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FIXED POINT THEOREMS FOR POINT-TO-SET 
MAPPINGS 

BY 

CHI SONG WONGO 

ABSTRACT. Let (X, d) be a metric space. Let Xe be the family 
of all non-empty closed subsets of X endowed with the Hausdorff 
metric D induced by d. Let /be a non-expansive mapping of X into 
Xe (D(f(x), f(y))£d(x, y) for all x, y in X). Some fixed point 
theorems are obtained by imposing certain conditions on / and X. 

Let (X, d) be a bounded complete metric space. Let / b e a mapping of X into 
Xe. F. E. Browder [6] proves tha t /has a fixed point if (a)/(x) is a singleton for 
each x in X, and (b) there exists a monotonically non-decreasing function a of 
[0, oo) into [0, oo) such that a.(t)<t for all f >0 , a is continuous from the right and 

/ i s a-contractive, i.e. D(f(x),f(y))<oL(d(x, y)) for all x, y in X. We shall generalize 
this result to the following theorem. Comparing the above result of Browder with 
Theorem 1 in [4], we note that for a monotonically non-decreasing function a of 
[0, oo) into [0, oo), a is continuous from the right if and only if a is upper semi-
continuous from the right. 

THEOREM 1. Let (X, d) be a bounded complete metric space. Let f be a mapping 
ofX into Xe. Suppose that there exists a monotonically non-decreasing function a of 
[0, oo) into [0, oo) such that 

(a) a is upper semicontinuous from the right and <x.(t)<tfor all £>0; 
(b)fis a-contractive on X. 

Then there exists a unique non-empty closed subset Y of X such that 

cl u {f(x):xeY}= Y. 

Proof. Consider the mapping F on Xe defined by 

F(A) = cl U {/(a):aeA], AeXe. 

Then F is a mapping of Xe into Xe. We shall prove that 

D(F(A), F(B)) < *(D(A9 B)\ A, Be Xe. 
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Let A, B e Xe, a e A, b e B, x ef(a). Then 

d(x9F(B))<d(x,f(b)) 

< D(f(a),f(b)) 

< a(d(a, b)). 
So 

d(x9 F{B)) < inf{a(d(û, b)):b e B}. 

Let s=d(a, B). Then there exists a sequence {bn} in B such that the sequence 
{d(a, bn)} is monotonically non-increasing and converges to s. Since a is continuous 
from the right, 

a(d(a, £)) = a(s) 

= lima(d(a, 6 J ) 
n-*oo 

>M{a(d(a,b)):beB}. 
So 

d(x, F(B)) < a(d(fl, B)). 

Since a is monotonically non-decreasing and rf(#, B)<D(A, B), 

d(x9 F(B)) < a(D(i4, £)). 
Thus 

sup{d(x, F(B)):x e / (a ) , a e A} < OL(D(A, B)). 

Since the function z-*d(z, F(B)) is continuous on X9 

sup{d(x, F(£)):x e F(A)} < OL(D(A9 B)). 
Similarly, 

sup{d(F(A), y):ye F(B)} < OL(D(A, JB)). 
Therefore 

D ( F ( A n J 8 ) ) ^ a ( B ( ^ B ) ) -
By Proposition 4.1.3. in [8], Xe is complete. Hence by Theorem 1 in [4], there 
exists a unique Y in Xe such that F(Y)=Y, i.e. 

cl U {f(x):xeY}= Y. 

For any 4̂ in Xe, we shall use 6(A) to denote the diameter of A, i.e. 

<5(̂ 4) = sup{d(x, y):x9 y e A}. 

