
use the more powerful data structuring facilities of functional languages. Recursive
data structures are used to express in a direct way the region expressions specified
by the user. The region is defined in the Haskell code as follows:

data Region =
R-prim Int - base case: primitive region

- the absolute value of the Int specifies
- the surface, and its sign indicates
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>•
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particlejist

get_energy
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(energy sum)

In

transpose (map g event_lists)

where

g evs = map (tally_a_source evs) all_tallies
\ map accum_tally
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\

\
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Fig. 6. Dataflow view of MCP

R-Compl Region
RJntersects [Region]
Rjunions [Region]

which side of the surface
complement of a region
intersection of regions
union of regions

The geometry part has two responsibilities. The first is to determine the distance
to a cell's boundary, given a photon's location and direction. This is done by
calculating the distance to each of the surfaces which form the leaves of the cell's
region structure, eliminating those which are cutting through a cell (rather than
forming part of its boundary on the half line defining the trajectory of the photon),
and selecting the minimum. When calculating the distance to a surface, the direction
of the photon is taken into account; surfaces that will never be crossed, because they
are 'behind' the photon or are parallel to its trajectory, have an infinite distance.
The second responsibility of the geometry part of the code is to determine, after a
surface has been crossed, which cell has been entered. This involves testing, for each
cell, whether the new location lies within that cell's boundaries. Search lists, one for
each surface, are precomputed at the start of the program and devised so that the
more likely cells are at the head of the list and are therefore tested first.

The track function uses the physics and geometry routines to track a photon.
It begins by determining whether energy or weight cutoff terminates the photon's
track. If termination does not occur, it determines whether the next event will be a
collision or a move to the cell boundary (as described in section 2.2.1). One of three
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functions is then called: simple-physics, detailed.physics or move Jo surface. These
functions are capable of terminating the photon's track (by absorption or Russian
roulette), continuing the track, or producing multiple photons (by pair production,
photofluorescence, or importance splitting), each of which must be tracked.

The track function and these three other functions are mutually recursive. Each
call to track handles one collision or one move to a cell boundary, and appends
one event to the accumulating event list. If the photon survives the collision or
cell crossing, the track function is called with the photon's updated information to
continue its tracking. In the cases where splitting occurs, track is called on each of
the split photons and the returned event lists must be concatenated. To avoid the
inefficiency of actual list concatenation, an accumulating event list parameter is used.

3.2 Tallying

The tally code takes the event lists produced by the track function, extracts each
tally, and reduces tally information to averages and standard deviations so that
error estimates can be given. When the user's input specification file is read, a list
of tallies is created; each tally specification is held in a data structure defined as
follows:

data Tally.entry =
Tally

Tally Junction - specifies current, flux, etc
flntj - list of surfaces /cells to tally on
(Array Int Int) - table mapping sfc/cell nums to array index
Int - number of surfaces/cells being tallied
(Array Int Double) - energy bins

The accumulation of an event list, using a user's tally, is performed by the following
function, which takes one event list and one tally, and returns a tally array:

tally.asource :: [Event] —* Tally .entry —> (Array (Int,Int) Double)
tallyM^ource evs (Tally f . refn bins) =

accumArray (+) 0.0 ((l,l),(n,ss))
[(i,binJdx):=v | (i, binJdx, v) <— (map g evs), v>0.0]

where
(-,ss) = bounds bins
g :: Event —> (Int, Int, Double)
gev =

let
(idx, bin.val, val) =fev
j = ref.'idx
binjium =

let
bin.num' =

https://doi.org/10.1017/S0956796800001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001374


298 J. Hammes, 0. Lubeck and W. Bohm

1 + length (takeWhile ( \v—>bin-val>v) (elems bins))
in
ifbinjium' > ss then

error "no bin for value"
else

binjnum
in
if (not (inRange (bounds ref) idx)) || (j == 0) then

(0, 0, 0.0)
else

(j, bin-num, val)

Figure 7 shows four of the intermediate data structures represented in figure 6. The
first is particle .list, which is the list of source photons and their seeds. The second
is event Jists, which is the result of mapping the track function on particleJist. The
third and fourth are the list of tally arrays, before and after transposition. The
transposition is done to prepare for the horizontal accumulations which will be
performed to produce the accums and squares tally results.

In addition to the user's tallies, the program also reports a tally of all photon
creates and losses, called totals in figure 6, by accumulating into a histogram indexed
by the various kinds of births and deaths.

3.3 Assessing correctness

There are two possible approaches to checking the correctness of a Monte Carlo
simulation code. The first is to devise simple tests for which an analytical solution
is known. If the simulator's result matches the analytical solution within the error
estimate, then the simulator can be considered correct for that particular test case.
The second approach tests not only that the code faithfully reflects the underlying
theory, but tests the theory itself by simulating real world problems and comparing
the results with measured physical experiments.

