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Summary

A general approach is developed to estimate secondary selection at a modifier locus that influences
some feature of a population under mutation-selection balance. The approach is based on the
assumption that the properties of all available genotypes at this locus are similar. Then mutation-
selection balance and weak associations between genotype distributions at selectable loci and the
modifier locus are established rapidly. In contrast, changes of frequencies of the modifier genotypes
are slow, and lead to only slow and small changes of the other features of the population. Thus,
while these changes occur, the population remains in a state of quasi-equilibrium, where the
mutation-selection balance and the associations between the selectable loci and the modifier locus
are almost invariant. Selection at the modifier locus can be estimated by calculating quasi-
equilibrium values of these associations. This approach is developed for the situation where
distributions of the number of mutations per genome within the individuals with a given modifier
genotype are close to Gaussian. The results are used to study the evolution of the mutation rate.
Because beneficial mutations are ignored, secondary selection at the modifier locus always
diminishes the mutation rate. The coefficient of selection against an allele which increases the
mutation rate by v is approximately vé?/[U(2—p)] = vs, where U is the genomic deleterious
mutation rate, J is the selection differential of the number of mutations per individual in units of
the standard deviation of the distribution of this number in the population, p is the ratio of
variances of the number of mutations after and before selection, and § is the selection coefficient
against a mutant allele in the quasiequilibrium population. However, the decline of the mutation
rate can be counterbalanced by the cost of fidelity, which can lead to an evolutionary equilibrium

mutation rate.

1. Introduction

Kondrashov (1995), referred to below as K-95, studied
an equilibrium between two forces, unidirectional
unconditionally deleterious mutations and directional
soft selection against them, in a population with an
invariant system of reproduction. Here I will consider
the evolution of reproduction under the balance of
these two forces. A comparison of the absolute mean
fitnesses of separate clones with different modes of
reproduction is enough to deal with the evolution of
obligate apomixis (Maynard Smith, 1978). In contrast,
the evolution of various features of amphimixis, such
as mutation, recombination, outcrossing, mate choice,
etc., depends on individual selection within the
population.
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This selection can be studied using explicit genetic
models, where, in addition to a locus (loci) subject to
direct selection, a ‘modifier’ locus (loci) is introduced,
which may have no direct effect on fitness, but
influences some feature of reproduction or migration
(Karlin & MacGrenor, 1974; Taylor & Williams,
1982; Liberman & Feldman, 1986; Charlesworth,
1990, 1993). Associations (non-independence, linkage
disequilibrium) between the distributions of the alleles
at selectable and modifier loci can develop, causing
secondary selection at the modifier locus. Sometimes
the direction of evolution at such loci can be predicted
from the direction of change of the mean fitness or the
genetic load (Karlin & McGregor, 1974), but this is
not always true if modifiers can recombine with the
consequences of their action (e.g. Feldman ez al. 1980;
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Kondrashov, 1984; Altenberg & Feldman, 1987;
Charlesworth, 1990, 1993 ; Wiener & Feldman, 1993).

In several studies (e.g. Taylor & Williams, 1982;
Charlesworth, 1990) the properties of all available
genotypes at a modifier locus (loci) were assumed
similar (‘basic assumption’). This leads to profound
simplification of the models due to separation of fast
and slow variables (see Mishchenko & Rozov, 1980).
Surprisingly, this was, to my knowledge, never
discussed explicitly, although such separation was
used in models where all selection is weak (Passekov
& Singh, 1991; Nagylaki, 1993). I consider, at the
heuristic level, the general consequences of the basic
assumption for models with modifiers, and then apply
it to modifiers of mutation-selection balance, where
the selectable loci are also subject to mutation. Then
I study the evolution of the mutation rate.

Soon after the intraspecific variability of mutation
rates (Muller, 1928) and their genetic determination
(Dubovskij, 1935; Demerec, 1937; see Ives, 1950 and
Dobzhansky, 1951, pp. 58-65) were discovered, the
idea that mutability itself evolves was proposed.
According to Dubinin er al. (1936, p. 973), ‘The
mutation rate...is the expression of an equilibrium
existing between the greater or lesser harmfulness of
the mutations (as the presence of some aberrations in
the species) and the necessity of them for the
evolutionary plasticity of the species (without which
the species would have disappeared)’. However,
Sturtevant (1937) offered another solution to the
question ‘... why does the mutation rate not become
reduced to zero? No answer seems possible at present,
other than the surmise that the nature of genes does
not permit such a reduction. In short, mutations are
accidents, and accidents will happen’ (p. 466).

Thus, two alternative hypotheses, according to
which the mutation rate is either optimal in some
evolutionary sense or a minimal possible one, were
formulated (Shapiro, 1938 ; Shapiro & Ignatiev, 1945).
Depending on the mode of selection, either hypothesis
can be relevant (see Kimura, 1967; Leigh, 1970,
1973; Gillespie, 19814, b; Liberman & Feldman,
1986; Ishii er al. 1989; Sasaki, 1994). Because here the
mutations will be unconditionally deleterious, the
minimal hypothesis will be applicable.

First, I will introduce six new characteristics of
selection, in addition to those described in K-95
(Section 2). Then, a general approach to the analysis
of the models with the modifier loci under the basic
assumption will be discussed, with the emphasis on
the modifiers of the mutation-selection balance
(Section 3). A modifier of the mutation rate will be
studied in Section 4, ignoring its direct effect on
fitness, while in Section 5 the cost of fidelity will be
explicitly taken into account. Section 6 presents
consideration of the impact of the evolution of the
mutation rate on the population.
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2. Characteristics of selection

Here we need to describe the influence of small
changes of the distribution of a quantitative trait
x, p(x), before selection on the results of selection (see
K-95) for additional details and notation). If p(x) is
Gaussian, only the effects of changes of M and V have
to be considered. Three results of selection are
important for us: W and the mean M and variance ¥
of the distribution after selection j(x).

Formally, the characteristics we seek are partial
derivatives of a result of selection with respect to a
feature of the population before it. I will present these
in terms J,. The expressions that depend only on J,
denoted by Ks below, remain invariant under constant
W(X) (the numbering of characteristics is a con-
tinuation of that in K-95).

ow 1 1
9 2=k 1
7 oM o'J1 o v (1)
oW 1
8. S =5tk —h) =Ky (1b)
oM 1
9. == mhh =AY = Ki; (1)
(1]
oM 1 1.,
10. W—W(Ja']o_'lz']l)—';Kz: (1d)
11. a%‘;=Y‘TE(JSJ(,z—3J2JIJ(,+2J1‘~‘)=ch$; (le)
0
6[7 1 2 2 2 2
12, 55 = 5t =24 J =2+ 24, 47) = K,
0

(1)

The derivations are straightforward and involve
partial differentiation of the expressions for W, M, or
¥V with respect to M or ¥ (Appendix 1). Numerical
values of these characteristics are presented in Fig. 1
(characteristics 7 and 8 were calculated under W =1,
while the rest are invariant to the multiplication of
W(X) by a positive constant). With simultaneous
small changes of both M and V their influences must
be added.

