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Abstract

An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exercises
for older individuals result in enhanced balance and reduced risk of falling. In this article, we present a study on gait
monitoring for older adults during walking using an integrated system encompassing an assistive robot and wearable
sensors. The system fuses data from the robot onboard Red Green Blue plus Depth (RGB-D) sensor with inertial and
pressure sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of
stability in real-time. Data collected with 24 participants at a community center reveal associations between gait
parameters, physical performance (evaluated with the Short Physical Performance Battery), and cognitive ability
(measured with the Montreal Cognitive Assessment). The results validate the feasibility of using such a portable
system in out-of-the-lab conditions and will be helpful for designing future technology-enhanced exercise interven-
tions to improve balance, mobility, and strength and potentially reduce falls in older adults.

1. Introduction

An active lifestyle can mitigate physical and cognitive decline in older adults, and prolong functional
independence (Hirvensalo et al., 2000; Ahlskog et al., 2011). Walking is a preferred and the most
accessible exercise modality among older adults (Morris and Hardman, 1997). Regular walking exercises
may improve balance, increase muscle strength, and reduce the risk of falls. Individual or group walking
programs are routinely offered at senior centers, either indoor or outdoor (Eyler et al., 2003), but the
increasing shortage of trained caregivers due to population aging and increased life expectancy is posing a
serious threat to the sustainability of such initiatives in the future. Group activities allow a single trainer to
supervise multiple seniors simultaneously, but make it difficult for caregivers to track individual progress
and tailor exercise goals to a person’s functional level. Self-administered walking programs are suitable
for seniors with moderate impairments, but adherence to the protocols relies on trainees’ intrinsic
motivation factors, which are difficult to control (Osoba et al., 2019).
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Because alterations in walking patterns (i.e., gait speed, gait variability) may be markers of frailty
(Montero-Odasso et al., 2005), precursors of fall (Hausdorff et al., 2001), and indicators of neurological or
musculoskeletal disorders (Maddox, 2013), gait assessments are often included within health screening
for older adults (Winter, 1991). Prior work has shown that analysis of gait under complex conditions, for
instance, while performing a secondary cognitive task, can detect important markers of function and
future risk for falls (Porciuncula et al., 2016; Osoba et al., 2019). Traditional gait analysis relies on clinical
observation and timedmobility tests (Steffen et al., 2002) that havemoderate discriminatory power (Gates
et al., 2008). Quantitative gait analysis may provide superior diagnostic power than traditional tests
(Verghese et al., 2009), but requires dedicated laboratory space and costly equipment (electronic
walkways, motion capture systems, force plates) that most senior centers cannot afford. Lack of mobility
and limited workspace represent two additional drawbacks of these systems, since they constrain the
maximum number of consecutive footfalls that can bemeasured in a given time interval, which negatively
affects the reliability of the estimated gait variability (Hollman et al., 2010). Robotics and wearable
technology can be leveraged to measure gait parameters over any distance, and administer personalized
exercises to community-dwelling older adults. To this aim, researchers have proposed depth imaging
sensors, wearable sensors, and assistive robots (Szymański et al., 2014).

A comprehensive review of the applications of stationary depth imaging sensors in elderly care,
including movement analysis and balance training, can be found in Webster and Celik (2014). RGB-D
cameras (Stone and Skubic, 2011; Gabel et al., 2012; Clark et al., 2013) and laser range sensors (LRS)
(Pallejà et al., 2009; Yorozu et al., 2014) can estimate a basic set of gait parameters, but they share some of
the drawbacks of optical motion capture systems, for example, constrained workspaces and occlusions.
Stationary cameras also require costly modifications to an individual’s home, and their acceptance is
hampered by users’ privacy concerns. In camera-based balance trainers, the user’s movements are
continuously compared to a database of template movements, and the user is provided with real-time
feedback on his/her performance (Lange et al., 2011; Kayama et al., 2013; Lin et al., 2013).

Wearable systems consist of a network of sensors, a smartphone to log and relay data to a remote unit,
and a data analysis unit that converts these signals into clinically relevant information (Patel et al., 2012).
Wearable sensors have been used for gait assessments and to administer game-like balance training
exercises in older adults (De Morais andWickström, 2011; Rao, 2019). Among the wearable systems for
gait assessments, in-shoe devices are promising since they allow for minimally obtrusive, ubiquitous
measurements (Hegde et al., 2016; Zanotto et al., 2017). Yet, compared to laboratory equipment, they
can measure a limited set of gait parameters, which are typically restricted to the sagittal plane. While
in-shoe devices can reliably estimate temporal gait parameters, they are less accurate than laboratory
equipment in measuring spatial parameters (Mariani et al., 2010); Rampp et al., 2015; Minto et al., 2016;
Zhang et al., 2022).

The use of mobile robots to administer exercises has also been proposed in recent years. Compared
with virtual trainers, robots’ physical embodiment is thought to increase seniors’ engagement and intrinsic
motivation – both critical factors for the success of rehabilitation interventions – as robots may exhibit
human-like social behaviors (Bainbridge et al., 2011; Fasola and Mataric, 2012). To date, most studies
have focused on chair aerobics (Fasola and Mataric, 2010; Gorer et al., 2017), while limited research has
explored the use of mobile robots as tools for gait analysis (Yorozu and Takahashi, 2015) or walking
exercises (Piezzo et al.,2017) for older adults. In these applications, limited workspace and obstruction-
related issues typical of depth image sensors are mitigated by leveraging the robot’smobility (Leica et al.,
2015; Piezzo and Suzuki, 2017).