3.3.1 Monte Carlo outputs

Testing and debugging Monte Carlo codes can be difficult, due to the statistical
nature of their outputs. The source of the difficulty comes from the fact that these
codes produce not just values, but values with error estimates.

Consider as an example the development of some simple Monte Carlo code
with an output of a single scalar value. The code is written with various low level
components that are 'glued' together to form the program. The low level routines are
individually tested as completely as is practical. Then the program must be tested
by running a problem which has a known result, either because it has an analytical
solution or because empirical real-world measurements have been made.
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photon

seed

photon

seed

photon

seed

photon

(a) Source photon list, called particleJist

(b) List of event lists, called event Jists

(c) List of tally-array lists (d) Transposed for accumulating, called tally Jist

Fig. 7. Main data structures in MCP

When the program is run, a value and error estimate are produced. If the known
correct value is outside of the error range, the probability is high that there is a
problem in the simulation. (The problem could be a programming error or an error
in the simulation model itself.) But if the correct value lies within the error range,
it cannot be concluded that the simulation is working correctly. In other words, an
error range that contains the correct value is a necessary but not sufficient condition
for correctness.

Figure 8 shows how this can happen. Each point represents the output value for a
given run, and its vertical bar represents its error range (the value plus or minus the
error estimate.) The known correct result is also shown. In both of these scenarios
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wrong!

4n 16n 64n 256n

run size

Correct simulations Incorrect simulations

Fig. 8. Two hypothetical convergences

the same error range is produced for a run of size n, but it is impossible after that
size run to know whether either simulation is working correctly. Quadrupling a run
size cuts its error range in half. As larger runs are performed the first scenario
shows convergence on the correct known value, because that value is always within
the error bars. In the second scenario a problem is not apparent until a run
size of 64n, where the error bar's range does not contain the correct value. Thus
determination of correctness for a given problem can come only from doing large
runs, so that sufficiently small error bars can reveal the convergence. Note also that
the convergence of the values is not necessarily monotonic; however, each error bar
will likely be within the range of the preceding error bar.

If a low level routine is itself statistical in nature, then the same problem exists not
only in testing the program as a whole but in testing the individual routine during
the early stages of program development. Once a bug is known to exist, finding its
source can also be difficult since its manifestation is statistical. Dumping traces of
the simulation is often of little use since the individual steps of the simulation can
look feasible yet the aggregate of the steps is known to be wrong.

3.3.2 Determining correctness of MCF'-Functional

An important activity of the Radiation Transport Group (X6) which maintains
the MCNP code at LANL involves validation of MCNP using both analytically
solvable problems and empirical measurements. For MCP-Functional, validation is
considerably easier: we assume that MCNP is correct and simply seek to duplicate its
results. However, comparing for exactly identical outputs turns out to be impractical,
since it would require both that the random number streams be identical and that
each value from the stream be used at the same decision point in both executions.

In both the Fortran and the functional codes the random stream is a sequence
of unsigned integers; each is used to generate the next one in the sequence, and
is also converted to a float in the range zero to one to be used at a decision
point. MCNP's designers have gone to some trouble to use 48-bit seeds (with 96-bit
intermediate results in multiplies) while maintaining machine portability (Hendricks,
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Fig. 9. Hypothetical comparison of two Monte Carlo programs

1991). But using 48-bit seeds in the functional versions would have been awkward
since integers on the Monsoons and SPARCs are 32 bits. Even if MCNP's random
stream had been duplicated, it would have been challenging and confining to force
MCP-Functional to use the stream in the same order as it is used by MCNP. Instead,
MCP-Functional uses 30-bit integers in its stream, with 60-bit intermediate results
in multiplies.

Because MCNP and MCP-Functional generate and use the random streams in
different ways, the comparison of their results must be statistical, and since MCNP
gives error estimates, our comparisons must be between MCNP's error bars and
MCP-Functional's error bars. Figure 9 shows a hypothetical comparison of the
outputs of two Monte Carlo programs for various run sizes. Here we consider the
two programs to be in agreement if their error bars always show some amount of
overlap. Note that the amount of overlap often can change with different run sizes
because of variations in the random streams and their uses.

Because of resource management problems neither MCP-Id nor MCP-Haskell are
able to run problem sizes that allow meaningful comparisons of outputs with MCNP
(see section 6), so it was necessary first to develop a code in which resource usage
was adequately constrained, thus allowing detection of bugs during development
and validation of the final program. Because Id allows explicit synchronization and
memory releases, and because the Id code preceded the Haskell code in development,
an 'impure' version of MCP-Id was created that imposed no limit on the number
of photons that could be run, allowing meaningful statistical comparisons of their
outputs.