Because K? =4, the value of W always decreases
with M, provided that W(X) is a decreasing function
of X. In contrast, K9 may be both positive or negative
under such W(X), so that W may change in either
direction with increased V. for example, under
truncation selection an increase in variance increases
the mean fitness if more than half of the population is
truncated, and decreases it otherwise (see Kondrashov,
1984, fig. 1). The value of M always increases with M,
because K1 = p > 0 (K-95). With the W(X) used here,
K} and K% are always negative, while K3 is always
positive (Fig. 1).
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Fig. 1. Six characteristics of selection (7-12, see eqn (1)) as functions of the negative standardized selection differential
— 4. The fitness function described by (12) from K-95 was used with w, = 0 (solid lines), 1 (long dashes), 2 (medium

dashes), and 4 (short dashes).

3. Selection at the modifier locus

(i) General approach: quasi-equilibrium and
associations between the selectable and the modifier
loci

Models that include both selectable and modifier loci
can be, as any multilocus model, very complicated. If
all the loci have comparable effects, the dynamics of
all genotype frequencies must be considered sim-
ultaneously, often leading to analytically untractable
equations. Fortunately, the situation is radically
simpiified under the basic assumption that the
properties of all available genotypes at the modifier
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locus (loci) are similar (e.g. they all cause similar
mutation rates or have similar effects on fitness, if
selection also acts directly on this locus), while
selection (and, perhaps, other processes, e.g. recom-
bination and mutation) at the selectable loci, as well
as recombination between selectable and modifier
loci, is strong (i.e. the differences in fitness and the
rates of recombination, mutation, etc. are not small).
In order to take advantage of this simplification, it is
convenient, instead of considering the frequencies of
all genotypes, to describe the populaton by variables
of three types: (1) genotype frequencies at the
selectable loci; (2) magnitudes of associations between


https://doi.org/10.1017/S001667230003439X

A. S. Kondrashov

the distributions of alleles at selectable and modifier
loci, and (3) genotype frequencies at the modifier loci
(Slatkin, 1972).

The suitable measure of these associations must not
depend directly on the genotype frequencies at the
modifier loci (see below). Such a measure was
introduced by Nei & Li (1980) to describe an
association between inversions and electromorphs. It
is based on comparison of the frequencies of electro-
morphs (in our case, genotypes at the selectable loci)
among the components of the population having
different inversions (genotypes at the modifier loci),
and, thus, does not depend directly on the frequencies
of the latter. In contrast, the usual coefficient of
linkage disequilibrium, as well as the related measure
Z, treat both the loci involved in the same way (Crow
& Kimura, 1970, pp. 196-197), and are thus unsuitable
for our purpose. The basic assumption leads to the
following hierarchy of processes:

1. Changes of genotype frequencies at selectable
loci, being influenced by fast factors, are rapid, and, in
the first approximation, do not depend on what
happens at the modifier loci. Ignoring the possibility
of other attractors, these frequencies can approach
equilibria (to be more precise, quasi-equilibria, see
below) with arbitrary properties.

2. Changes of associations between the selectable
and the modifier loci are rapid, because one of the
factors that influences them, recombination between
these loci, is fast. However, the equilibrium (quasi-
equilibrium) values of these associations are small,
because the only factor that causes them to deviate
from zero, the difference between the properties of the
modifier genotypes, is small, while a rapid recom-
bination pushes them to zero. At equilibrium the Nei-
Li-type measures of these associations do not depend,
as a first approximation, on the changes of the
genotype frequencies at the modifier loci.

3. Changes of the genotype frequencies at the
modifier loci can be initially either slow or rapid,
depending on the initial values of the associations
betwen selectable and modifier loci. However, after
these associations become small (which happens soon),
these changes become slow, because both secondary
selection, which appears as the result of these
associations, and direct selection (if any) at the
modifier locus are weak. Still, the results of the
changes of the genotype frequencies at the modifier
loci can be arbitrary, including the replacement of one
modifier allele with another one. Even this, however,
will lead to only small changes of the genotype
frequencies of selectable loci (Karlin & McGregor,
1974, p. 96), as well as of the magnitude of
associations.

Thus, the genotype frequencies at the selectable
loci, as well as the magnitudes of associations between
these loci and the modifier locus (loci), rapidly reach
an invariant state, as a first approximation, or quasi-
equilibrium (Crow & Kimura, 1970, p. 197). Then, the
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changes of the frequencies of the modifier genotypes
proceed on the quasi-equilibrium background that is
not significantly influenced by them. Actually, a locus
with a small difference among the properties of all its
genotypes is not necessarily a modifier locus, but may
be just one of the selectable loci. These simplifications
depend only on the basic assumption, and do not
require that all but one genotype at the modifier locus
are rare. Here I will use this approach to separate the
rapid establishment of mutation-selection balance
from slow evolution of the mode of reproduction.

(ii) Description of the population with a modifier of
the mutation-selection balance

Here a population consists of several components,
each containing all individuals with a particular
modifier genotype, and a component is characterized
by its distribution of x (see K-95). The simplest Nei-
Li-type measure of the association between selectable
and modifier loci is then the difference between the
mean numbers of mutations among the individuals
with different modifier genotypes. Besides, I will
consider the differences among variances of the
numbers of mutations within the components, which
is the Nei-Li-type analogue to the higher-order linkage
disequilibria.

Because of the basic assumption, the quasi-equi-
librium differences between the components will be
small. In addition, the distributions of x within the
components will be assumed Gaussian (see K-95).
Then, the differences between them can be completely
described by the differencs between their means and
variances (Taylor & Williams, 1982, considered only
the differences between the mean values, while both
differences were used by Charlesworth, 1990), while
the distribution in the whole population is also
approximately Gaussian (Appendix 2). All this allows
us to use (1) in order to find secondary selection at the
modifier loci.

I will consider a single modifier locus m with two
alleles, m, and m,. If during syngamy gametes unite
without ‘memory’ of the previous diplophase, and
there is no diploid apomixis, frequencies of genotypes
at the beginning of the haplophase (in meiospores) are
dynamically sufficient (see Lewontin, 1974), i.e. allow
us to predict the future. The distributions of x among
the meiospores with genotypes m, and m,, p,(x) and
p.(x), are Gaussian with means M, and M, and
variances ¥, and V,, respectively, and the frequencies
of m, and m, in all the meiospores are a and 1-a,
respectively. To describe secondary selection at m, we
have to find quasi-equilibrium values of 4 = M, — M,
and v= V,—V,. Thus, we have to derive equations
that connect the values of # and v in the successive
generations, which requires describing their trans-
formations during each process in the life cycle. If
only the diplophase is dynamically sufficient, the
differences between the distributions of x in three
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diploid genotypes must be used as dynamic variables.
This situation is not considered here.

(iii) Modifier of mutation-selection balance: diploid
phase unimportant

Let us start from the simplest case where everything
happens in the haplophase, i.e. the life cycle is
meiosis—selection—-mutation—syngamy. Because of
(1¢-f), if the modifier is not under direct selection,
the values of x and v after and before selection are
connected by (here and below the higher-order terms
are ignored):

© = Kip+67Kiv)
v =6Kin+Kiv, |

where ¢ = o[p(x)] =—U/8 (eqn 15, K-95) is the
standard deviation of the quasiequilibrium distri-
bution of x. During mutation a dummy modifier does
not change the values of g and v: 4" = p’ and V" = V",
Reproduction (here, the succession of syngamy and
meiosis), leads, with obligate amphimixis and free
recombination, to the following changes (capital
letters denote the values in the next generation):

M=u)2, |
N = (" +v)/4]

(Appendix 3). Therefore, the quasi-equilibrium
values of ¢ and v, 4 and ¥, can be found from the
equations

p=@Kip+@ K, 1
v= @K +6K) p+ @G Kiv+ K.

