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FIXED POINT THEOREMS FOR POINT-TO-SET
MAPPINGS
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ABSTRACT. Let (X, d) be a metric space. Let X be the family
of all non-empty closed subsets of X endowed with the Hausdorff
metric D induced by d. Let f be a non-expansive mapping of X into
X° (D(f (x), f(yN<Ld(x, y) for all x, y in X). Some fixed point
theorems are obtained by imposing certain conditions on fand X.

Let (X, d) be a bounded complete metric space. Let f be a mapping of X into
X°. F. E. Browder [6] proves that f has a fixed point if (a) f(x) is a singleton for
each x in X, and (b) there exists a monotonically non-decreasing function « of
[0, o) into [0, o) such that «(f) <t for all >0, « is continuous from the right and
[is a-contractive, i.e. D(f(x), f () <«(d(x, y)) for all x, y in X. We shall generalize
this result to the following theorem. Comparing the above result of Browder with
Theorem 1 in [4], we note that for a monotonically non-decreasing function o« of
[0, c©) into [0, ), « is continuous from the right if and only if « is upper semi-
continuous from the right.

THEOREM 1. Let (X, d) be a bounded complete metric space. Let f be a mapping
of X into X°. Suppose that there exists a monotonically non-decreasing function o of
[0, o) into [0, o) such that

(@) « is upper semicontinuous from the right and o(t) <t for all t >0,

(b) f is a-contractive on X.

Then there exists a unique non-empty closed subset Y of X such that

cdU{f(x):xeY}=7Y.
Proof. Consider the mapping F on X° defined by
F(A) =cl VU {f(a):ac A}, AeX°.
Then F is a mapping of X*into X°. We shall prove that

D(F(A), F(B)) < «(D(4, B)),  A4,BeX".
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Let A, Be X°,ac A, beB, xef(a). Then

d(x, F(B)) < d(x, f(b))
< D(f(a),f(b))

< «(d(a, b)).
So

d(x, F(B)) < inf{a(d(a, b)):b € B}.
Let s=d(a, B). Then there exists a sequence {,} in B such that the sequence
{d(a, b,)} is monotonically non-increasing and converges to s. Since « is continuous
from the right,

a(d(a, B)) = «(s)
=lima(d(a, b,))

n—*

> inf{a(d(a, b)):b € B}.
So

d(x, F(B)) < a(d(a, B)).
Since « is monotonically non-decreasing and d(a, B)< D(4, B),

d(x, F(B)) < «(D(4, B)).
Thus

sup{d(x, F(B)):x € f(a), a € A} < a(D(4, B)).
Since the function z—d(z, F(B)) is continuous on X,
sup{d(x, F(B)):x € F(A)} < a(D(4, B)).
Similarly,

sup{d(F(4), y):y € F(B)} < «(D(4, B)).
Therefore

D(F(4), F(B)) < «(D(4, B)).
By Proposition 4.1.3. in [8], X is complete. Hence by Theorem 1 in [4], there
exists a unique Y in X such that F(Y)=1Y, i.e.

cdU{f(x):xeY}=VY.
For any 4 in X°, we shall use 6(4) to denote the diameter of 4, i.e.
0(A4) = sup{d(x, y):x, y € A}.

To see the connection of Theorem 1 with the fixed point theory, we make the
following remarks. (1) Suppose that f is single-valued. Then 6(f(4))<d(4) for
every A in X° with 6(4)>0. But for the Y in Theorem 1,

oY) =6(cl U {f(x):xeY})

=0(U {f(x):xeY})
= 0(f(Y)).
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So §(Y)=0 and Y is a singleton, say {x,}. Hence

(X} =Y =cl U {f(x):xe Y} = {f(x)}

and x, is a fixed point of f. (2) Suppose that Y (but not necessarily X) is compact.
Then from Theorem 1, the restriction of f'to Y is a mapping of Y into Y*. For
any distinct x, y in Y, D(f(x), f(y)<«(d(x, y))<d(x, y). Hence f, restricted to
Y, is a multi-valued contractive mapping. Since Y is compact, by Theorem 4.2
of [8], Y*is compact. By Theorem 4 of [7], f has a fixed point in Y. We thank the
referee for this short proof. In fact, for this case, the conclusion of Theorem 1 can
be improved: Since f is continuous, {f(x):x € Y} is compact. So by Theorem
2.5.2"in [8], U {f(x):x € Y} is compact. Hence from Theorem 1,

U{f(x):xeY}=Y.
(3) As it is seen from (1) and (2), the unique Y is used to catch a fixed point of f.
In practice, Y in Theorem 1 can be constructed so that the properties of ¥ can
actually be checked. Indeed, by Theorem 1 of [4] and the proof of Theorem 1, for
any 4 in X°, Y is the limit of the sequence {F"(4)} of iterates of 4. Since X is
bounded, X is also bounded and therefore by Theorem 1 in [6], on X°, {F"(4)}
converges to Y uniformly.

In Theorem 1, the condition that « is upper semicontinuous from the right is
guaranteed if X is metrically convex (for any distinct x, y in X, there exists zin X,
different from x and y, such that d(x, y)=d(x, z)4d(z, y)). This can be seen from
the following lemma.

Let f be a mapping of a metric space (X, d) into a metric space (Y, d’). | f| will
denote the number sup{d’'(f(x), f(»))/d(x,y):x, y € X, x5#y}.

LeMMA 1. Let (X, d) be a complete metrically convex metric space. Let (Y, d")

be a metric space. Let f be a mapping of X into Y such that ||f|| <co. Then the
Sfunction o on d(X X X) defined by

o) = sup{d'(f(x), f(»)): %, y € X, d(x, y) < 1}
Jor each t in d(X X X) is subadditive, monotonically non-decreasing, continuous from
the right and satisfies «(t)< || f ||t for all £>0.