Using this impure code, various problems have been simulated and all have given
statistically comparable results to those of MCNP. The problems include three
photon benchmarks, with analytical solutions, produced by LANL's X6 group and
used by them to validate MCNP. Our running example also has been run on both
the modified MCP-Id and MCNP. Figure 10 shows, in graphical form, the outputs
of both programs on 160,000 source photons. A horizontal bar's width indicates the
range of the energy bin, its y-coordinate is the tally value, and the vertical bar shows
the error range. Note that the sizes of the error ranges agree, and that the error

https://doi.org/10.1017/S0956796800001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001374


302 J. Hammes, O. Lubeck and W. Bd'htn
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Fig. 10. Comparison of MCNP and MCP-Id output

ranges on the tallies overlap. The extremely close agreement of the middle energy
bin is coincidence; smaller runs show less overlap in this band.

4 Programming style

The Fortran MCNP code is quite large, consisting of about 40,000 lines of code,
including comments, and counting the replicated COMMON blocks just once. It
is coded to be as compact as possible; local variable names are all no more than
two characters long. It reflects a coding style which "...is clearly counter to modern
computer science programming philosophies..." (Briesmeister, 1993). Except in some
cases where bottom-level physics subroutines could be isolated and understood, it
was hopeless to use the Fortran code in any significant way when writing MCP-
Functional because of its side-effecting and the differences in overall code structure.

4.1 Development approach

Rather than attempt to use the Fortran code as a point of departure, we started with
a fresh, structured view of the problem. Strong parsing capabilities coupled with

https://doi.org/10.1017/S0956796800001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001374


Monte Carlo photon transport 303

recursive data structures allow the geometry code to be expressed in a straightforward
way. The event list in MCP-Functional serves as an interface between the tracking
and tallying parts of the program, whereas in MCNP the geometry and collision
parts of the code call routines which side-effect into the tally arrays.

One of the most important differences between the Fortran and the functional
codes occurs in the handling of random numbers. Since functions in a pure functional
program have no state, the random seeds must propagate through the code as
function parameters. At split points, a seed must be able to 'fork', i.e. one seed must
be able to generate two or more seeds with no correlations among them. The easiest
solution to this forking was found in the MCNP code itself. A linear stream of seeds
is used, and the stream has the characteristic that it is possible, in constant time, to
leap forward in the sequence by any desired number of steps. Each source photon
is given a fixed segment of the stream, and when the track of a photon splits, the
split photons are seeded by taking different sub-segments of that photon's segment.

This strided approach to random number generation is not ideal. It is possible
for long photon tracks to cross into other photons' segments, making it theoretically
possible for correlations to occur. It is also possible for the entire random stream
to loop around if a large number of source photons is run. However, experiments
performed by X6 show that the effect on the answers is usually negligible, probably
due to the fact that even when a part of the random stream is being reused, each
value's decision point is completely different (Hendricks, 1991).

As noted in section 3.3.1, debugging Monte Carlo codes requires reasonably large
problems to be run. The development process was therefore seriously altered: instead
of developing a pure functional code first, and then making necessary adjustments
to allow it to run large problems under hardware resource limits, an impure version
had to be developed and used throughout the development process. Only when that
version was fully debugged could the pure Id and Haskell codes be derived from it.
Since Id was used for the impure version, the development sequence was:

1. Impure Id.
2. Pure Id (MCP-Id).
3. Pure Haskell (MCP-Haskell).

Once a correct impure Id code was in hand, the pure versions came easily since the
codes are deterministic and are expected to produce identical results.

4.2 Id's non-functional part

It is useful to note some relevant aspects of Id's non-functional language features.
The language is built around a pure, higher order functional core which is augmented
with side effecting capabilities. Its semantics are parallel, and the exact execution
order of concurrent operations can vary at run-time. The programmer is able to
exercise some control over execution order by the use of loop bounds and barriers.
Each loop can be given a bound that specifies how many concurrent iterations are
allowed to take place. Barriers create synchronization points; within a code block,
concurrent operations preceding a barrier are guaranteed to complete before any
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operations after the barrier can start. (Note that the barrier syntax is three dashes;
Haskell programmers should not confuse this with Haskell's comment syntax.)

Id allows the expression of explicit reads and writes with two kinds of data access
behavior: I- and M-structures. Both kinds are synchronized, on a word by word
basis, for readers; if a reader attempts to read an empty memory location it will
block until some writer fills it. I-structure memory imposes a 'single-assignment'
restriction in its use; a second write to a location will cause a run time error. An
M-structure memory cell is emptied by a read, making it possible for another writer
to fill the cell with new data, and making it possible for programs using M-structures
to produce non-deterministic results.

