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S T I R R I N G O U R WAY T O S H A R K O V S K Y ' S T H E O R E M

SETH PATINKIN

The periodic-point or cycle structure of a continuous map of a topological space
has been a subject of great interest since A.N. Sharkovsky completely explained
the hierarchy of periodic orders of a continuous map / : R —> R, where R is
the real line. In this paper the topological idea of "stirring" is invoked in an
effort to obtain a transparent proof of a generalisation of Sharkovsky's Theorem
to continuous functions / : / — > / , where / is any interval. The stirring approach
avoids all graph-theoretical and symbolic abstraction of the problem in favour of
a more concrete intermediate-value-theorem-oriented analysis of cycles inside an
interval.

1. INTRODUCTION

Let X be a topological space, / : X —> X a continuous map of X, and denote the
nt h iteration of / by / " . Let k > 1. A point p e X is a point of period n for / in
X if fm(p) / p , for 1 ^ m < n - 1 and /"(p) = p. The points of the forward orbit of
P • {p, /(*>)> • • • > fn~1{p)} are said to form an n-cycle. In the early 1960's, Sharkovsky
[7] elucidated the hierarchy of periodic orders for a continuous map of R, the real line.
He discovered the following for X = R:

SHARKOVSKY' S THEOREM. Assume f : X -> X is a continuous function. If
p precedes q in the following ordering of the natural numbers, then the existence of a
p-cycle for f in X implies the existence of a q-cycle for f in X:

3, 5, 7, . . . , 2 • 3, 2 • 5, 2 • 7, . . . , 22 • 3, 22 • 5, 22 • 7, . . . , 22 , 2, 1

where 2J(2m 4-1) precedes 2fc(2n + 1) if 0 < j , k, m, n and exactly one of the following
conditions is satisfied:

(i) j = k and 1 ^ m < n;
(ii) j < k and 1 ^m,n;

(iii) j > k and m — n = 0 ;
(iv) m > n = 0.
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It is well known that the converse of Sharkovsky's Theorem also holds. More pre-

cisely, for each natural number n, there exists a continuous function fn:J^J, where

J is a compact interval, such that the leftmost Sharkovsky period for /„ in J is n [2,

7, 9]. Since his discovery, Sharkovsky's work has been advanced. Stefan [9] translated

Sharkovsky's Russian paper into English in 1977. Straffin [10] offered a graph-theoretic

proof of part of Sharkovsky's Theorem one year later. Block, Guckenheimer, Misi-

urewicz and Young [2] employed a similar Markov-graph representation of the periodic

structure of / to obtain a complete proof of the theorem in 1979. A paper of Ho

and Morris [4] completed Stramn's work using his fc-periodic digraph methodology as

a means of interpreting the periodic structure of/ in 1981. Burkhart [3] completed

Srafnn's work independently in 1982.

In addition to work on the original statement of Sharkovsky's result, there has

been considerable work on generalising this notion of a periodic hierarchy to other

spaces X. Block [1] succeeded in extending the Theorem to X = Sl, the circle, with

the additional hypothesis that / has a fixed point. Schirmer [8] succeeded in showing

that Sharkovsky's Theorem remains true for X — L, a linear continuum, with the order

topology. A linear continuum is a linear ordered set with more than one point such that

(i) L has the least upper bound property,

(ii) L is order dense, that is, if x < y, then there exists z so that x < z < y.

Munkres provides an introduction to this idea of linear continua in [6]. The generalisa-

tion of the original statement of Sharkovsky's Theorem to higher-dimensional Euclidean

space is impeded by the need for the order relation of a linear continuum. However,

Kloeden [5] discovered a generalisation to X = C, a compact subset of Rn, with the

additional hypothesis that ith component of / depends on the first i independent

variables.

2. A STIRRING PROOF

We shall show that Sharkovsky's Theorem holds for X = / , where / is any interval,
by use of the following topological notion of stirring. A point a € I such that

f2k(a) <•••< f4(a) < f(a) < fk+1(a) ^ a < /(a) < /3(a) < < f^~\a)

[ r e s p e c t i v e l y / 2 f c ( a ) > > / 4 ( a ) > / 2 ( a ) > f 2 k + 1 { a ) >a> f(a)

will be called a 2k + 1-stirring point. If k = 1, we simply require / 2 (a) < a <
f(a) and / 3 (a) ^ a [respectively / 2 (a ) > a > / (a) and / 3 (a ) ^ a]. If a < / (a) in the
above, then a is referred to as an up 2k + 1-stirring point. If a > / (a ) above, then a
is referred to as a down 2k + 1 -stirring point. If there is a 2/c + 1-stirring point for any
k, we say there is stirring for / in I.

https://doi.org/10.1017/S0004972700031245 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031245


[3] Sharkovsky's Theorem 455

We first have the following:

PROPOSITION . If there is a 2k + 1-stirring point for f in I, then f necessarily
has points of all periods except for the odd numbers strictly between 1 and 2k + 1.

