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Note on Cubature Formulae and Designs
Obtained from Group Orbits

Hiroshi Nozaki and Masanori Sawa

Abstract. In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula

is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t . In this pa-

per, we make some observations on invariant cubature formulas and Euclidean designs in connection

with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary

and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new

proof is shorter and simpler compared to the original one by Xu, and, moreover, gives a general in-

terpretation of the analytically-written conditions of Xu’s theorems. Second, we extend a theorem by

Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify

tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes

a theorem of Bajnok (2007), which classifies tight Euclidean designs invariant under the Weyl group

of type B, to other finite reflection groups.

1 Introduction

A central problem in numerical integration is to approximate the integral

∫

Ω

f (x)dµ.

Here x is an n-dimensional coordinate vector and µ is a probability measure on a

domain Ω in R
n. We search for an approximation formula by taking a positive linear

combination of the function values of f at specified points x1, . . . , xN , that is,

(1.1)

N
∑

i=1

wi f (xi).

We call (1.1) a cubature formula, with weights wi and points xi . To each formula we

assign the set of functions for which it is exact. Most often this set is the space of all

polynomials of degree no more than t ; in this case a cubature formula is said to be of

degree t . We refer the readers to the comprehensive monograph [11, 25] for the basic

theory of cubature formula.

A fundamental objective of this paper is to construct cubature formulas of large

degrees with few points. The requirement that a given cubature formula is exact for
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polynomials up to a certain degree can be reduced to the problem of solving a system

of algebraic equations. In general, the larger the number of points or the degree of a

cubature formula, the greater the size of this system. Sobolev [24] gave a celebrated

criterion to diminish the size of the system to be solved. Namely, he proved that an

invariant cubature formula is of degree t if and only if it is exact for all polynomials

of degree at most t invariant under the group. This is known as the Sobolev theorem.

The Sobolev theorem is widely accepted by the cubature community in analysis and

related areas; for instance, see [19, 23].

Independent of the line of research in analysis and related areas, Goethals and

Seidel [13, Theorem 3.12] developed the invariant theory of Chebyshev-type cuba-

ture formulas on the sphere or spherical designs. As a generalization of spherical

designs, Neumaier and Seidel [20] considered cubature formulas on several concen-

tric spheres called Euclidean designs. Bajnok [2] classified tight Euclidean designs

whose points are the union of the orbits of the corner vectors of the group Bn, and in

particular, he obtained several new tight designs. Here a Euclidean design is tight if

it is minimal with respect to a lower bound for the number of points. To obtain the

results, Bajnok [2, Proposition 14] essentially used the idea of the Sobolev theorem

for Bn-invariant Euclidean designs, though he did not mention Sobolev. It seems

that some researchers in combinatorics and related areas do not fully recognize the

Sobolev theorem.

In this paper we make some observations on invariant cubature formulas in con-

nection with the Sobolev theorem. In Section 2 we explain Sobolev’s invariant theory

in detail. We also explain some basic facts related to Euclidean designs, e.g., a theo-

rem of Neumaier and Seidel [20] that is well known in algebra and combinatorics. In

Section 3 we give an alternative proof of famous theorems by Xu [27, Theorems 1.1

and 1.2] on necessary and sufficient conditions for the existence of cubature formulas

with radial symmetry. The original proof by Xu requires some tedious calculations

and technical tools in numerical analysis such as Gaussian–Lobatto quadrature and

Gaussian–Radau quadrature. Furthermore, it is long, and researchers in other areas

may not be familiar with this proof; Our new proof is short and simple compared

to the original proof. Moreover it gives a general interpretation of the analytically-

written conditions of Xu’s theorems, and so will be readable and acceptable for re-

searchers not only in analysis, but also in other areas, such as algebra and combi-

natorics. In Section 4 we extend the theorem of Neumaier and Seidel to invariant

Euclidean designs, and thereby classify tight Euclidean designs obtained from unions

of the orbits of the corner vectors. This classification generalizes the result of Bajnok

for other finite reflection groups.