The only solution of this linear system is 4 = ¢ = 0.
From Fig. 1 we can see that the absolute values of K},
K%, K, and K3 are all below one. Thus, if ¢ is not too
small (¢ > 1 is sufficient), this solution is always
stable, at least for the modes of selection studied here.
This is not surprising, as the modifier does nothing,
and the associations between it and the selectable loci
should tend to zero. Too small ¢ are inconsistent with
Gaussian p(x). The ‘pathological’ case of K] = p > 2,
which leads to instability, was discussed in K-95.

The intensity of secondary selection at the modifier
locus can be conveniently characterized by a coefficient
of selection against a modifier genotype, i.e. by the
difference between the mean fitnesses of those who do
not carry this genotype and those who carry it,
relative to the mean population fitness. This coefficient
is the total differential of relative fitness and, if before
selection the mean and the variance of the distribution
of x in those that carry a particular modifier genotype
differ from their values in the rest of the population by
£ and v, respectively, equals:

©=—6 KO WYi— G 2KS W15 )

)

3

4

(see (ia, b)). This formula will be uscd belo 4
‘real’ modifiers will lead to non-zero 4 and ». If the
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influence of a modifier locus on some process is small,
the secondary selection at it can be described by the
derivative of w by the effect this allele on the relevant
process (Charlesworth, 1990).

(iv) Modifier of the mutation-selection balance :
diploid phase important

The above analysis is applicable if nothing in the
diplophase depends on the genotype at the m locus,
either directly (e.g. because of differences in re-
combination or mutation rates among its diploid
genotypes) or due to correlations (e.g. because of
diploid selection and different distributions of x in
different genotypes). Then (3) describes the trans-
formation of 1 and v during the diplophase.

Otherwise, we have to consider the processes in the
diplophase explicitly. In order to do this, we have to
investigate the changes of u,=M,,—M,,
fo=Mp—My, vi=V,—V,, and v, =V,—V,,
where M,,, M,,, and M,, and V},, V,,, and V,,, are the
means and the variances of the distributions of x in
diploid individuals with genotypes m, m,, m, m,, and
m, m,, respectively (Appendix 3).

Transformations of x#, and », (and of u, and v,)
caused by selection in the diplophase are identical to
those of 4 and v caused by selection in the haplophase
and are described by equations analogous to (2). Note
that we cannot consider selection operating in both
phases (K-95). After mutation analogously to the
haploid case, uy = p1, o = pg, Vi = vy and v; = vy, as
long as m does not influence the mutation rate.
Otherwise, 4, and u; (together with v}, and v}, if we
consider Poisson mutation), will change, and the
relative magnitude of these changes depends on the
dominance at m locus, which can be arbitrary. This,
together with possible diploid selection, can make the
values of uf, u,, v;, and v, before meiosis arbitrary
small numbers, although they still can be determined
from " and v".

If the frequency of the allele m, before meiosis is a,
the values of M and N in the meiospores after meiosis
depend on uj, v, u;, and v; in the following way
(Appendix 3):

M = (uy—py)/2+a(py — p3/2),

N = (py—pi +ve—v)/4+a(p] —py/2+v{—v;/2)/2.

(6)

Thus, in contrast to (3), (6) depends on the frequencies
of the modifier genotypes. Particularly, intermediate
equilibrium frequencies of these genotypes become
possible. Stability of such equilibria can be analysed
by standard methods.

This situation is analogous to a classical model of
selection at one locus under panmixia, where diploid
selection leads to frequency-dependent fitnesses of
alleles, although zygote fitnesses are invariant. How-
ever, there is no reason to limit our analysis to the case


https://doi.org/10.1017/S001667230003439X

A. S. Kondrashov

when only one modifier allele is frequent
(Charlesworth, 1990), because, if we have already
made the basic assumption, further restrictions do not
simplify the analysis substantially.

4. Selection for lower mutation rate
(i) The problem

We are now equipped to write equations on the
changes of x and v for a real modifier. Here I will do
it for a modifier which influences the mutation rate.
Mutations at the modifier locus will be ignored, and
recombination will be assumed to be free. Mutation at
selectable loci can occur either in haploid or in diploid
phase. In the first case, genotypes m, and m, have the
mutation rates U and U+v, respectively. In the
second case, genotypes m, m,, m, m,, and m, m, have
mutation rates U, U+v,, and U+v,, respectively.
First, I will consider only the differences in the mean
numbers of mutations among the components of the
population, ignoring the differences in variances. After
this the complete model will be analysed.

(i) Differences in the means only

Let us start with the case when both mutation and
selection occur in the haplophase, and selection
precedes mutation. Selection, mutation, and repro-
duction cause the following transformations of u (see
above, compare with eqn 14 from K-95):

reproduction

Kip+v —— (Kip+v)/2.
)

Thus, the quasiequilibrium value of x before selection
is:

A=v/2—K}) (8)
and, because of (5), the coefficient of selection against
m, is

w=—vé 'KW1/ 2—KD}). )
Because ¢ = — U/8 (eqn (15) from K-95), K} W' = &

((1a) and eqn (7) from K-95), and K1 =p ((1¢) and
eqn (8) from K-95), this implies

selection mutation

)z Kip

vét .
W= U= vS$, (10)
where § = 8’[U(2—-p)]™" is the coefficient of selection
against a mutant allele in a quasiequilibrium popu-
lation (eqn (20) from K-95). Thus, if a modifier allele
with the effect v causes the mutation rate U+4v
(additive modifier), the derivative of the coefficient of
selection against such allele by its effect is

dw 82

= Toa (11)
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Alternatively, if a modifier allele with the effect ¢
causes the mutation rate U(l+¢) (multiplicative
modifier), this derivative is

dw 62

i~ @-p) (12)

and thus does not depend on U (Fig. 2).

If mutation occurs before selection (which is
probably unrealistic, because new mutations are
manifested only in the next generation), we have the
following transformations of x:

mutation selection reproduction

Iz ntv Ki(p+v) —— Ki(u+v)/2
(13)

and the quasiequilibrium g before mutation is

i =vK}/2—-K)Y). (14)

However, here selection acts after mutation, so that
before selection the difference in the mean number of
mutations in individuals with alleles m, and m, is
/i+v. Thus, according to (5),

w=—-vi 'K WIK}/Q2—K)+1]
= 206K W /2~ KY) (15)

and here w is two times larger than in (9), so that the
life cycle (13) leads to the twofold increase of the
intensity of selection for a lower mutation rate
compared to (7).

Let us now consider selection and mutation in the
diplophase. Because haploid selection is absent, at the
beginning of the diplophase x#, = x and u, = 2x. Then
/4, and g, are transformed in the following way:

selection mutation

My K}ﬂl
Hy K} p,

After this, the value of x4 in the next generation (after
meiosis) can be found from (6). If the modifier is
semidominant, i.e. v; = v and v, = 2v, (6) reduces to
(3) (see A 3-8), and j can be found from (8). Then the
rest of the analysis also coincides with the case of
haploid selection, so that secondary selection at m
does not depend on in which phase selection and
mutation occur.