Heap memory is implicitly allocated in Id whenever a data structure is created,
but the Monsoon run-time system has no garbage collection. Explicit releases are
required in the source code to return a structure to the heap. The release is placed
in a block of concurrent operations or statements, and it is guaranteed to take
place only after all operations in the block have completed. It is the programmer's
responsibility to place a release in such a way that it can occur only after all
references to its structure are complete.

Each function call during execution of an Id program on Monsoon requires frame
memory. It remains allocated for the lifetime of the function call and is released when
the function returns its value and all side-effecting statements within the function
have completed. Because Monsoon has limited frame memory, it cannot tolerate
deep recursion, so many of Id's library functions have been written in loop rather
than recursive form. For example, the well-known map function loops through its
source list, creating its return list as it does so. Since the return list has to be built
from head to tail, the iterative form uses side-effecting: each iteration creates a cons
cell with an unwritten I-structure tail pointer, and the succeeding iteration writes
the tail.

It is common practice for functional programmers to use an 'accumulating pa-
rameter' to avoid list concatenation (Bird and Wadler, 1988). This technique does
not work, however, if the recursion is replaced by iteration. Because iteration is so
often necessary to make Id programs execute within Monsoon's resource limits, the
Id library defines open lists, which allow list concatenation to take place in constant
time. Similar to the map implementation, an open list maintains a tail whose tail
pointer is an unwritten I-structure. The list itself is represented as a pair of pointers,
one to the head and one to the tail cell. Concatenation of two lists is done by writing
the tail of the first list with a pointer to the head of the second list. A special close
operation writes a null pointer to the tail of an open list, turning it into a normal
list. Because they work through side-effecting, open lists must be used with care.
Specifically, great care must be taken if an open list is shared, since concatenate and
close operations will affect all references to the list.

4.3 Comparing Id and Haskell

Id and Haskell have strong similarities: they are both functional or have a functional
subset, with currying and higher order functions. In creating MCP-Id and MCP-
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Haskell, we have attempted both to use the languages' features and to reflect the
way experienced programmers write in each of the languages. Here we discuss the
style differences between the two languages and the reasons for those differences.

Coding styles are influenced not only by language characteristics, but also by the
purposes for the codes and the limitations of the machines which will execute them.
Id programmers tend to try to balance exploitation of parallelism and efficient space
usage, while Haskell programmers are further removed from machine issues and
rely on the compiler to do an effective mapping of the program onto the target
machine. Because the Id language has been closely associated with the Monsoon
dataflow machine, that machine's characteristics (especially its resource limitations)
often influence the way Id codes are written.

Id's requirement for explicit heap memory releases can affect coding style in a
number of ways:

• In Id, function composition style is discouraged because the intermediate data
structures which glue the functions together must be released. Releasing a
heap structure in Id requires the structure to be named, so an expression
which composes functions must be broken up, with each function application
bound to a name. Instead of composing functions, Id programmers tend to
write in a 'deforested' style, fusing the functions into one function or loop and
eliminating the intermediate structures entirely.
In contrast, the combination of higher-order functions, partial applications,
laziness, and an extensive library of functions in Haskell encourage a compo-
sitional style of programming. Laziness in the compositional 'pipeline' insures
that only the necessary parts of the intermediate data structures will actually
be created, and automatic garbage collection (and possibly a deforestation
optimization in the compiler to eliminate intermediate data structures at com-
pile time) can make Haskell programmers less concerned about the costs of
this style. Also, they are more insulated from the target machine details, and
sequential semantics means that they need not concern themselves with control
of parallelism.

• Though the Id language views functions as curried, MIT's compiler optimizes
those situations where a function application is given all of its arguments at
once. Instead of creating closures (which consume heap memory), it uses a
special, more efficient call mechanism which uses no heap. Thus, Id program-
mers tend to avoid partial applications because they require explicit releasing
of closures if heap memory is to be reclaimed. Since Haskell programmers
do not directly control reclamation of heap memory (and in fact do not even
know the implementation details used by the compiler and run-time system),
the costs of partial applications appear to be, and may be, no different than
the costs of other functions.

• In Id, arrays are often preferred over lists since an array of scalars can be
released in one operation, whereas releasing a list requires traversing the list,
releasing the cons cells one by one.

The cumulative effect of all these concerns is that experienced Id programmers

https://doi.org/10.1017/S0956796800001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001374


306 J. Hammes, O. Lubeck and W. Bohm

often avoid recursion, higher-order functions, partial applications and function
composition, because even though the language itself allows all of them, efficiency
and resource issues encourage the use of a more imperative-looking (though well-
structured and relatively side-effect free) style with abundant use of loops.

