Bull. Austral. Math. Soc. Vol. 59 (1999) [217-223]

RESTRICTED LIE ALGEBRAS OF MAXIMAL CLASS

D.M. Riley

Let L be a possibly infinite-dimensional Lie algebra of maximal class. We show that if L admits the structure of a Lie *p*-algebra then the dimension of L can be at most p+1. Furthermore, this bound is best possible.

1. INTRODUCTION

A nilpotent Lie algebra L with finite dimension n and nilpotency class n-1 is said to be of maximal class. This definition extends naturally to infinite dimensional Lie algebras: L has maximal class if L is residually nilpotent and

$$\dim L/\gamma_n(L) = n$$

for all n > 1, where $\gamma_n(L)$ denotes the *n*th term of the lower central series of L.

The analogous notion defined for finite p-groups and pro-p groups has been studied extensively by many authors (see [6] for an overview). In fact, Blackburn's original study of finite p-groups of maximal class [2] predates Vergne's seminal work on Lie algebras of maximal class [9, 10, 11].

We single out now a few relevant results about maximal class. First, Alperin [1] proved every pro-p group with maximal class has an open Abelian subgroup. Second, and along this same vein, Shalev and Zelmanov proved in [8] that every graded (that is, Z^+ -graded and generated by its first homogeneous component) Lie algebra of maximal class in characteristic zero is virtually Abelian. Actually, Vergne proved a similar result long ago, but Shalev and Zelmanov's theorem was proved more generally under the weaker hypothesis of finite coclass. Nowadays, pro p-groups and Lie algebras of finite coclass are actively studied. See [6], for example. We note here only that having maximal class is equivalent to having coclass 1.

In contrast to the aforementioned characteristic zero result, Shalev constructed in [7] examples of modular graded Lie algebras of maximal class that are not virtually soluble. Moreover, by a recent result of Caranti, Mattarei and Newman [3], the number of isomorphism types of such Lie algebras is 2^{ω} . It might be surprising then that the structure of restricted Lie algebras of maximal class cannot be nearly so complicated.

Received 8th July, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

D.M. Riley

Indeed, it follows from a result of Semple and the present author in [4] that the dimension of a restricted Lie algebra of maximal class is finite and bounded above by 2p + 2 if the characteristic p is odd, and 14 if p = 2. A similar statement also holds under the weaker hypothesis of finite coclass. The aim of this note is to sharpen this bound to p + 1 for all p > 0. It will transpire that this new bound is best possible.

THEOREM B. Suppose that L is a restricted Lie algebra over a field with prime characteristic p > 0 and that L is of maximal class. Then L is nilpotent of class at most p and dim $L \leq p + 1$.

Let us now illustrate why the bound produced in Theorem B is best possible. Let $\{e_1, e_2, \ldots, e_n\}$ be a basis of the Lie algebra over a field F of characteristic p > 0 defined via

$$[e_i, e_j] = \begin{cases} (i-j)e_{i+j}, & \text{if } i+j \leq n \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to check that these structural constants do in fact define a Lie algebra over F and that this Lie algebra is of maximal class whenever $2 \leq \dim L = n \leq p+1$. In addition, one may verify that this Lie algebra admits the structure of a restricted Lie algebra by defining the *p*-map to be trivial in the case n < p+1, and by setting $e_1^p = e_p$ and $e_i^p = 0$ for i > 1 when n = p+1.

One might wonder whether or not the derived length of a restricted Lie algebra of maximal class can be uniformly bounded for all p > 0. However, the derived length of the restricted Lie algebra just constructed is approximately $\log_2 n$, and thus can be taken to be arbitrarily large (as p increases).

The more general problem of obtaining precise bounds on restricted Lie algebras of a given finite coclass greater than 1 is briefly discussed in Section 5.

Before closing this section, we would like to make it clear that the techniques employed below were heavily influenced by those of Blackburn in [2].

2. The degree of commutativity

Let F be a field of characteristic p > 0. Throughout the remainder of this section, L represents a finite-dimensional (ordinary) Lie algebra over F of maximal class. We intend to adapt some group-theoretic notions originally due to Blackburn, [2], to our present needs. Define L_1 to be the centraliser of $\gamma_2(L)/\gamma_4(L)$ in L, and write $L_i = \gamma_i(L)$ for each i > 1. The degree of commutativity of $L, \delta = \delta(L)$, is said to be positive if

$$[L_i, L_j] \leqslant L_{i+j+1}$$

for all $i, j \ge 1$. The key result of this note is as follows.