Semidominance at m seems plausible, because for
genes with small effects heterozygotes usually have
properties intermediate between those of the
homozygotes. However, in principle we can consider
any pattern of mutation rates in three diploid
genotypes at m. The frequencies of m, in meiospores
of successive generations are connected by ((6) and

(16)):
M = (Kip+v,—v)/2+a(v,—v,/2) (17)

Kip, +u,, (16)
K p,+v,.

which yields
i = vy~ v, +av, — )]/ 2 - K7).- (18)
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Fig. 2. Intensity of the secondary selection for lower mutation rate. The derivative of the coefficient of selection against
a multiplicative modifier with respect to its effect is presented as a function of the negative standardized selection
differential —4. Strict truncation (i.e. W, = 0) (@}~(d) W, =20 (¢). (a) U=1-0; (b)) U=20; (c) U= 40; (d) U= 80; (e
U = 3-0. Only changes of the mean are taken into account (1), complete model with shift mutation (2); (c) complete
model with Poisson mutation (3); (d) numerical results (diamonds).

Of course, (18) reduces to (8) if v, = 2v,. Otherwise,
we can see that g =0 if

a=d=@—v)/(v,—20,). (19)

Thus, if the frequency of allele m, after (and before)
meiosis equals d, the distributions of x in all three
modifier genotypes have the same means. Therefore,
as long as we ignore the differences in their variances,
4 is an equilibrium frequency, and under a = 4 the
population is at equilibrium (not just quasi-equi-
librium), because no changes occur in it.

It is easy to see that this is possibie (i.e. 6 < d < 1)
in two cases: (1) v, < 0 and v; < v, and (2) v, > 0 and
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v, > v,. Obviously, in case (1) a heterozygote has the
mutation rate lower than both homozygotes, while in
case (2) it has the highest mutation rate. In case (1) the
equilibrium is stable, because p is positive when a < 4,
so that allele m, have lower fitness and a grows, while
when a > 4, u is negative and a decreases. In this case
the locus m is, in effect, overdominant (Karlin &
McGregor, 1974, pp. 68, 78, 97). In contrast, in case
(2) the locus m is underdominant and 4 is unstable, so
that either m, or m, is fixed, depending on the initial
conditions.

If mutation in the diplophase occurs before selec-
tion, selection at m gets stronger, similarly to the case
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of haploid selection (15). The unrealistic situations
when mutation occurs in haplophase and selection —
in diplophase, or vice versa, can also be considered.

(iii) Differences in both means and variances

Let us now take into account both # and v. Assume
that selection precedes mutation, that they both occur
in the haplophase, and that during mutation difference
in mutation rates influences only g, and not v (shift
mutation, see K-95). This leads to the following
transformations of x and v:

selection mutation
p———Klp+ 6 Kyv——Kiu+367'Kjv

reproduction
+v —— (Kip+d'Kyv+v)/2, 20)
v—-s>K:u+ Kiv— K p+ K2

—— (K u+ 6 Kjv+v+6Kip+ K3 v)/4.}

Thus, the quasiequilibrium values of 4 and v can be
found from the system:

K- u+6'Klv=—v
(K3 - M ,2 1 @1)
(Ki+6K)p+(6 ' Ki+Ki—d)y =—v.|
These values are:
. v(4—K3)
T e—KD@-K)—K(Ki+207)
(22)

u(2+oK?)
Q-KD@-K)—Ky(Ki+207)

]’1‘=

Using the same reasoning as in deriving (9)—(12), we
can see that for a multiplicative modifier the derivative
of the coefficient of selection against it by its effect is

dew _ 82[4—K§—Kg(2/U—6’1K§)]
de  (2—p)(d—KH—KYK:-28/U)

(23)

In the case of Poisson mutation, where both # and v
are incremented by v after mutation (K-95), the
system of equations analogous to (21) differs from
(21) only by having —2v, instead of v, in the right-
hand part of the second equation. This leads to

do 84— K:i—(8/U)KL—K¥4/U~p/U~56"K2)
de Q—p)(d—KD)— KYK:-28/U) ‘

(24)

Data from Fig. 2 show that the difference of (23) or
(24) from (2) is smal, as long as § is consistent with the
Gaussian approximation (i.e. when the quasi-equi-
librium mean number of mutations is not too small).
Obviously, under a given U this requires —§ <€ U (eqn
19 from K-95). Note, that with Poisson mutation after
mutation o = 4/ U even when all the individuals with
at least one mutation are eliminated by selection, so
that —& cannot be smaller than /U. Thus, the
influence of the differences in variances of the
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distributions of x among the genotypes of the modifier
locus on secondary selection in it is small.

The alternative succession of events (mutation—
selection—reproduction) and selection and/or mu-
tation in the diplophase can all be analysed anal-
ogously. As before, taking the variance of x into
account does not lead to large changes of secondary
selection at m (the results are not reported).

(iv) Very low numbers of mutations per genome

When M[p] is too small to use the Gaussian
approximation, we still can easily consider the
evolution of the mutation rate if M[p] < 1 (see K-95).
In this case, which occurs if U is small while selection
against mutations is not too weak, no individual
carries more than one mutant allele, and M, and M,
are the frequencies and meiospores carrying a mu-
tation among those with alleles m, and m,, respectively.
The association between a modifier locus and the
selectable loci can be completely described by .
Because individuals with a mutation are rare, selection
reduces their frequency by the factor of 1—s, where
s>0 1s the coefficient of selection against such
individuals. Then, with haploid selection and mutation
following selection, we have, analogously to (7):

selection mutation

p———p(l—s)——pu(1—s)+v
reproduction

s (W(1—$)+0)/2. (25)

Thus, the quasi-equilibrium value of 4 before selection
is:

fi=v/(1+5) (26)
and the selection coefficient against m, is
w=uvs/(1+53). 27

In the case of haploid selection and mutation preceding
selection, w is two times bigger, analogously to (15).
Diploid selection can also be analysed.

(V) Numerical results

A numerical model which incorporates an infinite
number of selectable loci subject to mutation and a
modifier of the mutation rate was developed in
Kondrashov (1984) (the current implementation of
this model is written in Think C and is available on
request). Fig. 2 presents the data from investigation of
this model. Two alleles of m were considered. Allele
m, caused the mutation rate U, and the allele m, to the
mutation rate U(1+¢), where e = 1077,...,107% (the
results were almost identical in these cases, while with
higher ¢ the population state became too far from
quasi-equilibrium). We can see that the agreement
with the analytical estimates is good, as long as the
Gaussian approximation is valid.
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5. The cost of fidelity and the equilibrium mutation
rate

(1) The problem

So far we have ignored selection that can act directly
on the modifier of the mutation rate. Thus, the
decrease of this rate was always favoured due to
secondary selection, because deleterious mutations,
although not affecting the individuals in which they
first appear, reduce the fitness of their progeny.
However, if the mutation rate approaches zero, the
cost of fidelity of DNA handling in terms of both time
and energy grows unlimitedly (see Kirkwood er al.
1986). The balance between secondary selection (due
to genetics) for lower mutation rate and direct selection
(due to physiology) for higher mutation rate may lead
to an equilibrium rate.

