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A ring R is called left QF-3 if it has a minimal faithful left R-module. The
endomorphism ring of such a module has been recently studied in [7], where conditions
are given for it to be a left PF ring or a QF ring. The object of the present paper is to
study, more generally, when the endomorphism ring of a 2-quasi-projective module over
any ring R is left QF-3. Necessary and sufficient conditions for this to happen are given in
Theorem 2. An useful concept in this investigation is that of a QF-3 module which has
been introduced in [11]. If M is a finitely generated quasi-projective module and o[M]
denotes the category of all modules isomorphic to submodules of modules generated by
M, then we show that End(RM) is a left QF-3 ring if and only if the quotient module of M
modulo its torsion submodule (in the torsion theory of o[M] canonically defined by M) is
a QF-3 module (Corollary 4). Finally, we apply these results to the study of the
endomorphism ring of a minimal faithful R-module over a left QF-3 ring, extending some
of the results of [7].

Throughout this paper R denotes an associative ring with identity, and /?-mod
denotes the category of left R-modules. If M is a module, then we will say that a module
N is M-generated (M-cogenerated) if it is a quotient (resp. a submodule) of a direct sum
Af(/) (resp. direct product M1) of copies of M. If N is M-cogenerated, then we will also say
that N is M-torsionless and that M is a N-cogenerator. The full subcategory of /?-mod
consisting of the submodules of M-generated modules will be denoted by o[M]; it is a
locally finitely generated Grothendieck category [11]. We recall that a module N is
M-projective (M-injective) if, for every quotient module (resp. submodule) X of M, the
homomorphism HomR(N, M)—>HomR(N, X) (resp. HomR(M, N)—*WomR{X, N)) is an
epimorphism and, in particular, M is quasi-projective when it is M-projective. M is a
projective object of a[M] precisely when it is Z-quasi-projective, that is, M(/) is
quasi-projective for each set /. The largest M-generated submodule of a module X will be
denoted by XM. E(N) will stand for an injective envelope of N in R-mod; if N belongs to
o[M], then its injective envelope in this category is precisely E(N)M. A module is called
finitely cogenerated (FC for short) if it has a finitely generated essential socle. When RR is
injective and finitely cogenerated, R is said to be a left PF ring. The endomorphism ring
of a module M will be denoted by S = End(RM) and we will use the convention of writing
endomorphisms opposite scalars. We refer the reader to [2] and [6] for all the
ring-theoretic notions used in the text.

In [11], a module M is called a QF-3 module if there exists a minimal M-cogenerator
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in o[M], i.e., a M-cogenerator in o[M] which is a direct summand of every M-
cogenerator in o[M]. These modules can be characterised in a similar way to left QF-3
rings.

PROPOSITION 1. Let M be a finitely generated module. The following conditions are
equivalent.

(i) M is a QF-3 module.
(ii) There exist (pairwise non-isomorphic) simple submodules Sx, . . . , Sn of M such

( " \
© 5,) is a M-torsionless M-cogenerator.

1 IM

(iii) There exists a finitely cogenerated M-injective submodule Q of M such that M is
Q-torsionless.

Proof. See [3, Theorem 1] or [11, Proposition 2.2].

Observe that the hypothesis of M being finitely generated cannot be deleted from
Proposition 1. For instance, if M is an infinite direct sum of pairwise non-isomorphic
simple modules, then M is clearly QF-3, but there is no finitely cogenerated M-
cogenerator. However, conditions (ii) and (iii) imply (i) even if M is not assumed to be
finitely generated.

Let M be a 2-quasi-projective module and T the smallest torsion class of o[M]
containing all the modules of the form XIXM, with X in o[M], which in this case consists
precisely of the modules N such that HomR(M, N) = 0 [5]. A module N of o[M] is called
M-faithful when it is T-torsion-free, that is, when HomR(M, A")#0 for every non-zero
submodule X of N. If M is M-faithful we will say that M is self-faithful. Then we have the
following result.

THEOREM 2. Let M be a self-faithful I.-quasi-projective module and S = End(RM).
Then S is a left QF-3 ring if and only if there exists a finitely cogenerated M-injective
M-cogenerator submodule of M.