To see the connection of Theorem 1 with the fixed point theory, we make the 
following remarks. (1) Suppose t h a t / i s single-valued. Then ô(f(A))<ô(A) for 
every A in Xe with o(A)>0. But for the Tin Theorem 1, 

ô(Y) = ô(c\U{f(x):xeY}) 

= ô(Kj{f(x):xeY}) 

= ô(f(Y)). 
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So (5(F)=0 and Fis a singleton, say {x0}. Hence 

{x0} = Y = cl u {f(x):x eY} = {f(xQ)} 

and x0 is a fixed point off. (2) Suppose that Y (but not necessarily X) is compact. 
Then from Theorem 1, the restriction of / to F is a mapping of Y into Yc. For 
any distinct x, y in Y, D(f(x),f(y))<oL(d(x,y))<d(x,y). Hence/, restricted to 
7, is a multi-valued contractive mapping. Since Y is compact, by Theorem 4.2 
of [8], Yc is compact. By Theorem 4 of [7],/has a fixed point in Y. We thank the 
referee for this short proof. In fact, for this case, the conclusion of Theorem 1 can 
be improved: S ince / i s continuous, {f(x):xe Y} is compact. So by Theorem 
2.5.2' in [8], U {f(x):x e Y} is compact. Hence from Theorem 1, 

U {/(*):* e 7} = Y . 

(3) As it is seen from (1) and (2), the unique Fis used to catch a fixed point of / 
In practice, Y in Theorem 1 can be constructed so that the properties of Y can 
actually be checked. Indeed, by Theorem 1 of [4] and the proof of Theorem 1, for 
any A in Xe, Y is the limit of the sequence {Fn(A)} of iterates of A. Since X is 
bounded, Xe is also bounded and therefore by Theorem 1 in [6], on Xe, {Fn(A)} 
converges to Y uniformly. 

In Theorem 1, the condition that a is upper semicontinuous from the right is 
guaranteed if X is metrically convex (for any distinct x, y in X, there exists z in X, 
different from x and y, such that d(x, y)=d(x, z)+d(z, y)). This can be seen from 
the following lemma. 

Le t /be a mapping of a metric space (X, d) into a metric space (F, d'). \\f\\ will 
denote the number sup{d'(f(x),f(y))ld(x, y):x, y eX, xj£y}. 

LEMMA 1. Let (X, d) be a complete metrically convex metric space. Let (Y, d') 
be a metric space. Let f be a mapping of X into Y such that | | / | | <oo. Then the 
function a on d(XxX) defined by 

a(0 = sup{d'(/(*),/O0):x, y e X, d(x, y) < t} 

for each t in d(XxX)is subadditive, monotonically non-decreasing, continuous from 

the right and satisfies a(/)< Wfpfor all t>0. 

Proof. We shall merely prove that a is subadditive. Let s, t e d(Xx X), x, y e X. 
Suppose that d(x,y)<s+t. Then there exist u, v in [0, oo) such that 

d(x, y) = u+v and u <; 5, v < t. 

Since X is metrically convex, by a result of Menger [3, p. 41], there exists z in X 
such that 

d(x9 z) = w, d(z, y) = v. 
So 

d\f{x)J{y)) < d'(f{x)J(z))+dV(z)J{y)) 

< a(s)+a(r). 
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Varying x, y, we obtain 

a ( s + 0 <> a(s) + a(f). 

We remark here that the function a in Lemma 1 is modified from Lemma 2 in 

[4]. From Lemma 1 and Theorem 1, we can prove that 

THEOREM 2. Let (X, d) be a bounded metrically convex complete metric space. 
Let f be a mapping of X into Xe. Suppose that there exists a monotonically non-
decreasing function a of [0, oo) into [0, oo) such that 

(a) oi(t)<tfort>0: 
(b) f is ^-contractive on X. 

Then there exists a unique non-empty closed subset Y of X such that 

cl U { / ( x ) : x e Y} = Y. 

Let K be a non-empty weakly compact convex subset of a Banach space B. 
Let /be a non-expansive mapping of K into itself. It is not known if/must have a 
fixed point [1], [2], [5]. One of the difficulties in obtaining a fixed point o f / is 
that /—/ does not have a convexity structure to match the convexity structure of 
K, where lis the identity function on K. For any subset A of B, \\A\\ will denote the 
number inf{||#|| :x e A}. 

DEFINITION. Let A be a convex subset of a Banach space B. Let g be a function 
of A into Bc. The function g is almost convex if for any sequence {xn} in A, there 
exists a number r in (0, oo) such that for any n>\ and any x in Co({xk:k>n}), 

\\g(x)\\<rsup{\\g(xk)\\:k>n}. 