In order to find this equilibrium rate we need to
know w,, ., the fitness of an individual with a given
mutation rate in it, relative to that of individuals with
very high rate that suffer no cost of fidelity. In this
section, [ will distinguish between u, the mutation rate
in individuals of a given genotype, and U, the average
mutation rate in the population. Because w,, . depends
on intraorganismal processes, it is a function of u
alone.

Although no direct data are available, it seems very
plausible that w, . monotonously increases with u,
being zero if u = 0 and one if u— co0. I will consider a
family of such functions:

Wonys(u) = u"/(C™ +u"). (28)

The fitness equals one-half of maximal (i.e. 0-5) when
u = C. When n grows, w,, . approaches both 0 and 1
faster, so that the cost of fidelity rapidly changes from
negligible with U > C to prohibitive with U < C (Fig.
3). Perhaps, in reality, n = 1.

The total fitness of a genotype at the modifier locus
1S Wy, = Weon Wonye, Where w, . is the fitness component
caused by the secondary selection considered in

0 L] T T T T T M
0 2 4 6 8 10
The mutation rate in the units of C

Fig. 3. The fitness of an organism as the function of u/C
under various values of n (marked in the figure),
according to (28).
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Fig. 4. The equilibrium mutation rate (multiplied by C)
as the function of n under o = 0-1, 0-2, 0-4, 0-8, 1-6, and
3-2 (the corresponding lines are of the decreasing heights),
according to (32).

Section 4. This component has a different structure in
amphimictic and apomictic populations, which there-
fore will be studied separately.

(i) Equilibrium mutation rate in amphimictic
populations

In a quasi-equilibrium amphimictic population where
the Gaussian approximation is applicable and the
average mutation rate is U, a genotype with a similar
mutation rate u has the relative fitness, due to
individual secondary selection,

Ween(t, U) = 1 —a(u~U)/U, (29)

where a = §*/(2—p) > 0 is a parameter of the mode
of selection (I assume that selection occurs before
mutation and use the simplest formula (10), because
taking into account the variance does not make much
difference). Thus, here w,,, depends on both u and U.

With amphimixis, the problem of the equilibrium
mutation rate must be addressed in terms of the
average mutation rate in the population. We need to
find an evolutionary stable value of U, U, i.e. such
a U that will not change as long as all individuals have
similar values of u. Consider a function

awtot(u’ U) — a[w)gtan(ll7 U) wphys(u)]

S, U) = ou du (30)
We can find U,, from the condition AU, U,,) = 0.
Because

yn-1
fAu=UU)= (C—n_U—n)z[_“U"—“C"“"”C"] 31)
this implies that either U,, =0 or
U, = c(g— 1)1/" (32)

e

always globally stable as long as it yields a positive

{Fig. 4). It is clear from (31) that equilibrium (32) is
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Fig. 5. The equilibrium mutation rate as the function of n
under C = 0-1 (solid lines), 1-0 (medium dashed), and 10-0
(short dashes) and S = 1-0, 0-25, and 0-0625 (the
corresponding lines of the same pattern are of the
increasing heights, the lines corresponding to S = 1:0 are
thick), according to (35).

U, while otherwise U, =0 is globally stable.
Because a cannot be larger than approximately 5
(6 <2@3) and p < 1, see K-95), U,, = C under large
n. If a<n/2, i.e. when direct selection against
mutations and secondary selection to reduce their rate
is weak, U,, > C, while otherwise U, < C, although
this is important only when # is not high.

If « > n, the mutation rate decreases without limit,
which would eventually lead to extinction, because
w,,, — 0 when u— 0. In principle, this may be possible,
because we consider individual selection. However, in
the course of such a decline of U, M[p(x)] would tend
to zero (K-95, eqn (19)), which makes the assumption
that p(x) is Gaussian inapplicable. Thus, (32) cannot
be used unless it predicts U, > o, because only then
Mip]> 1.

When (32) yields a smaller U,,, we may consider
the asymptote for small M[p] (26). Letting
S =s/(1+s) (mutation occurs after selection), or
S = 2s/(1+s) (mutation before selection), we have

qn

Ween(tt, U) = 1—S(u—U) (33)
and

Un-—l
flu=U,U)= m[—SU"“—SC"U—!—nC"].

(34)

This implies that either U, = 0 or it can be found
from an equation

—U"”—C"U+%C" =0. (35)

This equation always has exactly one positive root
U,, > 0 (Fig. 5), which is globally stable. Obviously,
U, grows with C, i.e. when the cost of fidelity
increases, and declines if S grows, i.e. when selection
against those that carries a mutant allele gets stronger.
We can use (34) only if U, /s < 1, because otherwise
M][p] is too large for (26) to be applicable. When
C—» oo, U, approaches n/S, which implies
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M{[p] ~ n/s?. Thus, with high C (35) cannot be used
unless n < 1, which is probably unrealistic.
With C < 1, we have approximately

U, ~ "/ (nC"/S) (36)

and, as in the case of (31), under high n U, ~ C.
With n=1, U,=+v(C/S)>C, and then U,
decreases and approaches C when n grows. With high
n, C < s is sufficient for U, /s < 1, while with low n,
C must be even smaller. Of course, if (32) predicts a
too low U,,, while (35) predicts a too high U,,, the
real equilibrium mutation rate does not allow either
asymptotic to be applied, and its evolution have to be

studied numerically.

(i1i) FEquilibrium mutation rate in apomictic
populations

In Section 4 I did not study selection for lower
mutation rates in apomictic populations, because it
has been done before. The fitness of a clone with a
mutation rate u is, relative to that of a clone with zero
mutation rate, e~ (Kimura & Maruyama, 1966). In
contrast to amphimixis, here we do not have to
consider U, because an apomictic population is just a
set of genetically independent clones. Thus, w,,,, as
well as w,, .., depends only on u, and the problem of
the evolution of the mutation rate must be addressed
in terms of group selection. A stable equilibrium rate
U, simply maximizes the total fitness of a clone with
u = u,,. Therefore, g(u,,) = 0, where

g(u) — a[wgen(l'gl:vphys(u)]

M CrutnC) (37)
- (C"-f- un)z

and a stable equilibrium ., = 0 can be found from

an equation

—u — Cy+nC™ = 0. (38)

Obviously, (38) is a special case of (35) with S=1.
Thus, with apomixis the equilibrium mutation rate is
no lower than with amphimixis under low M[p]. The
equality is reached only when mutations are lethal and
occur before selection, which correspondsto S = 1. In
this case recombination has no effect, while otherwise
it makes selection for reducing the mutation rate less
efficient. Even with a very high C, u, <n, so that
with apomixis the equilibrium mutation rate cannot
be very high, although, of course, there is no
limitations on using (38), in contrast to (35).

6. Impact of changes of the mutation rate on the
population

Even if all the modifier genotypes available at a given
moment are similar, in the long run the trait that is
controlled by many modifier loci can change sub-
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stantially. Thus, even a slow evolution, such that in its
course a population always remains in quasi-equi-
librium, can eventually lead to large changes.