While wearable sensors and mobile robots equipped with onboard depth image sensors may meet the
mobility requirements of a portable system capable of administering ubiquitous and autonomous gait
assessments and walking exercises to older adults, the potential behind their combined use has been
largely overlooked thus far (Cifuentes et al., 2014; Moschetti et al., 2019). In this article, we present an
integrated system consisting of a mobile robot and in-shoe sensors, where the mobile robot guides the
older adult to walk on a designated track during overground walking exercises. Together with the in-shoe
sensors that the older adults wear, the robot autonomouslymeasures spatiotemporal gait parameters in real
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time, and estimates the dynamic margin of stability (MoS) for potential assessment of the fall risk. We
validate the system with older adults at a community center. Performance evaluations of the guided robot
control are reported with satisfactory results. Accuracy of the autonomous gait parameters estimation is
quantified using a validated electronic walkway, and the results show comparable or better performance
than existingmethods. Associations between gait metrics, physical performance, and cognitive ability are
analyzed, revealing larger increases in gait variability and more pronounced adaptations toward conser-
vative gait strategies in older adults with higher levels of cognitive impairment performing a secondary
cognitive task. Survey results that measure participants’ attitudes toward technology and our integrated
system are reported with summarized data.

While our recent work (Zhang et al., 2020; Chen et al., 2022) focused on spatiotemporal gait analysis
and MoS estimation, and validated these methods with healthy individuals under controlled laboratory
conditions, this article focuses on validation of the system with older adults at a community center in
guided walking exercises with a clinically-oriented protocol. New contributions include the following:
(1) a design of mobile robot motion planning and distance-keeping control to guide older adults in
walking exercises; (2) an evaluation of the system’s accuracy on gait monitoring duringwalking exercises
with older adults in a community center; (3) an investigation of how the Montreal Cognitive Assessment
(MoCA) score, a clinical measure of cognitive function, is independently associated with changes in gait
and balance metrics captured by the integrated system during dual-task walking in older adults; (4) an
analysis of older adults’ attitude toward the proposed technology.

The remainder of this article is organized as follows. Section 2 presents our integrated robot and
wearable sensor system and the experimental protocols. Section 3 presents the robot subsystem design
and its performance validation, where the robot maps the environment, localizes itself, and autonomously
controls its motion for path tracking and distance keeping with the human subject. The autonomous gait
parameter monitoring and MoS estimation are described in Section 4 with performance validation. The
association between physical performance, cognitive ability, and gait parameters is presented in Section 5.
The participant attitude survey results are presented in Section 6. Study limitations are discussed in
Section 7, together with directions of future work. Finally, the article is concluded in Section 8 with brief
remarks.

2. System and experimental protocol

2.1. Integrated robot and wearable sensor system

Our system consists of a wheeled mobile robot and an instrumented footwear subsystem. The mobile
robot is a customized P3-DX differential drive robot equipped with a laptop computer (Intel Core
i7-9750H CPU, Nvidia RTX 2060 GPU) that works as the onboard computing device, a backward-
facing Azure Kinect sensor for gait monitoring, and a forward-facing Kinect v1 sensor for mapping and
localization. The instrumented footwear subsystem (Zhang et al., 2017, 2020) consists of a pair of
insoles, each featuring eight piezoresistive cells (from IEE S.A., Luxemburg), underneath the left and
right calcaneus, the lateral arch, the head of the first, third and fifth metatarsals, the hallux, and the toes,
respectively. An inertial measurement unit (IMU, Yost Labs Inc., Portsmouth, OH) is embedded in each
insole under the medial arch. Together with the insole, a Li-Po-battery-powered logic unit is clipped
laterally on the shoe of the subject, which is composed of a 32-bit ARMCortex-M4microcontroller and
a Wi-Fi module for the purpose of streaming data from the IMU and pressure sensors to the robot. The
robot and the logic units of the instrumented footwear communicate in a local area network through a
wireless router. The laptop computer on the robot controls the robot’s motion and processes the data
from both the robot and instrumented footwear subsystems. Programs for robot motion control, data
acquisition, and gait analysis run as Robot Operating System (ROS) nodes in Ubuntu 18.04 with ROS
Melodic. Figure 1 shows the integrated robot and wearable sensor system leading a study participant in
a walking exercise.
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2.2. Experimental protocol

We recruited 24 participants from the Center for Active Older Adults in the Sunnyside Community
Services (Queens, NY). The center offers meals, activities, and exercise classes for older adults.
Participants were recruited into the study if they were (1) between the ages of 65–85 years, (2) regularly
attended theCenter forActiveOlderAdults, (3)Able towalk a distance of 50m independently, (4)Willing
and able to follow the study protocol, and (5) Able to understand English or Spanish. We excluded
participants if (1) They had an acute medical illness 30 days before study participation, (2) had a history of
cardiopulmonary, neurological or musculoskeletal disorder that affected their ability to walk, (3) Had a
history of heart disease or uncontrolled blood pressure, (4) loss of sensation in the lower limbs, and
(5) History of seizure disorder. Study procedures were approved by the Institutional Review Board (IRB)
at Columbia University Medical Center (Protocol #: AAAS0003) and the IRB at Stevens Institute of
Technology (Protocol #: 2019–014). The research team and center staff screened potential participants for
eligibility. All participants were explained the study purpose and procedures, and provided written
informed consent before participating in the study. Following consent, we recorded demographic and
anthropometric data, administered the cognitive test (MoCA) and the Short Physical Performance Battery
(SPPB).

