FIXED POINT THEOREMS FOR POINT-TO-SET MAPPINGS

BY

CHI SONG WONG⁽¹⁾

ABSTRACT. Let (X, d) be a metric space. Let X^c be the family of all non-empty closed subsets of X endowed with the Hausdorff metric D induced by d. Let f be a non-expansive mapping of X into X^c $(D(f(x), f(y)) \le d(x, y)$ for all x, y in X). Some fixed point theorems are obtained by imposing certain conditions on f and X.

Let (X, d) be a bounded complete metric space. Let f be a mapping of X into X^{c} . F. E. Browder [6] proves that f has a fixed point if (a) f(x) is a singleton for each x in X, and (b) there exists a monotonically non-decreasing function α of $[0, \infty)$ into $[0, \infty)$ such that $\alpha(t) < t$ for all t > 0, α is continuous from the right and f is α -contractive, i.e. $D(f(x), f(y)) \le \alpha(d(x, y))$ for all x, y in X. We shall generalize this result to the following theorem. Comparing the above result of Browder with Theorem 1 in [4], we note that for a monotonically non-decreasing function α of $[0, \infty)$ into $[0, \infty)$, α is continuous from the right if and only if α is upper semicontinuous from the right.

THEOREM 1. Let (X, d) be a bounded complete metric space. Let f be a mapping of X into X^c . Suppose that there exists a monotonically non-decreasing function α of $[0, \infty)$ into $[0, \infty)$ such that

(a) α is upper semicontinuous from the right and $\alpha(t) < t$ for all t > 0;

(b) f is α -contractive on X.

Then there exists a unique non-empty closed subset Y of X such that

$$cl \cup \{f(x): x \in Y\} = Y.$$

Proof. Consider the mapping F on X^c defined by

 $F(A) = \operatorname{cl} \cup \{f(a) : a \in A\}, \qquad A \in X^c.$

Then F is a mapping of X^c into X^c . We shall prove that

 $D(F(A), F(B)) \leq \alpha(D(A, B)), \quad A, B \in X^{c}.$

Received by the editors January 28, and in revised form July 24, 1972.

⁽¹⁾ The author is partially supported by NRC Grant A8518 and a grant from the Canadian Mathematical Congress. He wishes to thank the referee for his valuable suggestions.

Let A, $B \in X^c$, $a \in A$, $b \in B$, $x \in f(a)$. Then

$$d(x, F(B)) \le d(x, f(b))$$
$$\le D(f(a), f(b))$$
$$\le \alpha(d(a, b)).$$

So

$$d(x, F(B)) \leq \inf\{\alpha(d(a, b)) : b \in B\}.$$

Let s=d(a, B). Then there exists a sequence $\{b_n\}$ in B such that the sequence $\{d(a, b_n)\}$ is monotonically non-increasing and converges to s. Since α is continuous from the right,

$$\alpha(d(a, B)) = \alpha(s)$$

= $\lim_{n \to \infty} \alpha(d(a, b_n))$
> $\inf{\alpha(d(a, b)): b \in B}.$

So

$$d(x, F(B)) \leq \alpha(d(a, B)).$$

Since α is monotonically non-decreasing and $d(a, B) \leq D(A, B)$,

$$d(x, F(B)) \leq \alpha(D(A, B)).$$

Thus

$$\sup\{d(x, F(B)): x \in f(a), a \in A\} \leq \alpha(D(A, B)).$$

Since the function $z \rightarrow d(z, F(B))$ is continuous on X,

. ...

$$\sup\{d(x, F(B)): x \in F(A)\} \leq \alpha(D(A, B)).$$

Similarly,

$$\sup\{d(F(A), y): y \in F(B)\} \le \alpha(D(A, B)).$$

Therefore

$$D(F(A), F(B)) \leq \alpha(D(A, B))$$

By Proposition 4.1.3. in [8], X^c is complete. Hence by Theorem 1 in [4], there exists a unique Y in X^c such that F(Y) = Y, i.e.

$$cl \cup \{f(x): x \in Y\} = Y.$$

For any A in X^c, we shall use $\delta(A)$ to denote the diameter of A, i.e.

$$\delta(A) = \sup\{d(x, y) : x, y \in A\}.$$

To see the connection of Theorem 1 with the fixed point theory, we make the following remarks. (1) Suppose that f is single-valued. Then $\delta(f(A)) < \delta(A)$ for every A in X^c with $\delta(A) > 0$. But for the Y in Theorem 1,

$$\delta(Y) = \delta(\operatorname{cl} \cup \{f(x) : x \in Y\})$$
$$= \delta(\cup \{f(x) : x \in Y\})$$
$$= \delta(f(Y)).$$