Let us consider the results of such evolution of the
mutation rate. When U is invariant, the mutation-
selection equilibrium under soft selection, in an
amphimictic population depends on U and on two
parameters of such selection, & and p (K-95, eqn 19).
If, in contrast, we allow U rate to evolve, its
equilibrium value U,,, is determined by the cost of
fidelity (which in the case of (28) depends on two
parameters, C and #n), together with § and p (in the
form of a) (32). In terms of these ‘ultimate’
parameters, the mean number of mutations in the
genome at the mutation-selection equilibrium is

M, = C*[Q2—p)/&[ (2 —p)/6*— DI (39)
while the variance V,, = M,,(2—p)™* (K-95, eqn 19).

Analogously to (32), (39) can be applicable only when
it predicts M, > 1.

Discussion
(1) General approach to the evolution of modifiers

The basic assumption that all the genotypes at the
modifier loci that simultaneously have non-negligible
frequencies are similar seems plausible, because
evolution of the reproductive traits is thought to be
usually slow. However, there are some exceptions
(Nothel, 1987; Brooks, 1988; Korol et al. 1990;
Morgan & Barrett, 1990). Some reproductive traits
(e.g. the rates of mutation or recombination) can vary
continuously, although individual alleles may still
influence them drastically. In contrast, the mode of
reproduction (amphimixis v. apomixis), as well as
some forms of inbreeding (outcrossing v. selfing) are
inherently discrete, and a single allele substitution can
naturally have a large effect on them (Hebert ez al.
1989). However, even here two modifier alleles can be
similar, if they set similar probabilities of different
outcomes or similar allocation of resources to them.

Besides creating a hierarchy of the processes leading
to quasi-equilibrium (Section 3), the basic assumption
causes some simplifications specific to the model of
mutation-selection balance which I have considered.
In particular, it allows us to assume that all the
distributions involved are Gaussian and to use the
formulae (1). Modifiers of various processes (Taylor
& Williams, 1982; Charlesworth, 1990; Iwasa ez al.
1991; Uyenoyama & Waller, 1991) can be investigated
similarly, as long as the quasi-equilibrium differences
between the distributions of the number of mutations
within different modifier genotypes can be found. For
modifiers of meiosis (recombination) this can probably
be achieved by applying Bulmer’s (1985) approach, as
was done by Charlesworth (1990) for Gaussian
selection, to any mode of soft selection. The models
become more complex when, as in the case of
facultative apomixis or selfing of diploids, the
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insufficient

haplophase  becomes dynamically
(Charlesworth er al. 1991).

(1) Minimal v. optimal mutation rates

If, as it is assumed here, the mutation process always
converts ‘normal’ alleles into unconditionally del-
eterious ones, a zero mutation rate is favoured.
Actually, the same is true under a wider range of
assumptions. A zero rate is favoured under any
invariant mode of selection, even if a genotype with
the highest fitness is heterozygous, so that some
mutations can increase the fitness on some genetic
backgrounds, as long as the population size is infinite
and mating is random (Karlin & McGregor, 1974;
Liberman & Feldman, 1986; Twomey & Feldman,
1990).

Under other conditions, however, selection can
favour a positive mutation rate. Initially, the optimal
hypothesis was based on group selection (Berg, 1941,
1942, 1948) and related genetic load (Kimura, 1960,
1967; Levins, 1967) arguments, but later the analysis
based on individual selection, which is more ap-
propriate for amphimictic populations, was developed
(Leigh, 1970, 1973). Under invariant direct selection
positive mutation rates can be favoured only when an
equilibrium population is polymorphic and either the
population size is finite (Gillespie, 1981 a), mating is
non-random (Holsinger & Feldman, 1983), or selec-
tion acts on fecundity (Holsinger et al. 1986; Twomey
& Feldman, 1990). Changing selection generally
favours positive mutation rates (Gillespie, 19815;
Semenov & Terkel, 1985; Ishii et al. 1989), although
zero mutation rates can also be established under
some values of the parameters (Leigh, 1970, 1973;
Gillespie, 1981 b).

Although we do not have a general criterion which
tells us when selection favours zero or a positive
mutation rate, it seems that in any model in which the
vast majority of new non-neutral mutant alleles are
unconditionally deleterious a zero-rate is always
favoured. Even if such mutant -alleles are only as
frequent as those which can be utilized for adaptation
under some conditions, secondary individual selection
favours a zero rate (Leigh, 1973, pp. 3 and 13). Thus,
the minimal hypothesis seems applicable to
amphimictic populations.

The minimal hypothesis is supported by the data
(see Lindahl, 1993) on the enormous rate of
‘spontaneous’ DNA damage in vivo (although under
some other condition DNA might be more stable,
Poinar, 1993) which suggests that the cost of fidelity
of molecular processes can be substantial (Kirkwood
et al. 1986), thus providing the explanation of why the
actual mutation rates may be far from zero (see
Mohrenweiser, 1994).

In contrast, for apomictic populations, where group
selection and genetic load arguments are relevant, the

optimal hypothesis may be applicable, at least
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theoretically (Leigh, 1973 ; Eshel, 1973; Painter, 1975).
However, selection for mutability reduction caused by
deleterious mutations is also much stronger with
apomixis than with amphimixis. In nature the genomic
deleterious mutation rate U is probably only about
0-003 per cell division in unicellular forms, that are
either obligately or facultatively apomictic (Drake,
1991). This argues against any significant role of
beneficial mutations in the evolution of mutation rate
even with obligate apomixis, but more data, par-
ticularly on obligately apomictic multicellular forms
and their amphimictic relatives, are needed.

(iii) Selection for reduction of the mutation rate

The following qualitative analysis may help to
understand the main result (10). Suppose that before
selection the distribution of x in the genotype which
increases the mutation rate by v is simply shifted by v
to the right. Because of (1a), (5), and eqn (7) from K-
95 this leads to the decrease of relative fitness by vé/ ¢,
which, because ¢ = U/d (eqn 16 from K-95) is equal
to vé®/U. Because p ~ 1 (K-95), this is similar to (10),
which was obtained for mutation occurring after
selection, and is only about two times smaller than
(15), where mutation occurs before selection. Thus,
ignoring the action of the modifier allele in the
previous generations leads to a discrepancy close to a
factor of two. Consideration of the difference in
variances leads to only small refinements (Fig. 2).

As long as the modifier locus # is assumed to be
semidominant, secondary selection for reduction of
the mutation rate does not depend on whether
selection and mutation occur in the haplophase or in
the diplophase. Otherwise, selection in the diplophase
can lead to new phenomena, including stable poly-
morphism at m. However, substantial deviations from
semidominance at a locus with small allele effects do
not seem plausible.

The intensity of selection against an allele which
increases the mutation rate by a factor 1+¢ (a
‘multiplicative’ modifier), which seems realistic, does
not depend on U and is proportional to the square of
the standardized selection differential, 8% (K-95). Thus,
when the negative selection differential —4, which is a
parameter of soft selection, gets smaller, the intensity
of secondary selection for a lower mutation rate
rapidly declines. This may imply that U (and,
therefore, M [p]) should be much higher in species
with a low intensity of selection (e.g. low fecundity,
high random mortality, etc.), although the analysis of
evolutionary equilibrium mutation rates is required
for such conclusions (see below).

The above analysis can be applied only if M[p] > 1,
which requires U > —4&. Thus, although (10) predicts
that selection for reduction mutation rate tends to
infinity when U— 0, in fact (27) must be used in this
case, instead of (10). Because according to (10) w = vs,
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comparison of (10) and (27) suggests that intensity of
secondary selection for a lower mutation rate is
similar under any M[p].