The MCP-Id code shows evidence of these influences. They are more pronounced
in the simulation part of the program, since that is where the vast majority of
execution time is spent. More liberal use of higher-order, composed functions occurs
in the code which reads the input and sets up the simulation since efficiency effects
there are negligible. The code is also influenced by the fact that the pure functional
MCP-Id version came after a less pure version, and MCP-Haskell was developed
after the pure Id version had been written and debugged.

5 Comparison of the codes

The MCP-Haskell and MCP-Id codes are, in the main, structured identically; the
differences between them tend to be local. The following discussion highlights the
major contrasts between the codes.

5./ Input/Output

The two languages differ significantly in their handling of input/output. Each code's
I/O routines were written in a way that extended the I/O capabilities already found
in the language.

The Id library file stdio.id, which comes with the Id-world software, holds a large
number of I/O functions which work in an imperative way. A file is opened for
reading or writing, and a stream pointer is returned to be used as an argument to
the many input and output functions which exist for various data types. Since these
functions side-effect directly to the file, explicit sequencing (using the seq construct
or explicit barriers) must be enforced by the programmer to avoid interleaving
accesses. Higher order functions are used to allow the building up of I/O functions
for more complex data structures. For example, the format Aist function defined in
the library takes as its first argument the format function which is appropriate for
the kind of element in the list.

Writing input and output routines for MCP-Id consisted of extending the scan
and format functions with routines to recognize the various structure types defined
in the program, and then using those routines as parameters in the existing scan
and format functions. For example, a new function called scan~cell was created and
used in reading the array of cells:

typeof scan~cell = IOSTREAM -» CELLJ)EF;
def scan~cell strm =

{ reg = scan~region strm

mtl = scan~int strm
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imprt = scan~float strm

density = scan~float strm

in reg, (flatten reg), mtl, imprt, density } ;

cells = scanJd.array scan~cell strm

In the definition ofscan~cell, barriers force sequential access to the file being read. In
obtaining each of the necessary values, the appropriate scan functions must be used.
Later, scan~cell is used as an argument to the higher order function scanAdjarray
to read an array of cells.

Haskell's I /O is much different, since an entire file is handled as one string. The
Standard Prelude provides various functions for extracting information from strings
and building them, and Haskell's overloaded reads and shows functions are very
powerful. For MCP-Haskell the input functions are written in the style described in
Section 5.3.1 of Hudak and Fasel (1992). MCP-Haskell's counterpart to MCP-Id's
scan~cell is shown here:

readsCell :: String -> [(CelLdef, String)]
readsCell s =

[ (Cell reg (flatten reg) mat imp density, s') \
(reg, x) <— reads s,
(mat, y) *- reads x,
(imp, z) <— reads y,
(density, s') <— reads z]

instance Text Celljdef where
readsPrec . = readsCell - make "readsCell" a method for "reads"

(cells, s') <— reads s

Haskell's approach to I/O needs no barriers since its reads and shows functions are
not side-effecting. Also, because of overloading, the programmer does not have to
specify which kinds of read are performed in the body of readsCell; the type system
will infer the correct method in each call of reads. This is true not only for the
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material, importance and density parts (which are scalars), but also for the function
which reads a region because Region, in earlier code, was made an instance of class
Text, and a method for reading regions was created. Similarly, in the code above,
Celljdef is made an instance of Text and readsCell becomes its method for reads.

Three type synonyms in MCP-Id (including the CELLJDEF shown above) were
made data types in MCP-Haskell with the specific purpose of making it possible
to read them with the overloaded reads function. This made it necessary to create
a constructor function for each. The following example shows the declaration of
CELLJDEF in each code:

Id:
typesyn CELLJ)EF =

REGION, (list I), I, F, F;

Haskell:
data Celljdef =

Cell Region [Int] Int Double Double

Haskell also allows a programmer to get a text representation of a data type
through the use of a derived instance, where a type's constructor names in the
program source become the constructors' text representations for input and output.
While it would have been possible to use derived instances for all data types in
MCP-Haskell, we specified our own syntax (closer to that of MCNP) for all types
except Surface.

5.2 Laziness

Since MCP-Haskell was derived from MCP-Id, it is not surprising that laziness is
not used in any deep, fundamental way. Nevertheless, laziness is used in places to
simplify code or make it clearer.

Laziness sometimes simplifies conditional expressions. This example computes
the distance from a point to a plane which is perpendicular to the x axis, given
the direction cosine u to the x axis. It comes from the geometry part of the code
where the distances to a cell's boundaries are computed. Two special cases must be
tested: trajectory parallel to the plane (u = = 0), and the plane 'behind' the photon
(distance t < 0). In the Id code the computation of t must be protected by the outer
conditional to avoid a division by zero. The Haskell code requires only a single
conditional expression since the value of t will only be demanded if the left side of
the I I operator evaluates to false.