We remark here that, with the notations as in the above definition, g is almost 
convex if for any x, y in A and any t in (0, 1), 

||g((l-0*+O0ll < (1-0 llg(*)|| +t llgGOH. 
THEOREM 3. Let K be a non-empty weakly compact convex subset of a Banach 

space B. Let f be a nonexpansive mapping of K into the family of all non-empty 
weakly closed subsets of K. Suppose that I—fis almost convex. Then f has a fixed 
point. 

Proof. By Lemma 4 in [9], there exists a sequence {xn} in K such that 
{\\xn—f(xn)\\} converges to 0. For each k, let Ak=cl Co{xn:n>k}. Since Ak is 
closed and convex, it is weakly closed. So by the weak compactness of K, 
n {Ak:k>l} is non-empty. Let x e n {Ak:k>l}. Then there exists a sequence 
{yn} such that for each k, 

ykeCo{xn:n > k) and \\yk-x\\ < 1/fe. 

Since /—/is almost convex, there exists a number r in (0, oo) such that for each n9 

\\yn-f(yn)\\ ^ r sup{||x,~/(xfc)||:fc > n}. 
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Let n> 1. Since/(yn) is weakly compact, there exists zn in/(yn) such that \yn—zn\\ = 
\\yn—f(yn)\\. Since f(x) is weakly compact, there exists wn in f(x) such that 
| | w n - z j = \\zn-f(x)\\. Since 

ll*-ww|| < \\x-yj + \\yn-zj + | |zw-wn | | 

< 1/n + \\yn-f(yn)\\ + \\zn-f(x)\\ 

< lln + rsup{\\xk-f(xk)\\:k > n}+D(f(yn),f(x)) 

<2ln + rsup{\\xk-f(xk)\\:k>n}, 

II*—wJ|-*0 a s n-^co. Since ww e / (#) for each n, it follows that x £f(x). 

THEOREM 4. Let K be a non-empty weakly compact convex subset of a Banach 
space B. Let IF be a family of nonexpansive mappings of K into the family of all 
non-empty weakly closed subsets of K. Suppose that 

(a) for each fin <F, I—fis almost convex; 
(b) for any distinct f g in SF and for any x, y in K, y $ g(x) if x £f(x) and 

y my)-
Then ZF has a common fixed point. 

Proof. L e t / # \ Let Ff be the set of all fixed points off. Let x, y be distinct 
points in Ff. Consider the sequence {xn} in K defined by 

x2n = x and x2n_i = y for each n. 

Since I—fis almost convex, there exists a number r in (0, oo) such that for any t 
in (0, 1), the vector xt=(l — t)x+ty satisfies 

ll*#-/(*«)|| < rsup{| |x-/(x) | | , ||y-/GOII}. 
So xt e Ff for each t e (0, 1). Therefore Ff is convex. Now let {xn} be a sequence in 
Ff which converges to some x in K. By continuity of/, {f(xn)} converges tof(x). 
So {d(xn9f(x))} converges to 0. Thus there exists a sequence {yn} in / (x) such that 
{d(xn, yn)} converges to 0. So {d(x, yn)} converges to 0. By the weak compactness 
of f(x), x ef(x). So Ff is closed. Hence Ff is weakly closed. From (b), for any g 
in !F w i th /^g , g(x) c= Ff for each x in Ff. So we can apply Theorem 3 t o / gjFf. 
This proves that Ff n F9T

60 . Repeating the same argument, we conclude that the 
family {Ff\fe &} has the finite intersection property. By the weak compactness of 
K, {Ff'.fe SF} has nonempty intersection. Hence IF has a common fixed point. 

THEOREM 5. Let K be a nonempty weakly compact convex subset of a Banach 
space B. Let SF be a commuting family of nonexpansive mappings of K into K. 
Suppose that for each fin #", I—fis almost convex. Then the monoid generated by 
IF has a common fixed point. 

Proof. Apply Theorem 4 to the monoid. 
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