Thus, when direct selection acts against uni-
directional unconditionally deleterious mutations, the
intensity of secondary selection for a lower mutation
rate is, analogously to that of apparent stabilizing
selection on a quantitative trait (Kondrashov &
Turelli, 1992, eqn 23) approximately proportional to
the coefficient of selection against a mutant allele. It is
unclear why this coefficient is so important. However,
the similarity between these two cases is not surprising.
Actually, the only difference between ‘secondary’ and
‘apparent’ selection is that the former is directional
and thus leads to the evolution at the modifier locus,
while the latter is stabilizing and the distribution of
the quantitative trait remains constant.

I have ignored the differences of mutation rates
between sexes (see Redfield, 1994). This situation
requires special analysis and the results will probably
depend on whether the mutation rates in two sexes
can evolve independently. Only ‘ideal’ amphimixis
was considered, with no linkage, random mating, or
facultative apomixis. Perhaps these factors can lead to
a stronger secondary selection for lower mutation
rates, because they increase associations of a modifier
allele with the consequences of its action (Sturtevant,
1937).

Under apomixis, the fitness of a modifier allele is
simply the mean fitness of a clone which carries it, and
the fitness of a genotype with the mutation rate U is
e Y (Kimura & Maruyama, 1966, see above). Thus,
the coefficient of selection against an allele which
increases the mutation rate by v is simply v. Comparing
this with (10) or (27) we can conclude that a secondary
selection for a lower mutation rate is always stronger
with apomixis than with amphimixis (only when lethal
mutations occur before selection these two cases are
identical). Thus, although amphimixis can increase
the efficiency of direct selection against mutations (see
Kondrashov, 1988, 1993), it leads to a weaker selection
for a lower mutation rate.

(iv) Equilibrium mutation rate

Even if secondary selection always favours a zero
mutation rate, such a rate is impossible because of the
cost of fidelity (Kirkwood et al. 1986) and a non-zero
evolutionary stable equilibrium mutation rates U,
will be established. With a given C, the absolute fitness
of a population with U = U, grows with #, i.e. when
the decline of fitness of an individual with the decrease
of the mutation rate in it gets more drastic. Of course,
under a given w, () the U, and the equilibrium
absolute fitness decline as the intensity of secondary
selection against mutations increases, while with
—6->0U,—o. Thus, a high intensity of soft
selection (e.g. in the species with high fecundity) may
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lead to a low absolute fitness, because of low U,,.
However, if n is high, U,, is mostly determined by C.

Formula (32) can be used only if it predicts U,
large enough so that M, > 1 (39). Alternatively, if
M, <1, (35) must be used, while the intermediate
cases can be studied numerically. Apparently, under
any Meq amphimixis leads to a higher U, than
apomixis. The difference can be especially large when
C > 1. In this case, the transition from amphimixis to
apomixis (and, perhaps, from outcrossing to selfing)
could lead to a profound, although perhaps slow,
decline of the mutation rate. This is consistent with
the fact that selfing usually leads to lower molecular
variability (Barrett & Husband, 1990; Njiokou et al.
1993).

This might have interesting implications for the
evolution of amphimixis and apomixis. Although
transition from apomixis to amphimixis may reduce
the mutation load in the short run, subsequent slow
evolution can lead to a much higher mutation rate
and, perhaps, even to a higher load. However, this
may only complicate the backward transition to
apomixis, because the new clones will suffer more
because of the higher mutation rate.

Thus, amphimictic and apomictic populations may
differ mostly not by the mutation loads, but by the
mutation rates. We can expect apomixis in the forms
where C < 1, so that the U, is low. If, in contrast,
C > 1, amphimixis can evolve, leading to the high
U,,- Transition to amphimixis might increase C, e.g.
because of the high number of cell divisions in the
male germ line (see Redfield, 1994). Low mutation
rates in unicellulars, which are at least facultatively
apomictic (Drake, 1991), as well as a correlation
between amphimixis and a high genome size, are
consistent with this conclusion.

(v) Consequences of evolution of the mutation rates

If the rate of evolution of mutation rate is slow, the
state of the population, particularly the mean and the
variance of the number of mutations per genome, can
follow it practically without delay. Thus, the popu-
lation remains in quasi-equilibrium and there is no
coevolution of the mutation rate and the population
state, because these two processes have different
characteristic time scales.

If the mutation rate reaches an evolutionary stable
equilibrium U,,, the mean number of mutations per
genome reaches M., which is extremely sensitive to
—4. According to our model, the parameters of soft
selection, — & and p, determine (together with C and n)
U,y as well as M and V. If W, has a plateau with
small x, the increase of U,, does not cause a higher
load (K-95). In contrast, under a given hard selection

the load is determined by U,,.
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(vi) The necessary experimental data

The importance of the processes considered in this
paper depends on several parameters which must be
measured experimentally. First, we must know the
fraction that unconditionally deleterious mutations
contribute to new mutations. Conditionally beneficial
mutations can be ignored, as was done here, only if
this fraction is high. Then, we must know the genomic
deleterious mutation rate, and the mode of selection
against such mutations. Very little is known about this
so far (Crow & Simmons, 1983; Houle et al. 1992).
Finally, we need to know the dependence of the fitness
of an organism on the mutation rate, which has never
been measured directly, although some indirect data
are available (Nothel, 1987). The potential importance
of slightly, although unconditionally, deleterious
mutations makes the relevant experimental work
desirable.

This and the paper K-95 were started seven years ago, but
various external factors did not allow me to finish them. I
am grateful to the Section of Ecology and Systematics of
Cornell University which finally gave me a chance to do so.
Brian Charlesworth and an anonymous reviewer made
many useful comments on the first drafts.

Appendix 1

Partial derivatives of a Gaussian density

1 2

= —(x—-M)°/2V A 1
Dy, y(x) \/—(27r ) ( a)
with respect to its mean and variance are:
op x—M
it A
o= p(), (A 10)
op 1 (x—M)?
a—,,( 2ot CA) pi). A10)

From the following general formula (all integrals with
omitted limits are taken from — oo to o0)
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derivatives of the I,s (eqn 2 from K-95) are given by:
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Let us prove, for example that
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Using (A 1¢) and (A 1f), we have:
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Equations (1) are written in terms of J;s, instead of
I.s, because expressions which depend only on Js
remain invariant, as long as W(X) remains invariant.
To obtain an expression in terms of Js from that in

terms of /.5, we have to use the formulae
Jo = ]0’

S =U,—Ml)/o, (A 1))
= —2MI + M* 0)/0'2,

which follow from eqn 3 (K-95).

Appendix 2

Consider a population which consists of two com-
ponents with frequencies @ and 1 —a. The distribution
of a quantitative trait x in this population, p(x), is

p(x) = ap,(x) + (1 — a) py(x), (A 2a)

where p,(x) and p,(x) are the distributions of x within
the first and second components, respectively. If the
mean and the variance of p, and p, are M, and ¥V, and
M, and V,, respectively, and pu= M,— M, and
v = V,— V}, the mean and the variance of p, M and V,
are:

M= fx[apl(x)+(l —a)p,())dx =aM,+(1—a) M,
=M +(1-a)yu,

V= xlap,(x)+ (1 —a) py(x)] dx — M*
=aVi+(1—-a)V,+aMi+(1—a)Mi—M?*
=V+(1—a)yv+a(l—a)pu’. (A 2b)
Assume now that both p, and p, are Gaussian.

