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Abstract

Detrital zircon geochronology can help address stratigraphic- to lithospheric-scale geological
questions. The approach is reliant on statistically robust, representative age distributions that
fingerprint source areas. However, there is a range of biases that may influence any detrital
age signature. Despite being a fundamental and controllable source of bias, handpicking of
zircon grains has received surprisingly little attention. Here, we show statistically significant
differences in age distributions between bulk-mounted and handpicked fractions from an
unconsolidated heavy mineral sand deposit. Although there is no significant size difference
between bulk-mounted and handpicked grains, there are significant differences in their aspect
ratio, circularity and colour, which indicate inadvertent preferential visual selection of euhedral
and coloured zircon grains. Grain colour comparisons between dated and bulk zircon fractions
help quantify bias. Bulk-mounting is the preferred method to avoid human-induced selection
bias in detrital zircon geochronology.

1. Introduction

Detrital zircon U–Pb geochronology is a powerful tool in deciphering Earth’s sedimentary
archive, able to answer a myriad of research questions including: sediment transfer (e.g.
Luo et al. 2014); maximum depositional ages (e.g. Nelson, 2001); tectonomagmatic processes
(e.g. Wotzlaw et al. 2011); palaeogeographic correlations (e.g. Samson et al. 2005); or crustal
evolution (e.g. Amelin et al. 1999). According to Fedo et al. (2003), we can distinguish
between two strategies in detrital zircon geochronology: (i) qualitative analysis that strives
for representation of every age mode within the detrital record, regardless of their relative
abundance (e.g. Gehrels & Ross, 1998); and (ii) quantitative analysis that endeavours to
obtain representative age distributions (e.g. Li et al. 2019), or a combination of both strategies
(e.g. McWilliams et al. 2010). Although sound reasons exist to carry out qualitative analysis,
the advent of high-n acquisition techniques (e.g. Pullen et al. 2014) and readily available
statistical tools (e.g. Sircombe & Hazelton, 2004) have certainly provoked a shift towards
quantitative analysis as the preferred approach during the last 10–15 years, allowing for
quantifiable similarities among different geological domains. Quantifying relationships
between samples makes use of the relative abundance of age modes (e.g. Nie et al.
2018), which is often facilitated using statistical assessment to maintain objectivity (e.g.
Vermeesch, 2013).

The underlying assumption for a geologically meaningful interpretation of inter-sample
comparison of detrital zircon age distributions is that the analysed samples are a true reflection
of the sediment sampled and that this can be used as a proxy for the relative proportion of
crystalline rocks in the source region. However, this foundational assumption may be under-
mined by a number of biases that can be simplified to those associated with (i) geological proc-
esses, and (ii) methodological approaches (Chew et al. 2020; Fig. 1). Intrinsic biases are inherent
to geological processes, for instance variations in mineral fertility (e.g. Moecher & Samson,
2006), variable erosion rates (e.g. Spencer et al. 2017), sedimentary sorting effects (e.g.
Lawrence et al. 2011) or selective upgrading, such as removal of metamict grains during trans-
port (e.g. Markwitz & Kirkland, 2018). Several studies have highlighted the necessity to quantify
methodological limitations in detrital zircon geochronology datasets to allow robust interpre-
tations (e.g. Ibañez-Mejia et al. 2018). Methodological biases can be divided into analytical
biases and biases induced during sample processing. While substantial efforts have been made
to establish a common practice for analytical procedures (e.g. Garzanti et al. 2018) and data
processing for in situ U–Pb analysis (Košler et al. 2013; Horstwood et al. 2016; Spencer
et al. 2016), less agreement exists in workflows and equipment used for zircon separation
between laboratories. Mineral processing procedures have significant potential for introducing
systematic biases (Sláma & Košler, 2012; Chew et al. 2020). Any systematic bias that alters the
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true proportions of age modes inevitably enhances the risk of erro-
neous interpretation based on statistical inter-sample comparison.

Chew et al. (2020) reviewed biases in single-grain provenance
analysis and concluded that preferential operator selection of
certain mineral populations was responsible for selective bias
during handpicking. However, mineral handpicking, conceivably
the part of zircon separation most likely affected by human-
induced selection bias, has not received much consideration in
the literature. Although automated mineral mapping may reduce
the need for handpicking (e.g. Hrstka et al. 2018; Lünsdorf et al.
2019), handpicking remains the most-used mounting technique
applied in detrital zircon geochronology (Gaudette et al. 1981;
Sláma & Košler, 2012; online Supplementary Fig. S1, available at
http://journals.cambridge.org/geo). Handpicking may have some
benefits in certain fields of geochronology, for example wheremore
pristine volcanic crystals may lead to more precise crystallization
age determination, and improve maximum depositional age con-
straint. Nonetheless, because zircon shape and colour is known to
vary with geological history and composition (e.g. Markwitz &
Kirkland, 2018), different age modes will likely be characterized
by different grain characteristics that could influence their
selection in any detrital zircon study. This study provides the first
evidence of preferential selection bias (based on grain shape
and colour) induced during handpicking in a natural sample.
Consequently, this work highlights a significant methodological
pitfall concerning the use of relative age peaks in detrital zircon
U–Pb geochronology.