THEOREM A. Suppose that p > 2 and the dimension of L is an odd number at most 2p + 1. Then $\delta > 0$.

The proof of Theorem A is contained in the next section. We develop some background machinery below.

LEMMA 2.1. Suppose that dim $L \ge 4$. Then dim $L/L_1 = 1$

PROOF: We may write $L_2 = Fa + L_3$ and $L_3 = Fb + L_4$. Let $x \in L$. Then $[a, x] \in L_3$, so that

$$[a, x] \equiv \alpha b \mod L_4$$

for some $\alpha = \alpha(x) \in F$. Define a linear map $\eta : L \to F$ by $\eta(x) = \alpha$. The kernel of η is L_1 , so dim $L/L_1 \leq 1$. Finally, $L \neq L_1$, for otherwise $L_3 = [L_2, L] \leq L_4$, contrary to our assumption that dim $L \geq 4$.

We shall abbreviate Engel commutators by

$$[x,_m y] := [x, y, y, \ldots, y]$$

where the y appears on the right hand side exactly m times.

LEMMA 2.2. Suppose that dim $L = n \ge 5$ and $\delta(L/L_{n-1}) > 0$. Choose elements $s \in L \setminus L_1$ and $s_1 \in L_1 \setminus L_2$, and set $s_i = [s_{1,i-1}s]$ for each $i = 2, \ldots, n-2$. Then $L = \langle s, s_1 \rangle$, $L_i = Fs_i + L_{i+1}$ and

$$[s_i, s_{n-i-1}] = (-1)^{i-1} [s_1, s_{n-2}]$$

for each i = 1, 2, ..., n - 2.

PROOF: The elements s and s_1 exist by the previous lemma. Since L is nilpotent, L₂ coincides with the set of non-generators of L (recall that L is an ordinary Lie algebra in this section); therefore s and s_1 generate L. Clearly $L_1 = Fs_1 + L_2$. Assume by induction that $L_{i-1} = Fs_{i-1} + L_i$. Then

$$L_{i} = F[s_{i-1}, s] + F[s_{i-1}, s_{1}] + L_{i+1}$$

= $Fs_{i} + L_{i+1}$

since $\delta(L/L_{n-1}) > 0$ implies $[s_{i-1}, s_1] \in [L_{i-1}, L_1] \leq L_{i+1}$ for $i \leq n-2$.

Suppose $i \leq n - i - 1$. Then using the Jacobi identity we have

$$[s_i, s_{n-i-1}] = [s_i, [s_{n-i-2}, s]]$$

= [s, s_{n-i-2}, s_i]
= [s_i, s_{n-i-2}, s] + [s, s_i, s_{n-i-2}]
= -[s_{i+1}, s_{n-i-2}]

because $[s_i, s_{n-i-2}, s] \in [L_{n-1}, L] = 0$. A simple induction argument now proves the lemma.

LEMMA 2.3. Suppose that dim $L = n \ge 4$ and that

$$[L_1, L_i] \leqslant L_{i+2}$$

for i = 1, 2, ..., n - 2. Then $\delta > 0$.

PROOF: This is trivial if n = 4. Suppose then that n > 4. We shall proceed by induction on n. Thus we may assume that $\delta(L/L_{n-1}) > 0$. It remains to show

$$[L_i, L_{n-i-1}] \leqslant L_n = 0$$

for i = 2, 3, ..., n-3 since $[L_1, L_{n-2}] = 0$ by hypothesis. But by Lemma 2.2 we have

$$[L_i, L_{n-i-1}] = [Fs_i + L_{i+1}, Fs_{n-i-1} + L_{n-i}]$$

= F[s_i, s_{n-i-1}]
= F[s_1, s_{n-2}]
= 0

for $2 \leq i \leq n-3$ since then $2 \leq n-i-1 \leq n-3$, as well.

LEMMA 2.4. Suppose that dim $L = n \ge 5$ and $\delta(L/L_{n-1}) > 0$. Then the following statements hold.

- 1. If n is odd, then $\delta > 0$.
- 2. If n is even, then $\delta > 0$ precisely when $L_{(n/2)-1}$ is Abelian.