[December

So $\delta(Y)=0$ and Y is a singleton, say $\{x_0\}$. Hence

$$\{x_0\} = Y = cl \cup \{f(x) : x \in Y\} = \{f(x_0)\}$$

and x_0 is a fixed point of f. (2) Suppose that Y (but not necessarily X) is compact. Then from Theorem 1, the restriction of f to Y is a mapping of Y into Y^c . For any distinct x, y in Y, $D(f(x), f(y)) \le \alpha(d(x, y)) < d(x, y)$. Hence f, restricted to Y, is a multi-valued contractive mapping. Since Y is compact, by Theorem 4.2 of [8], Y^c is compact. By Theorem 4 of [7], f has a fixed point in Y. We thank the referee for this short proof. In fact, for this case, the conclusion of Theorem 1 can be improved: Since f is continuous, $\{f(x):x \in Y\}$ is compact. So by Theorem 2.5.2' in [8], $\cup \{f(x):x \in Y\}$ is compact. Hence from Theorem 1,

$$\cup \{f(x): x \in Y\} = Y.$$

(3) As it is seen from (1) and (2), the unique Y is used to catch a fixed point of f. In practice, Y in Theorem 1 can be constructed so that the properties of Y can actually be checked. Indeed, by Theorem 1 of [4] and the proof of Theorem 1, for any A in X° , Y is the limit of the sequence $\{F^n(A)\}$ of iterates of A. Since X is bounded, X° is also bounded and therefore by Theorem 1 in [6], on X° , $\{F^n(A)\}$ converges to Y uniformly.

In Theorem 1, the condition that α is upper semicontinuous from the right is guaranteed if X is metrically convex (for any distinct x, y in X, there exists z in X, different from x and y, such that d(x, y)=d(x, z)+d(z, y)). This can be seen from the following lemma.

Let f be a mapping of a metric space (X, d) into a metric space (Y, d'). ||f|| will denote the number $\sup\{d'(f(x), f(y))/d(x, y): x, y \in X, x \neq y\}$.

LEMMA 1. Let (X, d) be a complete metrically convex metric space. Let (Y, d') be a metric space. Let f be a mapping of X into Y such that $||f|| < \infty$. Then the function α on $d(X \times X)$ defined by

$$\alpha(t) = \sup\{d'(f(x), f(y)) : x, y \in X, d(x, y) \le t\}$$

for each t in $d(X \times X)$ is subadditive, monotonically non-decreasing, continuous from the right and satisfies $\alpha(t) \le ||f|| t$ for all $t \ge 0$.

Proof. We shall merely prove that α is subadditive. Let $s, t \in d(X \times X), x, y \in X$. Suppose that $d(x, y) \leq s+t$. Then there exist u, v in $[0, \infty)$ such that

$$d(x, y) = u + v$$
 and $u \le s, v \le t$.

Since X is metrically convex, by a result of Menger [3, p. 41], there exists z in X such that

So

$$d(x, z) = u, \qquad d(z, y) = v.$$

$$d'(f(x), f(y)) \le d'(f(x), f(z)) + d'(f(z), f(y))$$
$$\le \alpha(s) + \alpha(t).$$

1974]

Varying x, y, we obtain

$$\alpha(s+t) \leq \alpha(s) + \alpha(t).$$

We remark here that the function α in Lemma 1 is modified from Lemma 2 in [4]. From Lemma 1 and Theorem 1, we can prove that

THEOREM 2. Let (X, d) be a bounded metrically convex complete metric space. Let f be a mapping of X into X^c. Suppose that there exists a monotonically nondecreasing function α of $[0, \infty)$ into $[0, \infty)$ such that

(a) $\alpha(t) < t$ for t > 0:

(b) f is α -contractive on X.

Then there exists a unique non-empty closed subset Y of X such that

$$cl \cup \{f(x): x \in Y\} = Y.$$

Let K be a non-empty weakly compact convex subset of a Banach space B. Let f be a non-expansive mapping of K into itself. It is not known if f must have a fixed point [1], [2], [5]. One of the difficulties in obtaining a fixed point of f is that I-f does not have a convexity structure to match the convexity structure of K, where I is the identity function on K. For any subset A of B, ||A|| will denote the number $\inf\{||x||: x \in A\}$.

DEFINITION. Let A be a convex subset of a Banach space B. Let g be a function of A into B^c . The function g is almost convex if for any sequence $\{x_n\}$ in A, there exists a number r in $(0, \infty)$ such that for any $n \ge 1$ and any x in $Co(\{x_k: k \ge n\})$,

$$||g(x)|| \le r \sup\{||g(x_k)|| : k \ge n\}.$$

We remark here that, with the notations as in the above definition, g is almost convex if for any x, y in A and any t in (0, 1),

$$\|g((1-t)x+ty)\| \le (1-t) \|g(x)\| + t \|g(y)\|.$$

THEOREM 3. Let K be a non-empty weakly compact convex subset of a Banach space B. Let f be a nonexpansive mapping of K into the family of all non-empty weakly closed subsets of K. Suppose that I-f is almost convex. Then f has a fixed point.

Proof. By Lemma 4 in [9], there exists a sequence $\{x_n\}$ in K such that $\{||x_n-f(x_n)||\}$ converges to 0. For each k, let $A_k = \operatorname{cl} \operatorname{Co}\{x_n:n \ge k\}$. Since A_k is closed and convex, it is weakly closed. So by the weak compactness of K, $\cap \{A_k:k\ge 1\}$ is non-empty. Let $x \in \cap \{A_k:k\ge 1\}$. Then there exists a sequence $\{y_n\}$ such that for each k,

$$y_k \in Co\{x_n : n \ge k\}$$
 and $||y_k - x|| < 1/k$.