Id:
def distJojsfc (PX d) =

if u == 0.0 then maxfloat
else

{ t = (d-x)/u
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in
ift<= 0.0 then maxfloat
else t }

Haskell:
dist-tosfc (Px d) =

let
t = (d-x)/u

in
if(u == 0.0) || (t <= 0.0) then

bignum
else

t

A much more significant situation involving nested conditionals, too large to
incorporate in this paper, occurs in the function which handles photofluorescence in
track. A sequence of tests is made to determine whether zero, one or two photons
will be produced when a photon is absorbed. In the Id code, various computations
occur in code blocks at different levels of the nested conditionals. In the Haskell
code these computations were lifted to the function's top level, eliminating many
'let' blocks and allowing laziness (and particularly the nonstrictness of the second
argument of I I and &&) to protect against such things as unneeded computations
or out-of-bounds array accesses. The result is code which is much easier to read.

Laziness also played a role in the generation of the source photon seeds. The
function trand.9973 takes a seed and returns a new seed by striding forward in the
initial random stream by 9973 steps. In MCP-Haskell the list of n seeds, where n
is the number of photons to be tracked and seed is the initial seed specified by the
user, is easy to generate:

take n (iterate trand_9973 seed)

The iterate function has no terminating condition; laziness decouples the problem
of generating the seeds from the problem of terminating the list.

Id's library also has an iterate function, but it has a third parameter to allow
it to terminate the list. Unfortunately there are a variety of ways one might wish
to terminate an iterate function. Id's library function iterate p f x terminates by
applying a predicate to the list members as they are generated; it is the equivalent
of the Haskell composition take While p (iterate f x), and it is poorly suited to
terminating on the basis of list length. Because of this a special iterate function was
written for MCP-Id.

5.5 Function composition and loops

Both MCP-Id and MCP-Haskell made little use of explicit recursion. Instead, MCP-
Id used loops, while MCP-Haskell used higher-order functions. A simple example
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illustrates this:

Id:
typeof sample.for-nuclide = (Id-array (F,F,F,F)) -* F —* I;
def sample-for-nuclide xsecs r =

{
i,h = bounds xsecs;
tot = 0.0
in
{while (r > tot) and (i < = h) do

next i = i+1;
tphoto, tine, tcoh, tpair = xsecsfij;
next tot = tot + tphoto + tine + tcoh + tpair
finally i-1}};

Haskell:
sample-for-nuclide ::

Double -> [(Double, Double, Double, Double)] -> Int
sample-for.nuclide r =

length.(take While (r>)).sums.(map (\(a,b,c,d)^-a+b+c+d))

Here the cross sections (an array in Id, a list in Haskell) are summed until they
cross over the value r. The crossover index selects which nuclide of a composite
material is involved in a collision. Note also the use of laziness: the map and sums
functions will stop when the take While function is satisfied.

6 Resource management

Resource management problems severely limit the number of source photons which
both MCP-Id and MCP-Haskell can run. The consequences are not limited to the
usefulness of the codes themselves. As section 3.3.1 points out, large runs are needed
during development to detect the presence of bugs. To run large numbers of photons,
a separate, impure version of MCP-Id was created first.

6.1 Heap managed Id code

There are four goals in this version of the code:

1. Release all structures to the heap. This must be 100% effective, since even one
space leak will eventually use up the heap if many millions of source photons
are run.

2. Control parallelism so as to stay within frame memory limits.
3. Force an evaluation order such that the peak requirements for heap and frame

memory are constant with respect to the number of source photons.
4. Remove intermediate data structures where possible.
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The most important aspect of this version is a top-level restructuring to more
tightly couple producers and consumers. While I-structures (either explicit or im-
plicit) can prevent a consumer from running ahead of its producer, there is nothing
to prevent the producer from running far ahead of a consumer and prematurely
creating structures which sit waiting for the consumer to catch up. To prevent
this, the entire flow diagram of figure 6 was combined into one for loop body in
which each iteration creates, tracks, tallies, and frees the structures for one source
photon:

{for i *— 1 to nparticles bound bnd do
next seed = trand-9973 seed;
particle, sO = sample source srceJnfo seed;
_, _, -, e, _ = particle;

(
next energyMCC = energyMCC + e

°/o make sure 'track' doesn't free particle before 'e' is read
O-events =

oLcons-r (CREATEJSOURCE.EV e) (track userJnfo particle sO);
) ;
events = oLclosej- o.events;

% tally the aggregates
. = tally.balance events;

% do the user's tallies
_ = {for j < — low to high sequential do

_ = tally M^ource alLtalliesfjJ

events accumulators^] squaresfjj;}

% complete tallying before releasing the event list

_ = free struct Jist events};

This allowed elimination of some intermediate lists, but more importantly, it made
the heap requirements constant with regard to the number of source photons: a
new iteration (source photon) cannot start until a previous one has completed and
returned its memory to the heap. Because the tally accumulations had to become
a part of the loop, they could no longer be expressed using Id's accumulator array
syntax. Instead, the tallies were explicitly accumulated into M-structure arrays by
the tallyMsource and tallyJbalance procedures.