2.2.1. Assessments
2.2.1.1. Demographic and anthropometric information. We recorded the following information from
each participant: date of birth, sex, race, ethnicity, handedness, highest level of education, and history of
injury to the lower limbs in the past 6 months. We also recorded anthropometric data such as height,
weight, leg length, and shoe size. The anthropometric data were used for calculation of gait data.

2.2.1.2. Montreal Cognitive Assessment. In order to screen for cognitive deficits, a trained researcher
administered the MoCA. The MoCA is a quick screening tool that has been extensively tested in older
adults (Luis et al., 2009; Dale et al., 2018). In addition, participants performed a serial three counting
backward task. Participants were given a three-digit number and were asked to count backward by three
for a period of 1-min.We recorded the number of digits counted and errors. The serial three task was used
as a baseline to compare with the performance of the same task while walking.

Figure 1. The system consists of a P3-DX mobile robot and an instrumented footwear subsystem. The
Azure Kinect sensor (shown in the right picture) is used for gait monitoring. The Kinect sensor (shown in
the left picture) is used for robot mapping and localization. A validated electronic walkway is used as the

reference system to validate the system’s accuracy in measuring gait parameters.
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2.2.1.3. Short Physical Performance Battery. The SPPB is a set of three tests that assess lower extremity
strength, balance, and mobility in older adults. Two trained researchers administered the SPPB. To assess
functional strength, participants performed a timed five times sit-to-stand task. We assessed balance by
asking participants to stand for 10 s with their feet in three different positions (together side-by-side, semi-
tandem with one foot slightly in front of the other, and tandem with one foot directly in front of the other
with the heel of the front foot touching the toe of the rear foot). We recorded the time for each of the three
tasks. To assess mobility, participants completed two trials of timed 4-m walk. Administering the SPPB
took approximately 10 min. The SPPB has been extensively tested for reliability and validity in older
individuals (Guralnik et al., 1994). A summary of the study participants’ demographic data, anthropo-
metric data, and assessment scores is reported in Table 1.

2.2.1.4. Normal and dual-task walking. Following these assessments, participants were provided with
instrumented insoles of appropriate size and were oriented to the mobile robot. The experiment was
conducted in the common area at the community center. An oval path, approximately 38-m long, was
marked on the floor with adhesive tape to serve as the nominal path for all the walking trials (Figure 2).
First, each participant walked two laps along the marked oval path, at their preferred speed to familiarize
with the integrated system (familiarization trial, FS). Following the FS, each participant completed two
walking trials, normal walking trial (N), and dual-task walking trial (D), each consisting of four laps along
the same oval path, while their gait was tracked by the integrated robot/insole system. The normal walking
trial required subjects to walk at their preferred speed. The dual-task walking trial required participants to
walk at their preferred speed while counting backward by three, starting from a random three-digit
number. The trial sequence (N, D) as well as the direction of the walking task (clockwise, counterclock-
wise) were balanced across the study participants using a Latin square design.

Table 1. Demographic information, MoCA scores, and SPPB scores

N = 24

Age, mean (SD) 75.8 (5.4)
Sex, n (%)
Male 8 (33.3%)
Female 16 (66.7%)
Height [cm], mean (SD) 160.7 (7.0)
Weight [kg], mean (SD) 67.5 (12.5)
MoCA [0–30], mean (SD) 21.5 (3.6)
Cognitive impairment (≤26) (Damian et al., 2011) 100%
SPPB [0–12], mean (SD) 8.3 (1.5)
Risk for disability (<10) (Guralnik et al., 1994) 75%

Abbreviations: MoCA, Montreal cognitive assessment; SPPB, short physical performance battery.

Figure 2. Dimensions of the human path marked on the floor in the community center where all
experiments were conducted.
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2.2.2. COVID-19 safety protocol
Data were collected between July 13, 2021 and August 26, 2021, during six separate visits to the
community center. As data collection took place during the COVID-19 pandemic, safety protocols were
in place to protect the participants, staff, and the research team. The NYC Department for the Aging
required all persons to present either proof of vaccination or a negative PCR test to enter the center. In
addition, an indoor mask mandate was in place during testing. At the time of data collection, the average
COVID-19 infection rate in the NYC area was 408 cases on July 13 (first day of data collection) and 1,899
cases on August 26 (last day of data collection; The New York Times, 2022).