2 Preliminaries

Let Homl(R
n) be the linear space of all real homogeneous polynomials of total degree

l in n variables. Let

Pl(R
n) =

l
∑

i=0

Homi(R
n), P

∗
l (R

n) =

⌊l/2⌋
∑

i=0

Homl−2i(R
n).
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We denote by Harml(R
n) the subspace of Pl(R

n) of harmonic homogeneous polyno-

mials of degree l. Let Pl(A),P∗
l (A) be the space of functions that are the restrictions

of the corresponding polynomials to A ⊂ R
n.

Let G be a finite subgroup of the orthogonal group in R
n and f ∈ Pl(R

n). We

consider the action of σ ∈ G on f as follows:

(σ f )(x) = f (xσ
−1

), x ∈ R
n.

A polynomial f is said to be G-invariant if it satisfies that

σ f = f , ∀σ ∈ G.

We denote by Pl(R
n)G,Harml(R

n)G the set of G-invariant polynomials in Pl(R
n),

Harml(R
n) respectively.

A cubature formula (1.1) is said to be invariant under G, or G-invariant if the

domain Ω and measure µ of the integral are invariant under G and the set of points is

the union of G-orbits and to each point of the same orbit an equal weight is assigned.

The following is known as the Sobolev theorem.

Theorem 2.1 ([24]) With the above set up, a G-invariant cubature formula is of

degree t if and only if it is exact for every polynomial f ∈ Pt (R
n)G.

The Sobolev theorem is widely accepted by the cubature community in analysis

and related areas. In particular Russian mathematicians in analysis have developed

the Sobolev theorem and employed it to construct many cubature formulas; for in-

stance, see [19,23]. Xu [27] presented beautiful theorems on the existence and struc-

ture of cubature formulas for radially symmetric integrals. In Section 3 we review his

theorems in detail and give a short proof using the Sobolev theorem.

Next let us explain a combinatorial object called Euclidean design that was intro-

duced by Neumaier and Seidel [20]. Let X be a finite set in R
n. Let r1, r2, . . . , rp be the

norms of the vectors in X. For i = 1, 2, . . . , p we denote by Sn−1
i the sphere of radius

ri centered at the origin, namely, Sn−1
i = {x ∈ R

n | ‖x‖ = ri}, and let Xi = X∩Sn−1
i .

The set X is said to be supported by p concentric spheres S =
⋃p

i=1 Sn−1
i . To each Si we

assign the surface measure ρi . Let |Sn−1
i | =

∫

Sn−1
i

dρi(x), with the convention that

1

|Sn−1
i |

∫

Sn−1
i

f (x)dρi(x) = f (0)

if Sn−1
i = {0}.

Definition 2.2 With the same notations as in the above paragraph, we say that X is

a Euclidean t-design supported by S if there exists a positive weight function w(x) on

X such that
p

∑

i=1

∑

x∈Xi
w(x)

|Sn−1
i |

∫

Sn−1
i

f (x)dρi(x) =
∑

x∈X

w(x) f (x)

for every polynomial f ∈ Pt (S).
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We can regard a Euclidean design as a cubature formula on some concentric spheres.

Conversely a cubature formula for a class of integral with some symmetry is a Eu-

clidean design (cf. [14, Lemma 3.1]). The following theorem by Neumaier and Seidel

is well known in algebra and combinatorics.

Theorem 2.3 ([20]) With the same notations as in Definition 2.2, the following are

equivalent:

(i) X is a Euclidean t-design with a weight function w;

(ii)
∑

x∈X w(x) f (x) = 0 for every f ∈ ‖x‖2 j Harml(R
n) with 1 ≤ l ≤ t, 0 ≤ j ≤

⌊ t−l
2
⌋.

In Section 4 we give a stronger theorem than Theorem 2.3 for invariant Euclidean

designs, intended for researchers in algebra and combinatorics.

Define p ′
= p− εS, where εS = 1 if 0 ∈ S, and εS = 0 otherwise. The dimensions

of Pl(S) and P
∗
l (S) are well known.