To conserve frame memory, sequential processing of each source photon was
enforced by using sequential loops and/or barriers in the track function so that split
photons are not executed concurrently. Thus, parallelism comes only from the bound
on the for loop. Also, recursions were replaced with loops wherever possible. This
included putting a loop in the track function to process linear photon tracks without
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recursion. When splitting occurs, all but one of the split photons are tracked by
recursive calls, and the last of the split photons continues to be tracked by the loop.
Since this loop form is incompatible with the use of an accumulating parameter
for the event list, Id's open list library functions were used to allow appending and
concatenation to be done in constant time. This is safe because there is no sharing
of these lists in this code.

All heap memory space leaks were plugged by adding releases. This included
making a modified version of the open list library functions with releases added.
Also, synchronization barriers had to be strategically placed to ensure that the
releases did not occur prematurely. For example, consider the situation where a
structure is allocated, its fields are written, the consumer reads some (but not all)
of the fields, and the structure is released. Without barriers it is possible for the
structure to be released and subsequently reallocated before all of the fields have
been written, causing I-structure double-write errors to occur. Placing a barrier
immediately after the writing of the fields, thereby witholding the structure from
readers until it is completely written, solves the problem. Sharing of data structures
is eliminated by copying, so that reference counts are not needed and a reader can
release a structure when finished with it.

It would be hard to overstate the difficulty involved in producing and working with
this version, because the debugging process involved many iterations of plugging
memory leaks, running problems, tracking down bugs and fixing them. Each change
to the code required the revision of memory releases in the code parts which
were modified. Finding space leaks was done by running small numbers of source
photons using the MINT simulator and producing a trace of all heap allocations
and deallocations. Leaks were then located and isolated by doing repeated runs with
different function 'colourings' (user-assigned tags for different code blocks), since
the allocations and deallocations are tagged by colour. Once a structure's size and
source function were known, it could be identified and its release could be added to
the code. It was a long and tedious process.

During debugging, Id's imperative approach to input/output was helpful. It was
possible, at the beginning of execution, to open a file for writing and make its stream
pointer globally available to the program. An M-structure lock for the file would
also be created, to help synchronize the writes to the file and prevent interleaving
of writes due to the parallel, asynchronous execution of the program. This allowed
print statements to be embedded in the code anywhere. Typically, a suspect function
would be given print statements at its entrance and exit points to show the input
and output values of the function call.

Finding synchronization problems was very difficult. They typically manifested
themselves as I- or M-structure memory errors, but usually only when running
on multiple processors. There was no way to know which of the program's data
structures was associated with the error, and the error was not even repeatable. Often
it would not show up on the MINT simulator, since it simulates single-processor
sequential execution whose order may not cause the illegal operation to occur. In
the absence of any support for diagnosing synchronization errors, one could only
gaze at the code and wait for inspiration. While the modified version of MCP-Id
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now runs correctly in all of our tests, it is impossible to rule out the possibility
that it still contains some subtle synchronization error which has not yet shown
itself.

Eventually, full statistical agreement with MCNP was reached. The longest run
consisted of 20,000,000 source photons, taking approximately 50 hours on the 16-
node Monsoon machine at LANL. Its correct execution increases our confidence that
the memory leak elimination and synchronization have been done correctly. With
this code in hand it was easy to 'reverse engineer' a pure functional version, since
the outputs of the heap-releasing Id code and the pure functional Id code should
always be absolutely identical. Any divergence between them during debugging was
easy to detect and isolate, leading directly to a fix. (One might also expect that
the output of MCP-Haskell should be identical to that of MCP-Id. However, this
is not quite true; differences in the handling of floating point numbers between
Id and Haskell produce very small variations in those values, and occasionally
a random value will fall on different sides of a decision threshold and cause
a divergence between MCP-Id and MCP-Haskell. The difference is statistically
insignificant.)

6.2 Heap problems in MCP-Haskell

Heap releases and control of parallelism are not a concern in the Haskell code,
since automatic run-time garbage collection can release memory and the execution
is sequential. Unfortunately, the evaluation order of MCP-Haskell requires a heap
size which grows linearly with the number of source photons. The heart of the
problem is data structure sharing interacting with lazy evaluation.

To understand the problem, consider a simple example:

pr :: [Integer] —> (Integer, Int)
pr xs = (sum xs, length xs)

The list xs is shared by two function calls. With lazy evaluation, if the first of the
return tuple is demanded, the entire list xs must be built, yet none of it can be
garbage collected as sum traverses it because the list may still be needed if the
second of the tuple is later demanded. Thus, after sum has finished its traversal the
entire list xs exists in memory at once.