3. Mobile robot localization and control design

During the “Normal and Dual-task Walking” as described in the previous section, the robot leads the
participant to walk on the oval path and monitors the participant’s gait. To perform this task, the mobile
robot is programmed to autonomously map the environment, track the participant’s body joints using its
onboard RGB-D sensor, and maintain a certain distance from the participant while he/she walks on the
oval path marked on the ground. In this section, we describe the autonomous mapping and localization
method, robot motion planning, and distance-keeping controller design. Validation data and performance
evaluation are presented at the end of this section.

3.1. Robot mapping and localization

For the robot to guide the participant to walk on the marked oval path, the robot first needed to map the
environment and localize itself in the map during the guided walking trial. RTAB-Map (Real-Time
Appearance-Based Mapping), an open-source library (Labbé and Michaud, 2019), is used for visual
Simultaneous Localization and Mapping (SLAM), which fuses the robot’s wheel odometry with the
RGB-D data from the forward-facing Kinect v1 (i.e., Kinect for XBox 360) sensor on the robot. To map
the environment, we teleoperated the robot using a wireless keyboard and drove the robot along the
marked track several times in both clockwise and counter-clockwise directions, which allowed feature
building and loop closure in the SLAM process. The generated map is visualized in RViz (a 3D
visualization tool for ROS applications) in Figure 3 with obstacles rendered by colored cubes.

Figure 3.Map generated by RTAB-Map using visual-SLAM, and the path (red-colored curve) planned by
the robot.
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3.2. Robot motion planning and distance-keeping control

To plan the robot motion trajectory, we design a global robot path as shown in Figure 4a, so that the human
can always be in the field of view (FOV) of the robot during walking. Let qR ≜ xR, yR, θR½ �T be the robot
configuration vector. The kinematic model of the P3-DX differential drive robot can bewritten as follows:

_xR
_yR
_θR

2
64

3
75=

vR cosθR
vR sinθR

ωR

2
64

3
75 (1)

where xR, yR½ �T is the midpoint of the two wheels, θR denotes the heading of the robot, and the control
vector uR ≜ vR, ωR½ �T includes the linear velocity vR and the angular velocity ωR.

To generate the robot control input uR, we utilize a local motion planner, Dynamic Window Approach
(DWA)1 (Fox et al., 1997). This method searches a set of trajectories, each of which consists of a sequence
of achievable velocities in the planning horizon, for the robot to get from the current pose to the desired
pose. Let the desired distance between the human and the robot be ρ∗, which is chosen to be 1:5 m in our
experiments. To maintain this distance, we design a proportional-integral (PI) controller:

v0R tð Þ=KPΔρ tð ÞþKI

Z t

0
Δρ τð Þdτ (2)

where ρ tð Þ is the measured distance between the robot and the human, and Δρ tð Þ ≜ ρ tð Þ�ρ∗ is the
measured distance error. The control parameters were chosen as KP = 0:6s�1 and KI = 0:13s�2. Directly
using the linear velocity v0R tð Þ in uR tð Þ would change the global path planned previously; for the robot to
track the planned path ξ∗R, we scale the control input uR tð Þ as

uR tð Þ↦ v0R tð Þ
vR tð ÞuR tð Þ (3)

This scaling does not change the curvature of the tracked path and hence preserves the planned global
path. The robot keeps the desired distance ρ∗ = 1:5m by changing its speed (i.e., the linear velocity vR tð Þ)
according to the human’s actual walking speed.

3.3. Performance of the robot controller

Figure 5 shows the robot and participant paths of a representative four-lap walking trial recorded by the
robot computer using the pose estimate provided by the onboard SLAM algorithm. As shown in the plots,
the robot follows the planned trajectories with satisfactory performance.

One key design goal of the path planning algorithm is to keep the following participant in the center of
the FOV of the Azure Kinect sensor, so that the robot can track the human joint movement in the gait
monitoring task (to be discussed in Section 4). Figure 6 shows the collected samples of the Azure Kinect
sensor measurement of the joint positions from 22 participants in the study. A total of 24 older adults
participated in the walking tests, but due to technical issues (discussed in Section 7), robot control data for
two participants were not available to use. The Kinect sensor depth FOV takes the shape of a truncated
conewith the near clipping plane at 0:25m from the optical center, the far clipping plane at 2:88m, and the

1 https://wiki.ros.org/dwa_local_planner.
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apex angle being 120°. It can be seen that the Kinect sensor measurement of the human joints is mostly
centered in the FOV.

Figure 7 shows the distance-keeping performance of the robot controller. As shown in Figure 7(top) the
human–robot distance is maintained around the desired value of 1:5 m. Additionally, Figure 7(bottom)
indicates that the robot can match the participant’s walking speed. The fluctuation of the trajectories is
caused by the measurement noise and the feedback nature of the controller (2) that uses the measured
human–robot distance to control the robot.

We calculated the mean absolute error (MAE) and the error standard deviation (ESD) for both the
distance and the velocity errors between the robot and the human, across all 22 participants, as shown in

(a)

(b)

Figure 4. (a) The planned paths for the human (in green) and the robot (in blue). (b) The relative position
of the human (denoted by H) and the differential drive robot during guided walking. The XW , YWð Þ axes

represent the world (or global) coordinates, and the X R, YRð Þ axes represent the robot (or local)
coordinates.
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Figure 8.We excluded the initial 15 s and the last 5 s of eachwalking trial, as those are transient periods for
the controller to stabilize. The distance error is lower than 0:18m and the velocity error is below 0:25m/s.
Thus, the robot can guide the participants to walk on the pre-designated path, and canmaintain the desired
distance from the participant during the walking exercise.