Theorem 2.4 ([10, 12]) Let S ⊂ R
n.

dimPl(S) =

{

εS +
∑2p ′−1

i=0

(

n+l−i−1
n−1

)

if l ≥ 2p ′,

dimPl(R
n) =

(

n+l
l

)

if l ≤ 2p ′ − 1.
(i)

dimP
∗
l (S) =















εS +
∑p ′−1

i=0

(

n+l−2i−1
n−1

)

if l is even, l ≥ 2p ′,
∑p ′−1

i=0

(

n+l−2i−1
n−1

)

if l is odd, l ≥ 2p ′,

dimP
∗
l (R

n) =
∑⌊ l

2
⌋

i=0

(

n+l−2i−1
n−1

)

if l ≤ 2p ′ − 1.

(ii)

The following lower bounds are known as the Fisher-type inequality for the size

of a Euclidean design [5, 10, 16, 18]; the latter one is also called the Möller bound.

Theorem 2.5 (i) Let X be a Euclidean 2e-design supported by S. Then

|X| ≥ dimPe(S).

(ii) Let X be a Euclidean (2e − 1)-design supported by S. Then,

|X| ≥
{

2 dimP
∗
e−1(S) − 1 if e is odd and 0 ∈ X,

2 dimP
∗
e−1(S) otherwise.

A Euclidean t-design is said to be tight if the equality holds in one of the bounds in

Theorem 2.5.

Hereafter we assume that G is a finite irreducible reflection group in R
n. It is

known that finite irreducible reflection groups are classified completely [8]. Let inte-

gers 1 = m1 ≤ m2 ≤ · · · ≤ mn be the exponents of G (see [8, Ch.V, §6 ]).

Theorem 2.6 ([13]) Let G be a finite irreducible reflection group. Let qi be the dimen-

sion of Harmi(R
n)G. Then

∞
∑

i=0

qiλ
i
=

n
∏

i=2

1

1 − λ1+mi
.
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Note that for any x ∈ R
n, the orbit xG is a spherical m2-design in Sn−1 [13].

Let α1, α2, . . . , αn be the fundamental roots of a reflection group G. The corner

vectors v1, v2, . . . , vn are defined by vi ⊥ α j if and only if i 6= j. We may assume that

‖vk‖ = 1. We consider the set

X(G, J) =
⋃

k∈ J

rkvG
k ,

where J ⊂ {1, 2, . . . , n} and rk > 0. Let R denote the set of rk.

Bajnok [2] found new tight Euclidean designs in X(Bn, J). In Section 4, using the

theory of G-invariant harmonic polynomials, we extend Bajnok’s method to other

reflection groups G, and classify the tight Euclidean designs obtained from X(G, J).

3 Xu’s Theorem

Let Ω = {(x, y) ∈ R
2 | 0 ≤

√

x2 + y2 < ∞}. Let W be a nonnegative weight

function on [0,∞) with finite moments. We consider the radial weight function

defined by W (
√

x2 + y2) on Ω. The following integral is said to be radially symmetric

or circularly symmetric:

I[ f ] =

∫

Ω

f (x, y)W (
√

x2 + y2)dxdy

=

∫ ∞

0

(
∫ 2π

0

f (r cos θ, r sin θ)dθ

)

rW (r)dr.

To generalize a famous theorem by Verlinden and Cools [26] on the existence of

cubature formula for radially symmetric integral, Xu proved the following theorem.

Theorem 3.1 ([27, Theorems 2.1 and 2.2]) (i) Let

I2m( f ) =
π

m + 1

m
∑

i=1

λi

2m+1
∑

j=0

f

(

ri cos
(2 j + σi)π

2m + 2
, ri sin

(2 j + σi)π

2m + 2

)

,

I2m+1( f ) = λ0 f (0, 0)

+
π

m + 2

m
∑

i=1

λi

2m+3
∑

j=0

f

(

ri cos
(2 j + σi)π

2m + 4
, ri sin

(2 j + σi)π

2m + 4

)

,

(3.1)

where σi takes the value 0 if m + i is even and the value 1 if m + i is odd. Then In

forms a cubature formula of degree 2n − 1 for I if and only if the following two types of

conditions are satisfied:

∫ ∞

0

r2 j+1W (r)dr =

⌊n/2⌋
∑

i=1

λir
2 j
i , j = 1, . . . , n − 1,(3.2)

⌊n/2⌋
∑

i=1

λir
2 j
i (−1)i

= 0, j = ⌊(n + 3)/2⌋, . . . , n − 1.(3.3)
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(ii) With the same symbol σi as in (i), let

In( f ) =
2π

m + 1

⌊(n+2)/2⌋
∑

i=1

λi

2m
∑

j=0

f

(

ri cos
(2 j + σi)π

2m + 1
, ri sin

(2 j + σi)π

2m + 1

)

,

where n = 2m − 1 or 2m. Then In forms a cubature formula of degree 2n for I if and

only if the following two types of conditions are satisfied:

∫ ∞

0

r2 j+1W (r)dr =

⌊(n+2)/2⌋
∑

i=1

λir
2 j
i , j = 1, . . . , n,(3.4)

⌊(n+2)/2⌋
∑

i=1

λir
2 j
i (−1)i

= 0, j = ⌊(n + 1)/2⌋, · · · , n − 1.(3.5)

The aim of this section is to give a proof of Theorem 3.1 different from the original

one by Xu.

Proof of Theorem 3.1 Let Dℓ be the dihedral group of order 2ℓ and let f (x1, x2) be

a Dℓ-invariant polynomial. Using the polar coordinate system, we let f (x1, x2) =

f (r cos θ, r sin θ). It is shown that f can be represented as a polynomial in two vari-

ables r2, rℓ cos ℓθ. We now consider the case where n = 2m in (i); the reader will

easily see that the same argument as below works in the remaining cases. The condi-

tions (3.2) and (3.3) respectively mean to substitute the monomials r2, . . . , r2n−2 and

rn+2 cos (n + 2)θ, rn+4 cos (n + 2)θ, . . . , r2n−2 cos (n + 2)θ into (3.1). Thus the result

follows by Theorem 2.1.

Remark 3.2 (i) Xu’s proof of Theorem 3.1 required approximately 2 pages for (i)

with n = 2m. With this in mind, we tried to find a shorter proof using the Sobolev

theorem. Another advantage of our proof is its simplicity. Namely, the Sobolev the-

orem is the only advanced tool used in our proof, whereas Xu’s proof requires some

technical and advanced tools in numerical analysis such as Gaussian–Lobatto quadra-

ture and Gaussian–Radau quadrature. The proof by Xu also requires some tedious

calculations. In summary, our proof is shorter and simpler than the original. An-

other advantage of our proof is that while conditions (3.2) and (3.3) (or (3.4) and

(3.5)) are considerably analytic, and so researchers in other fields like combinatorics

and algebra will not be familiar with them, whereas, our new proof gives a general

interpretation of the above analytic conditions, and will allow researchers in these

areas to enjoy Theorem 3.1 well. The authors hope that researchers in many different

fields know the importance of Theorem 3.1 and will be more interested in classical

theories of cubature formulas developed in numerical analysis.

(ii) Bajnok [1, Theorem 9] found a tight Euclidean t-design of R
2 that has the

same structure of points as Xu’s formula, as a generalization of a tight 4-design by

Bannai and Bannai [3]. To do this, he implicitly used the same idea as in Theo-

rem 3.1; for instance equation (10) in his paper corresponds to equation (3.3) (or

equation (3.5)) here.
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4 Orbits of a Reflection Group as Euclidean Designs

In this section we classify the tight Euclidean designs obtained from X(G, J) for a

finite irreducible reflection group G. A finite set X ⊂ R
d is said to be antipodal if

X = −X. A tight Euclidean 2e-design has a weight function that is constant on each

Xi [3], and so does an antipodal tight Euclidean (2e−1)-design [7]. Throughout this

section we assume a weight function is constant on each G-orbit.

First, we look at a stronger theorem than Theorem 2.3 for G-invariant Euclidean

designs. A Euclidean t-design X is said to be G-invariant if X is a union of G-orbits

and an equal weight is assigned to each point of the same orbit.