Then,

a

1
v (2ﬂ)(\/ "

—(z-M %2V

p(x) =

1—a

—(z—M )’ 2(V+v)
VDN ) @20

https://doi.org/10.1017/5001667230003439X Published online by Cambridge University Press

66

Let us compare p(x) with the Gaussian distribution
(%) having the same mean and variance:

— 1 —(z-M)*2v
PG(X) = me .
Now, using Taylor expansions e¢*=1+x+... and
(1+x)* =1+ Ax+..., it is easy to show that, if we
take into account formulae (A 254) for M and V and
ignore all but linear terms in x and v, p(x) and p (x)
can be reduced to the same form

(A 2d)

1 —(z=M D +e(1~a) wa-M N+0~a) ia~M N}V,
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Appendix 3

Before syngamy, the distributions of x among the
gametes with genotypes m, and m,, p,(x) and p,(x),
are Gaussian with means M, and M; = M7+ 4" and
variances V] and Vj = V7{,,., respectively, and the
frequencies of m, and m, in all the gametes are a and
1 —a, respectively. After syngamy and at the beginning
of the diplophase the distributions of x in the
components of the population with genotypes m, m,,
mym,, and mym,, p,(x), po(x), and py(x), are
assumed to be Gaussian and similar, with the means
My, My,=M,+p, and M,, =M, +u, and
variances V] and V; = V] +”, respectively, and the
respectively. Particularly, in the case of panmixia of
gametes, M, =2M,, M,=2M7+y", and
My, =2M{+2y" and ¥V}, =2V7, ¥, =2V {4+, and
V,, =2V]+2v", respectively, while the frequencies of
m, m,, m;m,, and m,m, are f,, = a%, f,, = 2a(1—a),
and f,, = (1—a)?, respectively. Below panmixia will
be always assumed, although the same approach can
be used without it, as long as the haplophase remains
dynamically sufficient, so that x,, x,, v,, and v, can be
determined from x” and »”, while the frequencies of
diploid genotypes can be determined from a.

Let us now consider the end of the diplophase, just
before meiosis. At this point the means and the
variances of x in individuals with genotypes m, m,,
m,m, and m,m, are M{,, M7, =M/, +ux/, and
My =M +p, and Vi, Vi, =Vi+v, and
Vi = Vi +v,. The distributions of x in the
meiospores produced by different zygotes have the
following means and variances (Bulmer, 1985)

zygote
genotype mean variance
mym, M7,/2 (M7, +Vi)/4

(M +pD/2 (M +py+ Vi+v)/4
(M7, +/"‘/2,)/2 (M7 +ps+ Vi +v)/4.
(A 3a)

Let us assume first that the frequencies of genotypes

m, m,

m,m,
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m, m,, m, m,, and m, m, remained unchanged during
the diploid phase, which implies that selection in this
phase is absent. Then among all meiospores with the
genotype m,, the fractions a and 1 —a are produced by
individuals m, m, and m, m,, respectively. Thus the
mean value of x among meiospores m, is

M, =[aM7,+(1 —a) (M7 +p))]/2.

Similarly, the fractions a and (1—a) of all m,
meiospores are produced by individuals m, m,, and
m, m,, respectively, and the mean value of x among
meiospores m, is

M, =[a(M7,+p)+(1—

(A 3b)

@) (M7, +p3)l/2.

The variance of x in all meiospores m,, V,, equals to
the weighted average of the variances in those
produced by zygotes m, m, and m, m,, ignoring the
term containing x? (A 2b). Thus,

Vi =laM7{,+ViD)+(A—a) (M7, +u
+ Vi +v)l/4A

(A30¢)

(A 3d)
Similarly,
Vila(M 5, +py+ Vi +v]

+(1-a)(M7 +p + Vii+1R)l/4. (A3e)

Therefore, subtracting (A 3¢) from (A 3b) and (A 3e)
from (A 3d) we obtain (6). Let us now consider 2
cases.

(1) Nothing happens during the diplophase, so that
population before meiosis is the same as after
syngamy. Then, x;, = 247 = 24" and v = 2v] = 20",
so that (6) reduces to (3) and selection at the modifier
locus does not depend on the allele frequencies at it.

(2) The modifier acts during the diplophase. Then,
in general, u7, u;, vy, and v; can be arbitrary small
numbers, which can be determined from x#” and »”,
and the equations (6) must be used. Thus, M and N
and, consequently, selection at the modifier locus,
depends on a. However, in a special case of semi-
dominant modifier, where the properties of the
genotype m, m, are exactly in between of those of the
genotypes m, m, and m,m,, the equalities u; = 2u;
and v; = 2y] are still valid, although x; # x” and
v] +". Then (6) reduces to (3).

Let us now consider selection in the diplophase. Let
the average fitnesses of individuals with genotypes
m,m,, m;m,, and mym, be 1 +s,;, 1 +5,,, and 1 +s,,,
respectively. Mutation does not change the modifier
genotype frequencies, so that before meiosis they are

4 (1 +s11)f11 \
= =~ f1,(1+¢€,),
. L5, St Si2 Si2+ So0 foe " .
v (1 +51.) /10
= ~ f,(1+€,), Y (A3
Sl +513 fitSi2 12t Sa0 fon Sl 2 | (A3))
fi= (14 5,0) foo ~ (i +6,)
45y fir+ S10 frat San fao % . ,J
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where

€11 = S1— 81 S11— S12 f12— 520 fans

€12 = S12—S11.S11 =12 S12— 520 S0 (A3pg)
€20 = Spa—S11S11—S12S12— 20 foe-

The approximate equalities are true because selection
is weak (distributions of x in all three genotypes differ
only slightly) and thus s,,, s,,, and s,, (and €,,, &,, and
€55) are small numbers, of the order of x and v.

Now we can assess the influence of changes of f,,
/1, and f,, due to diploid selection on M and N. For
example, instead of (A 3b) we have

(@ + €)M, + i2a(1 —a)+e, (M7, + 45
2(a®+¢, +[2a(1-a)+¢€,,1/2)

M’l’l(a+ €nte€a/2)+3ula(l—a)
2a+2¢,+¢€,

= [M{+p7(1-a)]/24 0(p) O(e) + O("). (A 3h)

Thus, (A 3h4) differs from (A 3b) only by the terms
that are quadratic in the differences between distribu-
tions of x within different modifier genotypes. The
same is true for M,, V;, and V,, so that the changes of
modifier genotype frequencies due to selection can be
ignored when M, N, and selection at the modifier
locus are estimated.

The above derivations assumed that recombination
is free. In this case the total number of mutant alleles
in a diploid genotype is enough to predict the
distribution of x in the meiospores it produces (we
ignore homozygotes by mutant alleles, because these
alleles are rare). Thus meiosis alone is sufficient to
make Bulmer’s (1985) results applicable. If, in con-
trast, there is linkage, formulae (A 3a) for variance
become more difficult and depend on whether selec-
tion acts in haploid or diploid phase, because in the
latter case it creates correlations between distributions
of mutations in maternal and paternal genomes of
diploid organisms. Perhaps in this case the approach
of Charlesworth (1990) should be used.

M, =
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