4. Autonomous gait monitoring and MoS estimation

During the robot-guided walking, the backward-facing Azure Kinect (RGB-D sensor) located on the
robot tracks the pelvis and foot poses of the participant following the robot. extendedKalman filter (EFK)-
based methods were developed to fuse the data from the robot RGB-D sensor and the in-shoe pressure
sensors and IMUs and estimate spatiotemporal gait parameters and the MoS. We briefly describe the
methods in the next two subsections.

Figure 5.Robot and human paths during four laps of a representative walking trial. The solid dots denote
the start positions of the robot (in blue) and the study participant (in green). In this trial, the study

participant walked in the counter-clockwise (CCW) direction.

Figure 6. Top view of the sample distribution of the joint position measurement (relative to the Kinect
depth FOV), including pelvis (left), left ankle (middle), and right ankle (right), using 22 subjects’ data
collected in the study. The pink region is the intersection of the depth FOV, and the height of the horizontal

plane is indicated on the top of each subfigure.
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4.1. Estimation of spatiotemporal gait parameters

Temporal gait parameters were extracted using insole-embedded force-sensitive resistors (FSRs). Heel
strike (HS) and toe-off (TO) eventswere detectedwhen the sumof the FSR signals crossed an empirically-
determined threshold. Stride time (ST)was defined as the time interval between two consecutiveHS of the
same foot. Swing time was defined as the time interval between a TO event and the following HS of the
same foot. Swing percent (SwP) was computed as swing time divided by the ST of the corresponding
stride. Spatial gait parameters were extracted by fusing data from the in-shoe IMUs and the robot onboard
RGB-D camera. The angular velocity and acceleration obtained from the IMUs, and the poses of the IMUs
obtained from the robot onboard camera were fed in the EKF to estimate the foot poses. Foot-flat
(FF) phases are determined as the time intervals during which the normalized acceleration of the IMUwas
less than a predefined threshold. Stride length (SL) was determined as the distance between two
successive IMU locations of the same foot at FF. Stride velocity (SV) was computed as the ratio of SL
over ST. A detailed description of this method is presented in Chen et al. (2022).

Figure 7. Robot distance-keeping performance in a representative four-laps walking trial. Time histories
of the actual distance between the robot and the following participant, measured by the robot onboard
sensors (Top). Time histories of the robot’s and the participant’s speeds, measured by the robot onboard

sensors (Bottom).

(b)(a)

Figure 8.Bar plots ofMAEandESD for 22 participants: (a) human–robot distance error, and (b) human–
robot velocity error.
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4.2. MoS estimation

MoS was proposed by Hof et al. (2005) as a measure of stability in human movement control. Modeling
the human as an inverted pendulum, Hof et al. postulated that the condition for maintaining balance is that
the extrapolated center of mass (XCoM) falls inside the Base of Support (BoS). The MoS has been
extensively used to analyze dynamic balance in older adults (Watson et al., 2021), whereas limited
research has focused on overground walking tasks (Ohtsu et al., 2020; Iwasaki et al., 2021), which are
more representative of real-world walking. In estimating MoS, the RGB-D sensor on the robot tracks the
participant’s pelvis, transfers the measurement from the sensor frame to the world frame, and projects it to
the 2D ground position as the body center of mass (CoM). After estimating CoM and its velocity, XCoM
was obtained as the sum of the CoMand a term proportional to the velocity of CoM (Hof et al., 2005). BoS
was determined by the estimated foot poses using the convex hull of the set of vertices of the BoS polygon.
TheMoSwas calculated at each timestamp as the signed distance between the BoS andXCoM (positive if
XCoM is inside the BoS, and negative otherwise). For each gait cycle, the MoS time series was time-
normalized into 100 equally spaced points in the gait phase domain and projected onto the anteroposterior
(AP) and mediolateral (ML) axes. Subsequently, the following three scalars were extracted at each gait
cycle: MoSAP was the mean of the AP projection of the MoS measured over the gait cycle; MoSML,pos

(MoSML,neg) was the positive (negative) ML projection of the MoS integrated over the gait cycle. More
details on the EFK-based method for MoS estimation can be found in Chen et al. (2022).

4.3. Validation of gait monitoring capability and comparison with related works

A total of 2,562 strides were simultaneously collected by the integrated mobile robot and wearable sensor
system, and by a validated electronic walkway (a 6-m Zeno Walkway, Protokinetics LLC, Havertown,
PA). The electronic walkway, which served as the reference system for validation purposes, was located in
the middle of the straight-line section of the oval path shown in Figure 2. A total of 24 older adults
participated in the walking tests. Due to technical issues, estimations of spatial gait parameters and MoS
were not available for two participants. During the normal walking trials, participants’ SL ranged from
0.85 to 1.42 m (1.12 � 0.14 m, mean � SD), SV ranged from 0.56 to 1.27 m/s (0.98 � 0.20 m/s), step
width (SW) ranged from 0.02 to 0.15 m (0.09 � 0.03 m), ST ranged from 0.97 to 1.52 s (1.17� 0.14 s),
and SwP ranged from 26.35 to 35.60% (35.11 � 2.79%).