2. Geological setting

The Scott Coastal Plain (Fig. 2) represents a suitable area to evalu-
ate selection bias in detrital zircon. The area has a well-understood
crystalline basement with distinct age modes, grain shape and
colour variability (Makuluni et al. 2019). The plain is a piedmont
alluvial surface comprising strandlines with heavy mineral
sand deposits of economic significance (Baxter, 1977). The succes-
sion of siliciclastic coastal sediments unconformably overlies
Palaeozoic and Mesozoic strata of the Perth Basin, is bordered
by the Neoproterozoic–Palaeozoic Pinjarra Orogen and the
Proterozoic Albany–Fraser Orogen, and overlies the Archean
Yilgarn Craton (Baddock, 1995).

The South West Terrane of the Archean Yilgarn Craton
contains Meso-Neoarchean zircons with a predominant age mode
at c. 2700–2600 Ma (Mole et al. 2019). The Albany–Fraser Orogen
reflects the Proterozoic modification of the Yilgarn Craton
and records key tectonomagmatic events at c. 1710–1650,
c. 1345–1260 and c. 1215–1140 Ma (Kirkland et al. 2011). The
Leeuwin Complex is one of the few inliers of the Pinjarra
Orogen and comprises age modes at c. 1100–1000, c. 750 and
c. 520 Ma (Collins, 2003; Fitzsimons, 2003).

3. Methods

This study was motivated by the observation of a significant
discrepancy between age spectra of bulk-mounted and handpicked
subsamples (the two most commonly employed grain-mounting
techniques; online Supplementary Fig. S1) of heavy mineral
concentrates from the unconsolidated Governor Broome heavy
mineral sand deposit (34° 15' 21'' S, 115° 24' 24'' E). In this work,
no experimental design to test selection bias existed a priori, that is,
age data were primarily acquired during conventional zircon U–Pb
geochronology sessions for the purpose of sedimentary prov-
enance analysis. The 53–1000 μm grain size fraction underwent
separation using a liquid with a density of 2.96 g cm–3 and
isodynamic magnetic separation resulting in a zircon-dominated
mineral separate permitting selection of the widest possible range
of grain characteristics while picking zircon grains. Handpicking
was performed using a stereo binocular microscope and needle,
attempting representativeness. A representative split (coning
and quartering) of the heavy mineral concentrate (bulk-mounted)
and handpicked grains were affixed in the same resin mount,
enabling consistency for image analysis.

Detrital zircon U–Pb geochronology was performed using
laser ablation – inductively coupled plasma – mass spectrometry
(LA-ICP-MS) at Curtin University’s John de Laeter Centre
(Perth, Australia). Full details of the sample preparation and
U–Pb geochronology procedure are provided in online
Supplementary Materials S1 and S2 (including Tables S1 and
S2) (available at http://journals.cambridge.org/geo).

Grain shape and colour analyses were performed for concord-
ant measurements (i.e. measurements intercepting Concordia) on
transmitted light images (online Supplementary Material S3)
acquired after geochronological measurements using an auto-
mated Zeiss AXIO Imager M2m microscope system. Grain shape
analysis was conducted using ImageJ (Abramoff et al. 2004).
To facilitate colour comparison of the two populations, the num-
bers of colours were simplified to 14 RGB values determined by the
ImageJ plugin ‘Color Inspector 3D’ (using histogram mode).
Frequencies of these indexed colours were calculated for individual
grains using a Python script. To assess relative colour difference
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between grains, we use the sum of these colour frequencies while
omitting rim artefacts (R40, G40, B40; approximately dark-grey)
and background resin transmission (R128, G128, B128; approxi-
mately grey), labelled ‘Σ Colour’ [%].

4. Results

A total of 229 concordant detrital zircon ages range from the
Palaeoarchean to early Phanerozoic. Bulk-mounted (n, concordant
analyses/all analyses = 149/221) and handpicked (n= 80/177)
populations show polymodal age distributions with varying

intensities of major age modes at c. 630–510 Ma (% bulk-
mounted/% handpicked= 13/3), c. 760–640 Ma (39/14),
c. 1110–900 Ma (15/3), c. 1300–1150 Ma (13/35), c. 1800–
1500 Ma (3/15) and c. 2750–2500 Ma (11/25) (Fig. 3a, b; online
Supplementary Material S2, Table S3).