Proof. By Proposition 1, R is left QF-3 if and only if it has a finitely cogenerated
injective faithful left ideal /. Assuming that S is left QF-3, we claim that MI = £ Im/is a

finitely cogenerated M-injective A/-cogenerator submodule of M. To see this, we recall
from [1, Corollary 4.10] that, since M is a quasi-projective module, Y->MY and
X-*UomR(M, X) define order-preserving inverse bijections between the sets of finitely
generated left ideals Y of 5 and finitely M-generated submodules X of M (i.e. submodules
of M which are quotients of finite direct sums of copies of M). Therefore we have, since /
is finitely generated, that / = HomR(M, MI). On the other hand MI, being a submodule
of M, is M-faithful and thus it follows from [5, Theorem 2.1] that MI is a M-injective
module. To show that MI cogenerates M, consider the fl-homomorphism q:M—>(MI)'
defined by q(x) = (xu)ue, (where xu = u(x)). Uxe Ker q, then xu = 0 for every u of / and
hence (Rx)u = 0 for each uel. Now, since M is self-faithful, if JC^O there exists
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Oi=f:M^>Rx and hence, composing with the inclusion Rx—*M, we get 0¥=geS such
that I m g c R x . Thus we have that gu = 0 for each uel and so / is not a faithful left ideal
of 5; contradiction. Therefore q is a monomorphism. Finally, we show that MI is a finitely

n

cogenerated R-module. Let Ilt . . . , / „ be minimal left ideals of 5 such that Soc(7) = © lr

Then, by the bijective correspondence above mentioned, each M/; is minimal among the
finitely M-generated non-zero submodules of M. Since M is self-faithful, each non-zero
submodule of M contains a non-zero finitely M-generated submodule and this implies that
each MIj is actually a simple R-module. To see that MI is finitely cogenerated it remains

n

to be shown that © M/; is an essential submodule of MI. If Z is a non-zero submodule of

MI, then, since M is self-faithful, we have that 0 + HomR(M, Z) c HomR(M, MI) = I and
hence there exists a minimal left ideal K of 5 such that K c HomR(M, Z). As before, we

n

see that MK is a simple /?-module contained in © M/; and MKcMHomR(M, Z) =
ZM^Z.

Conversely, assume that Q is a finitely cogenerated M-injective M-cogenerator
submodule of M. Since M is 2-quasi-projective and Q is M-faithful, it follows from [5,
Corollary 2.2] that HomR(M, Q) is an injective left ideal of 5. Moreover, since M is
cogenerated by Q, it is clear that HomR(Af, Q) is a faithful left ideal. Thus to complete
the proof of the theorem it suffices to show that HomR(M, Q) is a finitely cogenerated
S-module. Using as before the bijective correspondence between finitely M-generated

n

submodules of M and finitely generated left ideals of 5, we see that if Soc(Q) = © Qh
n 1

with each Qt simple, then Soc(HomR(M, Q)) = © HomR(M, Qt), where each

HomR(M, Qi) is a minimal left ideal of 5. Also, if / is a finitely generated left ideal of 5
contained in HomR(M, Q), then MJ contains at least one of the Qh say Qk, and hence J
contains the minimal left ideal HomR(M, Qk), so that Soc(HomR(M, Q)) is essential in
HomR(M, Q) and the proof is complete.

Note that the necessity in Theorem 2 is true under the more general assumption that
M is quasi-projective instead of 2-quasi-projective. From the proof it also follows that, in
the hypotheses of Theorem 2, 5 has an injective faithful left ideal if and only if it has an
M-injective M-cogenerator submodule. A similar result holds if we assume that M is a
generator of o[M] (in this case the 2-quasi-projectivity of RM is not needed because Ms is
flat and so HomR(M, Q) is injective). A weaker result is [10, Proposition 2.5] where M is
supposed to be a generator of i?-mod and only the sufficiency is given.

COROLLARY 3. Let M = © 5, be a semisimple module, with each 5, simple. Then

End(RM) is left QF-3 if and only if there is only a finite number of pairwise
non-isomorphic modules among the 5,.
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Corollary 3 shows that a self-faithful Z-quasi-projective module M may be a QF-3
module without End(RM) being a left QF-3 ring. Nevertheless, we have the following
result.

COROLLARY 4. Let M be a self-faithful 1,-quasi-projective module and S = End(RM).
IfSis left QF-3, then M is a QF-3 module. If M is, furthermore, finitely generated, then the
converse holds.

Proof. It is a straightforward consequence of Proposition 1 and Theorem 2.

We also remark that if M is not self-faithful, then 5 may be left QF-3 without M
being a QF-3 module, even in the case when M is also assumed to be projective and

finitely generated. For instance, if R = ( I and e = e22, then End(RRe) is QF-3 but

Re is not a QF-3 module. Nevertheless, if M is Z-quasi-projective and t(M) denotes the
torsion submodule of M with respect to the torsion class T of o[M], then M = M/t(M) is
easily seen to be a self-faithful S-quasi-projective module and End(RM) = S, so that
Corollary 4 gives an answer to the problem of characterising the finitely generated
quasi-projective modules with left QF-3 endomorphism ring (and Theorem 2 does the
same for 2-quasi-projective modules in general).