PROOF: Fix an up 2k + 1-stirring point a € I. Assume that /2fe+1(a) < a. Define
g(x) = f(x) - x. Note that g(a) > 0 > g(f(a)) and there is thus a fixed point in
(a, /(a)) by the intermediate value theorem. It remains to show

(i) the existence of points of all periods N ^ 2k, and
(ii) the existence of points of periods 2j, for 1 ̂  j ^ k — 1.

For convenience, define an index set K = {i | i ^ 2k or i = 2j for 1 ^ j ^ k - 1}. We
shall not distinguish between (i) and (ii); instead, we shall just consider the set K.

Let f2k{a) = po and f2k~2(a) = q0. Now, for 0 ^ j ^ k - 2, define:

p2j+l = sup{x G [/2^>-3(a),/2(fc-'->-1(a)) | f(x) = q2j},

q2j+l = infjx G (p2j+i,/2(fc-^-1(a)] | f(x)=p2j),

q2j+2 = infjz e (/2<fc-'--1>(a),/2<fc"'"-2>(a)] | f(x)=p2j+1},

P23+2 = supja; e [}2{k-}-l){a),q2i+2) f(x) = g2j+ij-

Also let

p2fe-i = sup{a; € (a,f(a)) \ f(x) = q2k-2},

q2k-i = inf{i G (p2fc-i, f(a)] \ f(x) =p2fc-2},

q2k - inf{z € (a,p2fc_i) | /(x) =p2fc-i},

p2fc = sup{a; G [a,q2k) I /(a:) = 92fc-i}-

Finally, define for j ^ k:

p2j+i = sup{a; € (q2j,p2j-i) | /(a;) = g2i},

q2j+1 = mi{x e (p2j+i,P2j-i) I /(z) =P2j},

92J+2 = inf{x G (q2j,P2j+i) I /(a;) = p2j+i},

P2J+2 = sup{a; G (q2j,q2j+2) I /(a:) = q2j+\}-

Clearly, covering properties of the stirring structure allow for all of the points
defined to exist. Now let U — \pi, qi], for 0 ^ i. Note that f{pj) = qj-i and f{qj) =
Pj-i for j ^ 1. Since f(Ij) = Ij-i, for 1 ^ j , it is clear that /(int {Ij)) = int (/j-i),
where int(ij) denotes the interior of U- Define gi(x) = fl(x) — x. Note first that
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/(/o) D [a, f2k~1{a)] so that /*(/»-i) Z> /j_i for i € if. Moreover, for these i, g{

must have a zero in int (/ i-i) by the intermediate value theorem, as gi(pi-i) < 0 and
<7i(<7i-i) > 0 for z odd and <7i(j>i-i) > 0 and <7i(ffj_i) < 0 for i even. To conclude that
i is the period of this zero for / , we simply observe that, by construction, the ij 's have
disjoint interiors. In the case that f2k+1(a) = a, it may happen that g2k+i(P2k) = 0,
in which case p2k is a point of period 2k + 1. In the case of a down-stirring point, the
proof is symmetric. D

Before proceeding, let us consider a cycle P = {pi} with # P = TV < oo. Let

q - max{pi | f(jpi) > p^ and p = min{pi | f(pi) < p^.

LEMMA 1 . Suppose P, as just described, is a cycle for f. If p < q, then there is

3-stirring for f in I.

PROOF: We will use the intermediate value theorem three times. Let c2 be the

rightmost fixed point in the interval (p, q). Let k = min{j ^ 1 | fj+1{q) < C2}. Find

a preimage c\ of c2 in the interval (q,fk{q))- Last, find a preimage c0 of c\ in the

interval (c2, c{) and note that c0 is an up 3-stirring point for / in I. D

LEMMA 2 . Suppose that P is an N-cycle for f and q < p as just described.