The two populations show no significant difference in grain
areas (Fig. 4a; online Supplementary Material S2, Table S4);
individual bulk-mounted grains range from 5706 to 18 605 μm2

(mean ± standard deviation, 9540 ± 2389 μm2) compared with
4983 to 25 435 μm2 (9295 ± 2815 μm2) for handpicked grains.
In contrast, the aspect ratio shows significant differences between

Fig. 2. (Colour online) Geological map of the Scott Coastal Plain in Western Australia. Red rectangle on inset indicates study area. GB001 indicates the Governor Broome heavy
mineral sand deposit used in this study.
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the two populations ranging from 1.03 to 3.47 (1.54 ± 0.43) for
bulk-mounted grains compared with 1.12 to 4.49 (1.97 ± 0.60)
for handpicked grains (Fig. 4b). Similarly, grain circularity
(4π×area/perimeter2; 1= a perfect circle) indicates distinguishable
populations. Bulk-mounted grains range from 0.52 to 0.89
(0.74 ± 0.07) compared with 0.38 to 0.86 (0.70 ± 0.09) for hand-
picked grains. Principal component analysis (clustering visualiza-
tion among multivariate data) based on grain shape parameters
shows bulk-mounted and handpicked populations form partial
overlapping clusters and indicate aspect ratio is a primary charac-
teristic defining differences between the populations (Fig. 4c).

The value of Σ Colour (high values = colourful grains) of
bulk-mounted grains ranges from 6.02 to 20.45% (12.36 ±
2.92%) compared with 7.50 to 33.49% for handpicked grains
(16.08 ± 6.05%, Fig. 4d; online Supplementary Material S2,
Table S5). The handpicked population features higher skewness
of Σ Colour than the bulk-mounted population (0.85 compared
with 0.26). The Shapiro–Wilk test for normality rejects the null

hypothesis that the handpicked population is normally distributed
(P-value< 0.05).

5. Discussion

5.a. Provenance

To facilitate comparison, detrital zircon ages are grouped into
naturally occurring age modes in the study area (online
Supplementary Material S2, Table S6). Age modes 630–510,
760–640 and 1100–900 Ma can be linked to the proximal
Leeuwin Complex (Pinjarra Orogen). Ages within the intervals
1300–1150 and 1800–1500 Ma are most likely derived from the
Albany–Fraser Orogen, and ages of 2750–2500 Ma are likely
sourced from the Yilgarn Craton. All age modes can therefore
be readily correlated to proximal crystalline sources and their
former east Gondwana equivalents, in accordance with regional
sedimentary rocks (i.e. Perth Basin) that show similar original
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source areas (Olierook et al. 2019). Consequently, we interpret the
sediment was derived from reworking of local sediments and pri-
mary basement erosion.

5.b. Handpicking-induced sampling bias

The qualitative interpretation of sedimentary provenance
(i.e. identification of source regions) is only marginally different
between bulk-mounted and handpicked populations (similarity
coefficient of c. 0.79). However, commonly used population com-
parison metrics that are more sensitive to the relative abundance of
age modes (Kolmogorov–Smirnov and Kuiper tests) suggest the
bulk-mounted and handpicked subsamples are statistically distin-
guishable, which contradicts their true relationship (Fig. 3b). Our
data suggest handpicking of zircon separates can produce a biased
(i.e. non-random) zircon population. Any subsequent statistical
evaluation comparing the handpicked population to a reference
age distribution may lose geological meaning.

We correlate the sampling bias of age modes to preferential
selection of more euhedral and more colourful zircon grains
(Fig. 5). In contrast to the size-control picking bias for synthetic
zircon populations proposed by Sláma & Košler (2012), we cannot
resolve significant differences between the grain size (here, area) of
bulk-mounted and handpicked zircons for our natural sample.
However, results of artificially rounded (air-abrasion) zircons dis-
playing ‘spherical or near-spherical shape’ (Sláma & Košler, 2012)
cannot be readily compared with the natural counterpart used in
this work as the latter are expected to exhibit more natural com-
plexity (e.g. primary crystal morphologies). The use of synthetic
samples is therefore likely incapable of fully unravelling controls
of potential handpicking bias as it can diminish naturally existing
sources of bias during handpicking. Non-random sampling during
handpicking of a natural sample is most prominent in the aspect
ratio among grain shape parameters. The median aspect ratio of
the handpicked population intersects the bulk-mounted

population above its 75th percentile (Fig. 4a), and aspect ratio
accounts for substantial variance between bulk-mounted and
handpicked populations based on principal component analysis.
We therefore interpret a significant preference for euhedral (high
aspect ratio) grain shapes. Similarly, differences in the colour
frequencies, for example, non-normal distribution of the hand-
picked population (skewed towards more colourful zircons) com-
pared with the normally distributed bulk-mounted population,
and the significant higher abundance of coloured grains in the
handpicked subsample, are interpreted as preferential selection
of coloured grains (Fig. 4d). These interpretations are consistent
with visual object recognition models stressing the role of shape
(Biederman, 1987) as well as colour (Bramão et al. 2011).
Zircon grains showing features of higher visibility or stereotypical
appearance (e.g. euhedral grain surfaces or colour) are more
readily perceived, and can therefore become overrepresented dur-
ing operator selection.