We recall that a ring R is said to be left-Kasch (or a left S-ring) when each simple left
R-module is isomorphic to a minimal left ideal. In [5, Theorem 3.1] it is shown that if M
is a self-faithful 2-quasi-projective module, then 5 is left Kasch if and only if M is a
finitely generated i?Z-module (7?Z-module means that M cogenerates each of its simple
quotients). From this we get the following result.

COROLLARY 5. Let M be a self-faithful quasi-projective module with endomorphism
ring S. Then S is left PF if and only if M is a finitely generated QF-3 RZ-module.

Proof. If 5 is left PF, then M is finitely generated by [5, Proposition 3.4]. Thus the
result follows from the above remark, bearing in mind Corollary 4 and the fact that 5 is
left PF if and only if it is left QF-3 and left Kasch [9, Theorem 2].

Let P be a projective module and T its trace ideal on R. We recall that P is
distinguished if, for xeP, Tx = 0 implies x=0 [7]. This is equivalent to P being
self-faithful [5]. Thus we get the following partial improvement of [7, Proposition 6] and
[7, Corollary 7].

COROLLARY 6. Let R be a left QF-3 ring with minimal faithful left ideal Re (e an
idempotent). If Re is distinguished, then eRe is a left PF ring.

Proof. Clearly, Re is a QF-3 module. Moreover, Re decomposes as a direct sum
© Reit where Ret — E(Sj), with the Si,. . . , Sn, pairwise non-isomorphic simple modules.

I

Since the Ret are indecomposable injective modules, they have local endomorphism rings
e,J?e, and, as is well known, this implies that, if / denotes the radical of R, ReJJej is a
simple module [6, 11.4.1.]. Furthermore, it follows from [6, 12.5.1] that all the Rej/Jeh
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i = 1, . . . , n, are pairwise nonisomorphic and these are all the simple quotients of Re. On
the other hand, since Re is distinguished, each 5, is isomorphic to one of the i?e,//e, and
hence Re is a RZ-module. Thus the result follows from Corollary 5.

COROLLARY 7. Let R be a ring with a distinguished injective faithful left ideal Re. Then
R is left QF-3 if and only if eRe is left QF-3.

Proof. Assume that R is left QF-3. Then there exists a minimal faithful left
R-module X which is a direct summand of Re. X is finitely cogenerated and hence Re is a
QF-3 module by Proposition 1. Then eRe is a QF-3 ring by Corollary 4. Conversely, if
eRe is a left QF-3 ring, then we get from Corollary 4 that Re is a QF-3 module and hence
it follows from Proposition 1 that Re has a finitely cogenerated /?e-injective submodule Y
which cogenerates Re. Since Re is injective, so is Y, and since Re is faithful by hypothesis,
7 is also faithful. Thus R is left QF-3 by Proposition 1.

Note that, unlike what happens in Corollary 6, from the hypotheses of Corollary 7
we cannot conclude that eRe is a left PF ring. For instance, if V is an infinite dimensional
vector space over a field k, then R = End(^F) is left QF-3 by Corollary 3 and R is left
self-injective but not left PF.

It is an immediate consequence of Theorem 2 that the endomorphism ring of a
distinguished faithful projective module P over a left QF-3 ring is left QF-3. However, if P
is not assumed to be faithful this is no longer true. For instance, if A is a (non-trivial)
simple left noetherian domain with an injective simple A-module 5 and C = End^S),

( A S\
I is left QF-3 [8, p. 60] but Ren is a distinguished finitely generated

u o/
projective R -module whose endomorphism ring is isomorphic to A and hence is not left
QF-3. The following corollary shows that this cannot happen if R is a QF ring (i.e. a (left)
self-injective (left) artinian ring) and provides more examples of left QF-3 endomorphism
rings.

COROLLARY 8. Let R be a left artinian ring and M an injective self-faithful
H-quasi-projective module. Then End(RM) is a left QF-3 ring. In particular, if R is a QF
ring and P a distinguished projective R-module, then End(RP) is a left QF-3 ring.

Proof. By a well known result of Faith and Walker [4, Corollary 1.5], M is
isomorphic to a direct sum © £, of injective envelopes of simple /?-modules. Since the

number of pairwise non-isomorphic simple R-modules over a left artinian ring is finite,
there is a finite set Ex, . .., En of representatives of the isomorphism classes of the £,.

n

Let X = © Ej. Then X is a finitely cogenerated injective submodule of M which obviously
I

cogenerates M. Thus End(*Af) is left QF-3 by Theorem 2.
The last assertion follows from the first, bearing in mind that over a QF ring every

projective module is injective.
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