PROOF: By the previous result it follows that $\delta > 0$ if and only if $[L_1, L_{n-2}] = 0$. By Lemma 2.2, this is equivalent to $[s_1, s_{n-2}] = 0$. But if n is odd, then

$$[s_1, s_{n-2}] = (-1)^{(n-1)/2} [s_{(n-1)/2}, s_{(n-1)/2}] = 0.$$

On the other hand, if n is even, then

$$[s_1, s_{n-2}] = (-1)^{(n/2)-1} [s_{(n/2)-1}, s_{n/2}]$$

Therefore $[s_1, s_{n-2}] = 0$ if and only if $L_{(n/2)-1} = Fs_{(n/2)-1} + L_{n/2}$ is Abelian.

3. Proof of Theorem A

Assume that p > 2 and dim L = n is odd with $n \leq 2p + 1$. Since automatically $\delta(L/L_4) > 0$, the result follows for the case $n \leq 5$ from Lemma 2.4. For n > 5, we use induction on n. Assume then that $\delta(L/L_{n-2}) > 0$. From Lemma 2.4, we may assume, to the contrary, that $\delta(L/L_{n-1}) = 0$. Consequently, Lemma 2.3 implies that $[L_1, L_{n-3}]$ is not contained in L_{n-1} ; in other words, s_1 does not centralise L_{n-3} modulo L_{n-1} . Because $L_{n-3} = Fs_{n-3} + L_{n-2}$, it follows that $t_{n-2} := [s_{n-3}, s_1]$ generates L_{n-2} modulo L_{n-1} .

0

[4]

Since $\delta(L/L_{n-2}) > 0$, we may apply Lemma 2.2 to L/L_{n-1} to get $[s_i, s_j] \in L_{i+j+1}$ if $i+j \leq n-3$ and $[s_i, s_{n-i-2}] = (-1)^{i-1}[s_1, s_{n-3}]$ for i = 1, 2, ..., n-3. Thus $t_{n-2} = [s_{n-3}, s_1] = [s_2, s_{n-4}]$. Using the Jacobi identity we obtain

$$[t_{n-2}, s_1] = [s_2, s_{n-4}, s_1]$$

= $[s_1, s_{n-4}, s_2] + [s_2, s_1, s_{n-4}]$
= 0

since $[s_1, s_{n-4}] \in L_{n-2}$ and $[s_2, s_1] \in L_4$. It follows that $[L_1, L_{n-2}] \leq L_n = 0$, and hence that $t_{n-1} := [t_{n-2}, s]$ generates L_{n-1} .

We now use induction to prove

$$[s_i, s_{n-i-1}] = (-1)^{i-1}(i-1)t_{n-1}$$

for i = 2, 3, ..., n - 3. Indeed, let i = 2. Then because $[L_{n-2}, L_1] = 0$,

$$[s_2, s_{n-3}] = [s_1, s, s_{n-3}]$$

= $[s_{n-3}, s, s_1] + [s_1, s_{n-3}, s]$
= $[-t_{n-2}, s]$
= $-t_{n-1}$.

Suppose now that

$$[s_{i-1}, s_{n-i}] = (-1)^{i-2}(i-2)t_{n-1}$$

Then

$$\begin{split} [s_i, s_{n-i-1}] &= [s_{i-1}, s, s_{n-i-1}] \\ &= [s_{n-i-1}, s, s_{i-1}] + [s_{i-1}, s_{n-i-1}, s] \\ &= [s_{n-i}, s_{i-1}] + [s_{i-1}, s_{n-i-1}, s] \\ &= -[s_{i-1}, s_{n-i}] + [(-1)^{i-2}[s_1, s_{n-3}], s] \\ &= (-1)^{i-1}(i-2)t_{n-1} + (-1)^{i-1}t_{n-1} \\ &= (-1)^{i-1}(i-1)t_{n-1} \end{split}$$

as required.

Setting i = (n - 1)/2 in the identity just proved yields

$$0 = [s_{(n-1)/2}, s_{(n-1)/2}] = (-1)^{(n-3)/2} \left[\frac{1}{2}(n-3)\right] t_{n-1}$$

contrary to our choice of p or n.

Let us note the following corollary.

COROLLARY 3.1. If dim L = n is even and $6 \le n \le 2p+2$, then $\delta > 0$ precisely when $L_{(n/2)-1}$ is Abelian.