Proof. We shall merely prove that « is subadditive. Let s, t € d(Xx X), x, y € X.
Suppose that d(x, y)<s+¢. Then there exist #, v in [0, o) such that

dx,y)=u+v and u<s, v<t.
Since X is metrically convex, by a result of Menger [3, p. 41], there exists z in X
such that

d(x,z) = u, d(z,y) = .
So

d'(f(x), f(y)) < d(f(x), f(2)+d'(f(2), ()
< afs)+a(?).
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Varying x, y, we obtain
a(s+1) < als)+a(t).
We remark here that the function « in Lemma 1 is modified from Lemma 2 in
[4]. From Lemma 1 and Theorem 1, we can prove that

THEOREM 2. Let (X, d) be a bounded metrically convex complete metric space.
Let f be a mapping of X into X°. Suppose that there exists a monotonically non-
decreasing function o of [0, 00) into [0, 00) such that

(a) a()<t for t>0:

(b) fis a-contractive on X.

Then there exists a unique non-empty closed subset Y of X such that

dU{f(x):xeY} =Y.

Let X be a non-empty weakly compact convex subset of a Banach space B.
Let f be a non-expansive mapping of K into itself. It is not known if f must have a
fixed point [1], [2], [5]. One of the difficulties in obtaining a fixed point of f is
that /—f does not have a convexity structure to match the convexity structure of
K, where I is the identity function on K. For any subset 4 of B, || 4] will denote the
number inf{| x| :x € 4}.

DEerINITION. Let 4 be a convex subset of a Banach space B. Let g be a function
of 4 into B°. The function g is almost convex if for any sequence {x,} in A, there
exists a number r in (0, o) such that for any n>1 and any x in Co({x;:k>n}),

lg(x) < rsup{llg(x)ll:k > n}.
We remark here that, with the notations as in the above definition, g is almost
convex if for any x, y in 4 and any ¢ in (0, 1),

le(@=Dx+tp)ll < (1—1) g +2 gDl

THEOREM 3. Let K be a non-empty weakly compact convex subset of a Banach
space B. Let f be a nonexpansive mapping of K into the family of all non-empty
weakly closed subsets of K. Suppose that I—f is almost convex. Then f has a fixed
point.

Proof. By Lemma 4 in [9], there exists a sequence {x,} in K such that
{llx,—f (x,)II} converges to 0. For each k, let 4,=cl Co{x,:n>k}. Since 4, is
closed and convex, it is weakly closed. So by the weak compactness of K,
N {4,:k>1} is non-empty. Let x € N {4,:k>1}. Then there exists a sequence
{y,} such that for each £,

v €Co{x,:n >k} and [y,—x| < 1/k.

Since J—fis almost convex, there exists a number r in (0, co) such that for each n,

1ya=f )l < 7 sup{llx,—f(x)ll :k > n}.
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Letn>1. Sincef(y,) is weakly compact, there exists z,, in f(y,) such that ||y, —z,[ =
7n—f )|l Since f(x) is weakly compact, there exists w, in f(x) such that
Iw,—z,|=lz,—f (x)]. Since

[x=woll < Ix=yull + [1¥a—2zull + lZz— Wyl
<n+ 1y,—fy)l + llz,—f ()]
< Untrsup{llxe—f )l :k > n}+D(f(y,), f(x))
< 2/n+r sup{llx—f(x)ll :k > n},
|l x—w,||—0 as n—oo. Since w, € f(x) for each #, it follows that x € f(x).

THEOREM 4. Let K be a non-empty weakly compact convex subset of a Banach
space B. Let & be a family of nonexpansive mappings of K into the family of all
non-empty weakly closed subsets of K. Suppose that

(@) for each fin &, I—f is almost convex;
(b) for any distinct f, g in F and for any x,y in K, y ¢ g(x) if x€f(x) and
yEfO).

Then & has a common fixed point.

Proof. Let f#. Let F; be the set of all fixed points of f. Let x, y be distinct
points in F,. Consider the sequence {x,} in K defined by

X9, = x and Xx,, ; =y foreachn.

Since I—f'is almost convex, there exists a number r in (0, o) such that for any ¢
in (0, 1), the vector x,=(1—t)x+¢y satisfies

Ix,—f Gl < v sup{llx—f, Iy=fWI}-

So x, € F} for each ¢ € (0, 1). Therefore F; is convex. Now let {x,} be a sequence in
F, which converges to some x in K. By continuity of f, {f(x,)} converges to f(x).
So {d(x,, f (x))} converges to 0. Thus there exists a sequence {y,} in f(x) such that
{d(x,, y,)} converges to 0. So {d(x, y,)} converges to 0. By the weak compactness
of f(x), x € f(x). So F, is closed. Hence F; is weakly closed. From (b), for any g
in & with f#g, g(x) < F, for each x in F;. So we can apply Theorem 3 to f, g/F,.
This proves that F, N F,7 & . Repeating the same argument, we conclude that the
family {F;:f € &} has the finite intersection property. By the weak compactness of
K, {F,:f € %} has nonempty intersection. Hence & has a common fixed point.

THEOREM 5. Let K be a nonempty weakly compact convex subset of a Banach
space B. Let & be a commuting family of nonexpansive mappings of K into K.
Suppose that for each fin &, I—f is almost convex. Then the monoid generated by
F has a common fixed point.

Proof. Apply Theorem 4 to the monoid.
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