MAE of the spatiotemporal gait parameters were determined by comparing stride-by-stride gait
metrics extracted from the integrated system with the corresponding values measured by the reference
walkway. Data are reported in Table 2, along with results from recent related studies. In general, gait

Table 2. Accuracy of the spatial-temporal gait parameters estimated by different systems

References Subjects Population Systems

MAE

SL (m) SV (m/s) SW (m) ST (s) SwP (%)

Zhang et al. (2022) 95 OA frail IMU þ FSR 0.059 0.048 — 0.017 —
Renggli et al. (2020) 3 A healthy IMU 0.029a 0.018a 0.092a 0.024a —
Rampp et al. (2014) 101 OA geriatric inpatients IMU 0.063 — — 0.029 —
Mariani et al. (2010) 10 OA healthy IMU >0.030 >0.030 — — —
Foo et al. (2022) 7 A healthy Robot — — 0.054 0.035 —
Jäschke et al. (2018) 3 A 2 healthy,

1 hip dysplasia
Robot — 0.029 — 0.014 —

Piezzo et al. (2017) 3 A healthy Robot — — 0.025b — —
Bonnet et al. (2015) 1 A — Robot 0.022 — — — —
Moschetti et al. (2019) 19 A healthy Robot þ IMU 0.054 0.067 — — —
Cifuentes et al. (2014) 1 A — Robot þ IMU — 0.005 — — —
Our Work 24 OA healthy Robot þ IMU þ FSR 0.019 0.018 0.048 0.008 3.220

aEstimated based on the reported mean error and standard deviation, assuming a normal distribution.
bEstimated as the ratio between the sum of the reported MAE and the number of the subject.
Abbreviations: A, adults; FSR, force-sensitive resistor; IMU, inertial measurement unit; MAE, mean absolute error; OA, older adults; SL, stride length; ST,
stride time; SV, stride velocity; SW, step width; SwP, swing percent.
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analysis systems based on IMUs show lower accuracy in estimating spatial gait parameters. This indicates
that conventional error reduction techniques such as zero-velocity updates (ZUPT) (Ferrari et al., 2015)
and velocity de-drift (Rampp et al., 2014), which are often used in IMU-based devices, cannot fully
eliminate accumulated errors in the foot displacements. Renggli et al. (2020) reported higher accuracy
than similar IMU-based systems; however, the accuracy of their system was validated using only
60 strides from three subjects. Another drawback of IMU-based devices is the difficulty in estimating
the relative position of the feet to determine spatial inter-limb gait parameters. To overcome this issue,
Renggli et al. (2020) used the tilting angle at the FF phase and a predefined distance between the feet to
estimate SW; however, this method resulted in lower accuracy compared to robot onboard cameras
(Piezzo et al., 2017). Robot onboard cameras represent a promising method to capture both inter- and
intra-limb spatial gait parameters, but their accuracy relies on the robot’s ability to maintain a predefined
distance between the subject and the camera. Cifuentes et al. (2014) reported higher accuracy than other
robot and IMU-based systems; however, the accuracy of their prototype was evaluated at low speeds
(i.e., <0.4 m/s) and their definition of velocity does not conform to the conventional definition of SV. As
described in Section 4.1, in our integrated system in-shoe FSRs were used to obtain temporal gait
parameters (ST, SwP), the robot onboard camera and the IMUs were used to estimate spatial gait
parameters (SL, SW), and combined data was used to calculate SV. This approach resulted in higher
accuracy in terms of spatiotemporal gait parameters compared to the IMU-based system introduced by
Rampp et al. (2014) and the robot-based systems described in Jäschke et al. (2018) and Guffanti et al.
(2021). A possible explanation is that detecting HS and TO events from IMU acceleration peaks, as done
in Rampp et al. (2014), might not be an accurate strategy with older adults, who often show unclear gait
events (e.g., shuffling gait). In that same study, the accumulated error in the double integration process
might have lowered the accuracy of spatial gait parameters. For the robot-based systems presented in
Jäschke et al. (2018) andGuffanti et al. (2021), spatiotemporal gait parameters were estimated by a Kinect
sensor based on the position of a person’s ankle, instead of the real foot placement, and this approximation
might have contributed to lower the accuracy of their systems.