PROOF: Applying Theorem A to L/L_{n-1} we find that $\delta(L/L_{n-1}) > 0$. The result now follows from Lemma 2.4.

D.M. Riley

4. PROOF OF THEOREM B

In this section, we also assume that L admits the structure of a restricted Lie algebra. We shall require one last lemma.

LEMMA 4.1. Let x be an element of L. Then x^p lies in L_p .

PROOF: First notice that $x^p \in L_1$. Indeed, let a be an element of L_2 . Then

 $[a, x^p] = [a, px] \in L_{p+2} \leq L_4.$

Now let i be maximal such that $x^p \in L_i$. Then $L_i = Fx^p + L_{i+1}$, so that

$$L_{i+1} = [L, x^p] + L_{i+2} = [L_{p} x] + L_{i+2} \leq L_{p+1} + L_{i+2}.$$

Therefore $i \ge p$.

Assume that the conclusion of Theorem B is false. Then there exists a restricted Lie algebra L of maximal class and dimension precisely p + 2. If p = 2 then $L_4 = 0$, and so $\delta > 0$ automatically. Otherwise, Theorem A guarantees that the degree of commutativity of L is positive (since p + 2 is odd). From Section 2, we know

$$s_{p+1} = [s_{1,p} \ s] = [s_1, s^p]$$

generates L_{p+1} . However, s^p lies in L_p by Lemma 4.1, so that $\delta > 0$ forces

$$s_{p+1} = [s_1, s^p] \in [L_1, L_p] \leq L_{p+2} = 0,$$

the desired contradiction.

5. Another coclass conjecture

Recall from [4] that the coclass of a finite dimensional nilpotent Lie algebra is the difference of its dimension and nilpotency class, so that a Lie algebra is of coclass 1 precisely when it is of maximal class. The definition extends naturally to infinite dimensional Lie algebras as in the coclass 1 case. It was shown in [4] that restricted Lie algebras with finite coclass r have dimension at most $2p^r + r + 1$ if p is odd, and $6 \cdot 2^r + r + 1$ if p = 2. This result is an analogue of the so-called 'coclass conjectures' for p-groups (see [6] for a complete overview).

In light of Theorem B, we pose the following problem:

PROBLEM. Suppose that a restricted Lie algebra L over a field of characteristic p > 0 has finite coclass r. Is it true that this implies that

$$\dim L \leqslant p^r + r?$$

If so, then this bound would be tight: see [5, 2.1] for examples of restricted Lie algebras of coclass r and dimension $p^r + r$, for each $r \ge 1$.

0

Π

[6]

Restricted Lie algebras

References

- J.L. Alperin, 'Automorphisms of solvable groups', Proc. Amer. Math. Soc. 13 (1962), 175-180.
- [2] N. Blackburn, 'On a special class of p-groups', Acta Math. 100 (1958), 49-92.
- [3] A. Caranti, S. Mattarei and M.F. Newman, 'Graded Lie algebras of maximal class', Trans. Amer. Math. Soc. 349 (1997), 4021-4051.
- [4] D.M. Riley and J.F. Semple, 'The coclass of a restricted Lie algebra', Bull. London Math. Soc. 26 (1994), 431-437.
- [5] D.M. Riley and J.F. Semple, 'Power closure and the Engel condition', Israel J. Math. 97 (1997), 281-291.
- [6] A. Shalev, 'The structure of finite p-groups: effective proof of the coclass conjectures', Invent. Math. 115 (1994), 315-345.
- [7] A. Shalev, 'Simple Lie algebras and Lie algebras of maximal class', Arch. Math. 63 (1994), 297-301.
- [8] A. Shalev and E.I. Zelmanov, 'Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra', J. Algebra 189 (1997), 294-331.
- M. Vergne, Variétés des Algebrés de Lie Nilpotente, Thésis (Fac. Sci. de Paris, France, 1996).
- [10] M. Vergne, 'Réductibilité de la variété des algebrés de Lie nilpotentes', C.R. Acad. Sci. Paris Sér I Math. 263 (1966), 4-6.
- [11] M. Vergne, 'Cohomologie des algebres de Lie nilpotentes. Application á l'étude de la variété des algebrés de Lie nilpotentes', C.R. Acad. Sci. Paris Sér I Math. 267 (1968), 867-870.

Department of Mathematics The University of Alabama Tuscaloosa AL 35487-0350 United States of America