Variations in grain characteristics are correlated with changes
in the proportion of age modes. In this study, the oldest age
mode grains (AFO.1, AFO.2 and YG) are overrepresented in the
handpicked subsample. Overrepresented age mode grains in the
handpicked fraction show higher aspect ratios (mean of 1.95) and
a higher proportion of coloured grains (c. 17%) relative to the
bulk-mounted subsample, while the younger age mode LC.2 lacks
significant colour difference from its bulk-mounted equivalent
(c. 12%) and is underrepresented (Fig. 6). While grain shapes
can become extensively modified during transport, grain colour
remains more faithful to its origin. The ability to quantify the
dissimilarity in colour between bulk-mounted and handpicked
zircon fractions therefore provides a means to constrain the
magnitude of selection bias and potentially address its influence
on the detrital zircon age fingerprint.We used the colour difference
between the bulk-mounted zircon population and handpicked
zircon grains to measure bias derived from preferential selection
of coloured grains (Fig. 7). Adjusting the proportions of age modes
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in the handpicked sample according to the calculated colour bias
improved overall similarity (calculation in online Supplementary
Material S1; see also online Supplementary Material S2, Table
S7). Nonetheless, persistence of significant differences compared
with the bulk-mounted age distribution remains and is attributed
to a complex interplay of grain characteristics controlling grain
selection, as well as non-unique age-mode grain colour relation-
ships. Regardless, capturing the relative colour differences between
bulk-mounted and measured handpicked zircons can identify the
presence and magnitude of bias.

The results presented in this study cast doubt on the often
assumed randomness of handpicked age distributions used for
inter-sample comparison. Although handpicking may be a pre-
ferred approach when targeting specific populations (e.g. to con-
strain the maximum depositional age) or to capture every age
mode of the detrital record, studies interested in representative
age distributions should whenever possible avoid handpicking.
Individual studies and those referring to them, as well as studies
making use of the global detrital record, will be positively impacted
in terms of statistical robustness by omitting a potential source of
bias. Increasing numbers of publications relating to global compi-
lations of detrital zircon as a tracer of the Earth’s crustal dynamics
(e.g. Reimink et al. 2021) are inevitably incorporating original bias
into their interpretation, potentially impairing this powerful
approach. These findings also demonstrate that documenting
grain-mounting techniques is imperative for reliable inter-sample
comparison.

Selection bias in detrital zircon geochronology is an ultimate
function of variability among zircon shapes and colours, as well
as zircon concentration of the mineral separate. Lower concentra-
tion of zircons and more uniform characteristics might reduce the
chance of inducing sampling bias during handpicking. Analytical
conditions of this work are consistent with the vast majority of
published detrital zircon studies, that is, a single hand-picking
operator and small to medium sample size (n) of analysed zircons.
Following the calculation of Vermeesch (2004), 149 and 80
(concordant) grains means no fraction of the population compris-
ing more than 0.041 and 0.068, respectively, is missed at the
95% confidence level. The examined number of grains is therefore
sufficient to characterize the zircon cargo of the parent population.

We therefore conclude that these results are a valid reflection of
possible bias relevant to most detrital zircon studies interested
in statistical inter-sample comparison. Consequently, we argue
that the use of automated mineral mapping to target analysis of
bulk-mounted grains offers important advantages in decreasing
sample-treatment-induced bias and improves the robustness of
detrital zircon data.

6. Conclusions

Handpicking of detrital zircon from a natural sample
produced a statistically different age distribution compared with
bulk-mounting of the same material. This bias would considerably
impact subsequent statistical evaluation if unrecognized. The
significant variation in grain shape and colour suggests the prefer-
ential manual selection of euhedral and coloured grains. An assess-
ment of the discrepancy between bulk-mounted and handpicked
zircons can therefore be used to evaluate the degree of representa-
tiveness of handpicked grains. These results highlight the impor-
tance of minimizing sample handling steps whenever practicable.
Zircon bulk-mounting is the preferred approach for detrital zircon
geochronology studies reliant on representative age distributions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756821000145
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