5. Associations between physical performance, cognitive ability, and gait parameters

We explored how the spatiotemporal gait parameters andMoSmeasured during theN andD trials correlated
with MoCA scores and SPPB scores. To this end, Hierarchical linear regression was used to determine if
SPPB and MoCA scores were independently associated with three groups of gait parameters: (1) mean and
coefficient of variation (CV) of SW, SL, SV, ST, SwP, MoSAP, MoSML,pos, and MoSML,neg, separately for

Table 3. Multiple regression models

R2
M1 R2

M12 ΔR2 BSPPB (95%CI) βage βgender βSPPB

MEAN SL_N 0.115 0:429b 0:314b 0:057b (0.020,0.094) 0.009 �0.202 0.609
SL_D 0.218 0:516b 0:298b 0:057b (0.022, 0.092) �0.199 �0.096 0.593
MoSAP_N 0.034 0:276a 0:242a �0:224a (�0.046, �0.002) �1.116 0.169 �0.521
MoSAP_D 0.095 0:340a 0:244a �0:025a (�0.045,-0.005) �0.083 0.252 �0.537

R2
M1 R2

M2 ΔR2 BMoCA (95%CI) βage βgender βMoCA

CV ST_(D-N) 0.014 0:230a 0:215a �0:273a (�0.520,�0.025) �0.255 0.192 �0.499
SV_(D-N) 0.003 0:208a 0:205a �0:588a (�1.142, �0.033) �0.132 0.031 �0.487

MEAN MoSAP_(D/N) 0.244 0:491a 0:247a 0:228a (0.055, 0.402) �0.281 0.028 0.544

Note.R2
M1 and R2

M2 are the coefficients of determination for the base models (age, gender) and for the complete models (age, gender, SPPB or MoCA),
respectively. ΔR2 is defined as R2

M2�R2
M1

� �
. Regression coefficients BSPPB and BMoCA are reported along with their 95% confidence intervals (CI). β

indicates the standardized regression coefficient for each predictor in the complete models. Suffixes N and D indicate normal and dual-task walking,
respectively.
ap < .05;
bp < .01;
Abbreviations: MoCA, Montreal cognitive assessment; SPPB, short physical performance battery.
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trials N and D; (2) differences of the mean and CV values of each gait parameter between the two trials
(i.e., D‐N); (3) ratio of the mean and CV values of each gait parameter between the two trials (i.e., D/N).
Differences and ratios of the mean values of gait parameters measured during dual-task walking and natural
walking have been used in previous works to identify fallers (Commandeur et al., 2018) and to explore
balance strategies (Ohtsu et al., 2020). Because dynamicMoS and spatiotemporal parameters are affected by
age and gender (Lee et al., 2021), we included both age and gender as predictors in the base models. The
complete models differ from the base models in that they include either SPPB or MoCA as additional
predictors. SPSS v28 (IBM Corporation, Armonk, NY) was used to perform all analyses. All models
resulting in significant (α= 0:05) associations betweenSPPB (orMoCA) and one gait parameter are reported
in Table 3. SLwas positively correlated with SPPB scores, andMoSAP was negatively correlatedwith SPPB
scores. Moreover, the changes in variability of ST and SV between the N and D trials were negatively
correlated with MoCA scores, and the D/N ratio of MoSAP was positively correlated with MoCA scores.

The results shown in Table 3 suggest that SPPB and MoCA are associated with distinct gait domains.
The values of the standardized coefficients (β) indicate that SPPB and MoCA had stronger predictive
ability than age and gender in all the significant models. Moreover, consistent with previous research
(MacAulay et al., 2015), SPPB scores were positively associated with SL. Knee extensor muscles
contribute to SL (Jabbar et al., 2021) and SPPB evaluates strength in these muscles through the five
times sit-to-stand component of the assessment (Mentiplay et al., 2020). Additionally, static balance
performance, which SPPB evaluates through three standing balance sub-tests, is known to be positively
correlated with SL (Lee et al., 2020). Thus, both associations can explain the correlation between SPPB
and SL. The negative association between SBBP andMoSAP was possibly mediated by SL, since MoSAP
is known to decrease as SL increases (Lencioni et al., 2020). Interestingly, SPPB was not associated with
SV, even though one component of the SPPB compound score specifically targets gait speed. One
possible explanation is that SPPB determines preferred walking speed by relying on a short (3 or 4 m)
walking test, whereas in our tests SVwas computed as the average gait speed over a 150-m walking bout.
Hence, the estimates of SVwere likely affected by fatigue. In our sample, older adults with lower levels of
cognitive impairment (i.e., higher MoCA scores) showed smaller increases in gait variability and less-
pronouncedAP adaptationswhen performing a secondary cognitive task. Associations between increased
stride-to-stride fluctuations in gait parameters and cognitive decline have been consistently reported in the
literature (Pieruccini-Faria et al., 2021). Such associations have been linked to shared brain networks for
gait control and cognition, which are challenged by dual-task walking (Morris et al., 2016). Furthermore,
a smaller ratio of MoSAP between fast and preferred gait speed is an indicator of conservative gait
strategies in older adults at risk of falling (Ohtsu et al., 2020). Similarly, our results on the D=N ratio of
MoSAP suggest that older adults with higher levels of cognitive impairment tend to showmoremarkedAP
adaptations toward conservative gait patterns when performing a secondary cognitive task.