In figure 6 each of the three forks in the diagram represents a sharing of a data
structure, analogous to the above example. Consider the sharing of the event-lists
structure; if millions of source photons are run, many millions of events will live
simultaneously in this structure and exhaust heap memory.

Obviously this is a problem of evaluation order. If the two consumers would
interleave their accesses, it would not be necessary for the entire list to live in
memory at one time. A simple attempt to do this in Haskell might look like this:

pr :: [Integer] —> (Integer, Int)
pr=f00
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where
fvl v2 [] = (vl,v2)
fvl v2 (x:xs) =f(vl+x) (v2+l) xs

But this is not sufficient. Laziness still prevents the addition to the second parameter
of/ when the first of the tuple is demanded.

In this simple example the desired behaviour can be obtained by providing
strictness information, thus allowing all the additions for each invocation of/ to be
be performed together:

pr :: [Integer] —> (Integer, Int)
pr=fOO

where
fvl v2 [] = (vl, v2)
fvl v2 (x:xs) =f((vl+x){-#STRICT#-}) ((v2+l){-#STRICT#-}) xs

This function uses resources that are constant with respect to the length of the
list. The application of this technique to MCP-Haskell will be considerably more
complicated than this, and it is questionable whether a programmer should be
expected to go to such lengths in modifying source code.

7 Performance

The overriding aspect of the MCP-Functional codes' performance is their inability
to run usefully large problems because of resource issues. While the heap-managed
Id code is not the primary focus of this paper, its ability to do long runs makes it
the only one of our codes that can be compared for performance to the Fortran
MCNP. It is important to realize, however, that while MCP-Id is patterned in many
ways after MCNP, there are many differences between them which can make blind
comparison dangerous. Specifically, the code doing the geometric computations
(determining identities of cells, etc.) was not patterned after the MCNP code, and it
is likely that significant differences exist in those computations. Also, MCNP collects
more information and does analysis of the results to give the user an idea of the
degree of success in translating the problem into a well-behaved specification.

The performance of the heap-managed MCP-Id on Monsoon is not embarrassing
when compared to MCNP on a Cray YMP. For our running example, with 5000
source photons run on single processors, the performance is: MCP-Id - 108.4
seconds; MCNP - 5.2 seconds.

There are many factors that can affect performance on these machines, including
compilers, memory characteristics, instruction differences, CPU design, and clock
speed (Monsoon has a 100 ns cycle versus the YMP's 6 ns cycle.) A full performance
comparison will require much closer investigation of these issues and will be the
subject of future work.
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8 Conclusion

The Monte Carlo photon transport problem codes cleanly in a pure functional way,
and MCP-Functional produces results which are statistically comparable with those
of MCNP. These functional codes should be useful to language implementors since
they use many features and coding styles of the languages. Laziness was found to
be helpful in that it allows a somewhat cleaner style of coding, but it was found to
cause resource management problems in large shared data structures.

Development of MCP-Functional had to proceed in an order one would not
have expected. Rather than develop a pure functional version, and then modify it
as necessary to let it run large problems, an efficient heap released version had to
be done first so that statistically meaningful results could detect bugs. Without the
ability to do explicit heap releases in Id (tedious though it was), and to print output
traces by side-effecting, it would have been nearly impossible to debug the code due
to its statistical nature.

Resource management issues were by far the biggest obstacle to the develop-
ment of MCP-Functional. The problems of correctly reclaiming heap memory, and
managing the order of program evaluation to keep peak requirements within the
machine's capacity, must be solved if functional languages are to become accepted
for many scientific codes. Requiring the programmer to provide explicit releases of
heap memory goes against the grain of functional programming since it introduces
imperative and time-dependent operations and requires precise understanding and
control of evaluation order in the program. Either compilers must become very
smart in their handling of this issue (Hicks, 1993), or languages must give program-
mers the means to express in a straightforward way the information needed to let
an executing program live within its resource limits.

Further research directions include a study of heap usage in the Haskell envi-
ronment, compilation techniques to avoid the creation of complete structures in
multiple-use situations, and an exploration of Sisal's strengths and weaknesses in
expressing this code, especially with regard to the use of Sisal's streams to express
producer-consumer relationships and to help control heap memory. Some interesting
research directions also suggest themselves in the area of compiler-directed program
transformations similar to those which were done manually to allow an MCP-Id
version to run large problem sizes.

Obtaining source code and documentation

The source codes are available by anonymous ftp from schubert.cs.colostate.edu,
directory pub/'MCF'-functional. In addition to the Id and Haskell sources, there are
also the full cross section files for the 94 nuclides, allowing users to set up other
problems with different nuclides.
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