Since I-f is almost convex, there exists a number r in $(0, \infty)$ such that for each n,

$$||y_n - f(y_n)|| \le r \sup\{||x_k - f(x_k)|| : k \ge n\}.$$

https://doi.org/10.4153/CMB-1974-104-2 Published online by Cambridge University Press

[December

Let $n \ge 1$. Since $f(y_n)$ is weakly compact, there exists $z_n \inf f(y_n)$ such that $||y_n - z_n|| = ||y_n - f(y_n)||$. Since f(x) is weakly compact, there exists w_n in f(x) such that $||w_n - z_n|| = ||z_n - f(x)||$. Since

$$\begin{split} \|x - w_n\| &\leq \|x - y_n\| + \|y_n - z_n\| + \|z_n - w_n\| \\ &< 1/n + \|y_n - f(y_n)\| + \|z_n - f(x)\| \\ &\leq 1/n + r \sup\{\|x_k - f(x_k)\| : k \geq n\} + D(f(y_n), f(x)) \\ &< 2/n + r \sup\{\|x_k - f(x_k)\| : k \geq n\}, \end{split}$$

 $||x-w_n|| \to 0$ as $n \to \infty$. Since $w_n \in f(x)$ for each n, it follows that $x \in f(x)$.

THEOREM 4. Let K be a non-empty weakly compact convex subset of a Banach space B. Let \mathcal{F} be a family of nonexpansive mappings of K into the family of all non-empty weakly closed subsets of K. Suppose that

(a) for each f in \mathcal{F} , I-f is almost convex;

(b) for any distinct f, g in \mathscr{F} and for any x, y in K, $y \notin g(x)$ if $x \in f(x)$ and $y \notin f(y)$.

Then \mathcal{F} has a common fixed point.

Proof. Let $f \mathscr{F}$. Let F_f be the set of all fixed points of f. Let x, y be distinct points in F_f . Consider the sequence $\{x_n\}$ in K defined by

$$x_{2n} = x$$
 and $x_{2n-1} = y$ for each n.

Since I-f is almost convex, there exists a number r in $(0, \infty)$ such that for any t in (0, 1), the vector $x_t = (1-t)x + ty$ satisfies

$$||x_t - f(x_t)|| \le r \sup\{||x - f(x)||, ||y - f(y)||\}.$$

So $x_t \in F_f$ for each $t \in (0, 1)$. Therefore F_f is convex. Now let $\{x_n\}$ be a sequence in F_f which converges to some x in K. By continuity of f, $\{f(x_n)\}$ converges to f(x). So $\{d(x_n, f(x))\}$ converges to 0. Thus there exists a sequence $\{y_n\}$ in f(x) such that $\{d(x_n, y_n)\}$ converges to 0. So $\{d(x, y_n)\}$ converges to 0. By the weak compactness of f(x), $x \in f(x)$. So F_f is closed. Hence F_f is weakly closed. From (b), for any g in \mathscr{F} with $f \neq g$, $g(x) \subset F_f$ for each x in F_f . So we can apply Theorem 3 to f, g/F_f . This proves that $F_f \cap F_g \neq \emptyset$. Repeating the same argument, we conclude that the family $\{F_f: f \in \mathscr{F}\}$ has the finite intersection property. By the weak compactness of K, $\{F_f: f \in \mathscr{F}\}$ has nonempty intersection. Hence \mathscr{F} has a common fixed point.

THEOREM 5. Let K be a nonempty weakly compact convex subset of a Banach space B. Let \mathcal{F} be a commuting family of nonexpansive mappings of K into K. Suppose that for each f in \mathcal{F} , I-f is almost convex. Then the monoid generated by \mathcal{F} has a common fixed point.

Proof. Apply Theorem 4 to the monoid.

1974]

CHI SONG WONG

References

1. L. P. Belluce and W. A. Kirk, Nonexpansive mappings and fixed points in Banach spaces, Illinois J. Math. 11 (1967), 474-479.

2. L. P. Belluce and W. A. Kirk, Fixed point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141-146.

3. L. E. Blumenthal, *Theory and application of distance geometry*, Clarendon Press, Oxford, 1953.

4. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.

5. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. 54 (1965), 1041–1044.

6. F. E. Browder, On the successive approximations for nonlinear functional equations, Proc. Kon. Nederl. Akad. Wetensch. Amsterdam A71 (1968), 27-35.

7. R. B. Fraser, Jr. and Sam B. Nadler, Jr., Sequences of contractive maps and fixed points, Pacific J. Math. 31 (1969), 659-667.

8. Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 70 (1951), 152-182.

9. Chi Song Wong, Fixed point theorems for nonexpansive mappings, J. Math. Anal. Applic. 37 (1972), 142-150.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO, CANADA.