6. Subject attitude survey results

After engaging in the walking exercise, 23 participants answered questions about the assistive robot and
the insoles. One participant did not answer any of these questions. Participants answered two questions
about the assistive robot: “The robot is useful in guiding me walking on a designated path” (M = 4.04,
SD = 0.71) and “The robot seamlessly adjusts its speed to keep a certain distance from me” (M = 3.83,
SD = 0.83) on a 1 (fully disagree) to 5 (fully agree) scale. Participants also answered two questions about
the insoles “The insoles were comfortable to wear” (M= 4.26, SD= 0.54) and “The insoles did not hinder
my steps” (M = 3.83, SD = 1.07) on a 1 (fully disagree) to 5 (fully agree) scale. A distribution of
participant responses to each of the four questions is shown in Figure 9. Participant’s attitudes regarding
both the assistive robot and insoles were predominately positive, noting that the assistive robot was useful
in guiding them on a walking path (78.3% agreed or fully agreed) and was able to adjust speed
appropriately (78.2% agreed or fully agreed). Similarly, participants reported that the insoles were
comfortable (95.6% agreed or fully agreed) and did not hinder their ability to walk (73.9% agreed or
fully agreed).
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In addition, participants were asked “It is likely that I’ll use such a robot inmy home for guidedwalking
exercises” (M = 2.83, SD = 1.53) on a 1 (fully disagree) to 5 (fully agree) scale. A follow-up question
asked participants to further explain their answer. Seven participants provided a response to the open-
ended question. Sample responses included seeing the utility in having an assistive robot to help at home:
“When I think of people who are currently stuck at home because they cannot move around as before, I
wish they had the opportunity to have some kind of robot to help them live a better life without an outside
help.” In a similar comment, a participant noted that they “would take the robot and use it at home.”
Another participant mentioned being interested in using an assistive robot to exercise: “would like to use it
as I like everything that is exercise.” Lastly, three participants mentioned a lack of space in their small
apartments as being an unknown in personal usage, for example, “My apartment is tiny, it would need to
be a small robot in order for me to consider using at home” “I would take the robot and use it at home.”
These open-ended responses generally align with the positive attitudes found in the quantitative measures
but include some nuance surrounding limitations (e.g., living in a small space) that might hinder personal
usage. Given that this study was conducted in New York City, living in a small apartment is common for
many. As such, concerns about space issues when using an assistive robot at home may be less prominent
in rural or suburban areas.

7. Study limitations and future work

The goal of this work was to validate the feasibility of using an integrated robot and wearable sensor
system to administer guided walking tasks to older adults in out-of-the-lab settings. While the results
validated feasibility, this study had several limitations.

First, as the robot we used is a wheeled mobile robot, it suffers from locomotion limitations. For
example, it cannot navigate stairs and its navigation performance deteriorates when moving on uneven
terrains. In our tests, the electronic walkway that was used as the reference system for performance
validation posed locomotion challenges for the robot. While the robot could navigate on and off the
walkway, this caused small vibrations to the on-board RGB-D sensors that negatively affected the body
tracking performance during brief time periods.

Second, as the robot uses RGB-D sensors for SLAM, it is sensitive to light conditions of the
environment. While we found that the robot was generally robust to the indoor lighting in different
weather conditions such as rainy or sunny days, in one instance the direct sunlight coming through a sky-
window in the common area of the community center where tests were carried out interfered with the
Kinect sensor’s FOV, so that the robot could not localize itself correctly. This limitation can bemitigated in
our future work by adding other sensors (such as Lidars) that are not sensitive to lighting conditions, at the
cost of more expensive sensors on the robot.

Furthermore, due to the exploratory nature of this study, we enrolled a relatively small sample of older
adults. Thus, the results we obtained might not be representative of the general population of community-
dwelling older adults. The limited sample size also prevented us from compensating for additional

Figure 9. Summary of subject attitude survey.
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confounding factors (e.g., race, ethnicity, number of medications, etc.) which are known to affect gait and
balance. However, a sample size of 22, with an alpha level of 0.05, power of 0.8, with three independent
predictors in our multiple regression models, allowed us to obtain a moderate effect size of 0.65. Despite
the limitations, our work allowed us to validate a novel integrated system that can potentially be used
outside the confines of a laboratory situation. In addition, the novel system was able to accurately collect
gait andMoS data that were associated with standardized clinical tests of cognition (MoCA) and physical
performance (SPPB). The combined results from the clinical tests and integrated novel system highlight
the importance of including gait in routine clinical assessment of physical performance in older adults. In
addition, the results will be helpful in designing exercise interventions to improve balance, mobility, and
strength and potentially reduce falls in older adults.

Future work will include quantifying participants’ performances in the cognitive task, in order to
investigate potential mediating effects of task prioritization on the gait patterns measured during the dual-
task condition (Fallahtafti et al., 2021).

8. Conclusion

In this article, we presented a feasibility study for an integrated mobile robot and wearable sensors system
designed to administer guided walking exercises to older adults in out-of-the-lab conditions. The robot-
guided study participants to walk on a designated oval path while maintaining a predefined distance from
them. During the walking exercises, the robot onboard computer fused data obtained by the robot RGB-D
sensor and the insole-embedded sensors to estimate spatiotemporal gait parameters andMoS in real time.
The accuracy of the system was assessed against a reference electronic walkway, demonstrating the
feasibility of the proposed approach. Associations between gait metrics, physical performance, and
cognitive ability were discussed. A subject attitude survey revealed general acceptance of the robotic
system by the study participants. Future workwill include using the integrated robot andwearable sensors
system to assess longitudinal changes in gait and dynamic balance in older adults following a multi-
session gait rehabilitation program.
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