If there exists an i so that pi < f(pi) ^ q (respectively, there exists a j so that

P ^ f{Pj) < Pj)> tnen there is a 2k+l-stirringpoint for f in I, for some 1 ^ k ^ [N/2\.

PROOF: Assume pi < f{pi) ^ q for some i. Let a0 = min{p; e P \ Pi < f(bi) ^
q}. Now define for i ^ 0:

i € P \ f(pi) ^ a2i}

pi e P | f(pi)

Let h — min{i ^ 1 | /(ao) ^ 021}. By construction,

a0 < a2 < • • • < /(a0) ^ a2h ^ 9 < 02/1-1 < • • • < a3 < d .

Since # P = TV, it is clear that 1 < h ^ L7V/2J. The intermediate value theorem allows
us now to define for i ^ 0, setting b0 — a0,

f(x) = b2i}

b2i+2 - inf{a; ^ a2i+2 | f(x) - b2i+i}.

Note that q ^ 621+1 and p ^ b2i+2 for i ^ 0. Let A; = min{i ^ 1 | f(a0) ^ 62j}-
Note that b0 < b2 < • • • < /(ao) ^ b2h < q < b2k-i < • • • < b3 < bi. Since
/(ao) ^ a2j ^ b2j , it is clear that k ^ h, so that 62*; is an up 2k + 1-stirring point with
1 ^ k ^ [N/2\. If there is a j such that p ^ fipj) < Pj, we obtain down stirring in a
symmetric way. D
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COROLLARY. Suppose P is a 2n + l-cycle for f in I. Then there is a 2k + 1-
stirring point for f in I for some 1 ^ k ^ n .

PROOF: Assume there is no 2k + 1-stirring for / in / , for 1 ^ k ^ [(2n + l)/2j =
n. Then all points of P must change sides of [q,p] under / , by Lemma 2. Since
q changes sides by definition, we must have that f2k(q) lies to the left of q. But
f(f2k(q)) = q, so that f2k(q) does not change sides of [q,p] under / , proving the
corollary. D

This stirring characterisation of odd cycles will enable us to prove Sharkovsky's
hierarchy of periodic orders for / . Our task is two-fold. First, we must establish the
body of Sharkovsky's ordering: 2J(2m + 1) precedes 2fc(2n + 1) in lexicographic order
for 0 ^ j , k and i ^ m,n. Second we must elucidate the tail of Sharkovsky's ordering:
it remains to show that the powers of 2 (i) appear in decreasing numerical order and
(ii) follow all the natural numbers with odd divisors.

THE BODY

We must show that the existence of a point of period 2J(2m+ 1) implies the
existence of a point of period 2fc(2n + 1) if exactly one of the following conditions is
satisfied:

(i) j = k and m < n;
(ii) j <k,

for 0 ^ j , k and 1 ̂  m, n.
To show (i), simply note that a point of period 2J (2m + 1) for / is a point of period

2m + 1 for f2 , which is also a continuous function. Thus the Corollary establishes (i).

To show (ii), again note that a point of period 2J(2m + 1) for / is a point of period
2m + 1 for f2J. By the Corollary, there is stirring for f2J. Since, by the Proposition,
stirring for f2 implies all even periods for f2 , it suffices that 2fc~J is an even number,
establishing (ii).

THE TAIL

First we will show that the powers of 2 appear in decreasing numerical order. It
suffices to show that period 2 implies period 1. Suppose that {a, b} is a 2-cycle for /
in / so that a < b. As in the proof of the Proposition, note that g(x) = f(x) — x has
a zero in (a, b). To show that period 2k+1 precedes period 2k for k ^ 0, note that
what is period 2fc+1 for / is period 2 for f2 and what is period 2k for / is period 1
for f2 . Since continuity is preserved under composition, we are done.

It remains to show that the powers of two follow all the natural numbers with odd
divisors. Suppose there is a 2fc(2n + l)-cycle for / in / . Then there is a (2n + l)-cycle
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for f 2 , implying there is a 2m + 1-stirring point for f2 for some 1 ^ m ^ n. Stirring
for f2 implies all even periods for f2 . In particular, f2 must have points of periods
23, for j > 0. Thus / must have points of periods 2-)+fc, for j > 0. This takes care of
all powers of 2 except 2', for 0 ^ i < k + 1. But we already proved that the existence
of a point of period 2J implies the existence of a point of period 2*, for i < j .
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