Lemma 4.1 Let G be a subgroup of O(R
n). Let f be a G-invariant polynomial and xG

be a G-orbit. Then, f (y) = f (z) for any y, z ∈ xG.

Proof This is straightforward.

Let |G| be the order of a group G.

Theorem 4.2 Let G be a subgroup of O(R
n). Let X = ∪M

k=1rkxG
k , where xk ∈ Sn−1

and rk > 0. The following are equivalent:

(i) X is a G-invariant Euclidean t-design.

(ii)
∑

x∈X w(x)‖x‖2 jϕ(x) = 0 for any ϕ ∈ Harml(R
n)G with 1 ≤ l ≤ t, 0 ≤ j ≤

⌊ t−l
2
⌋.

Proof For f ∈ Harml(R
d), the polynomial

ϕ(ξ) =
1

|G|
∑

g∈G

f (ξg)

is an element of Harml(R
d)G. Let w(x) = wk for every x ∈ xG

k . By Lemma 4.1, for

any f ∈ Harml(R
d), we have

∑

x∈X

w(x)‖x‖2 j f (x) =

M
∑

k=1

wkr
2 j
k

∑

x∈xG
k

f (rkx)

=

M
∑

k=1

wkr
2 j+l
k |xG

k |
|G|

∑

g∈G

f (x
g
k) =

M
∑

k=1

wkr
2 j+l
k |xG

k |ϕ(xk)

=

M
∑

k=1

wkr
2 j
k

∑

x∈xG
k

ϕ(rkx) =
∑

x∈X

w(x)‖x‖2 jϕ(x).

The result thus follows by Theorem 2.3.

Remark 4.3 The radii rk are not necessarily mutually distinct in Theorem 4.2.

Goethals and Seidel [13] stated Theorem 2.1 for spherical designs. Theorem 4.2 with

all rk = 1 becomes the theorem of G-invariant spherical designs. The approach using

the orbits under subgroups of O(R
d) has long been considered [4]. Theorem 4.2 re-

duces the computational cost to check the strength of a G-invariant Euclidean design

less than using Theorem 2.3.
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From now on, let G be a finite irreducible reflection group, and let vk be a corner

vector. Put Nk = |vG
k |. The following is immediate by Lemma 4.1 and Theorem 4.2.

Corollary 4.4 We have that X(G, J) is a Euclidean t-design if and only if there exist

wk > 0 and rk > 0 such that the equation
∑

k∈ J wkr
2 j+i
k Nk f (vk) = 0 holds for any

f ∈ Harmi(R
d)G, where i, j are positive integers satisfying 1 ≤ 2 j + i ≤ t.

The dimension of Harmi(R
d)G is clear by Theorem 2.6. We can determine the

basis of Harmi(R
d)G by harmonic polynomials f satisfying f (xg) = f (x) for each

generator g of G. By the basis of Harmi(R
d)G and Corollary 4.4, we obtain a necessary

and sufficient condition for X(G, J) to be a Euclidean t-design. Bajnok [2] found an

explicit such condition for the group Bn by using Corollary 4.4. For other groups, it

is possible to give the conditions, but the statements are not simple. Therefore we do

not inlude them in this paper.

Now, let us classify the tight Euclidean designs obtained from X(G, J). For each

group, we determine the possible maximum strength of X(G, J) for any J and radii

R. Since the cardinality of vG
k is easily calculated, we can check whether the total size

of a union of several orbits attains the fisher type inequality. For the set attaining the

bound, we give its maximum strength by Corollary 4.4.

Hereafter let ei ∈ R
n be the row vector whose i-th entry is 1 and other entries are

0. Let Sn be the symmetric group. Define

sym( f ) :=
1

|(Sn) f |
∑

g∈Sn

f (xg),

where (Sn) f := {g ∈ Sn | f (xg) = f (x)}.

4.1 Group An

Dynkin diagram t t t · · · t

α1 α2 α3 αn

Exponents 1, 2, . . . , n

Fundamental roots αi := ei − ei+1 for 1 ≤ i ≤ n − 1. αn := [a, a, . . . , a, b], where

a = (−1 +
√

n + 1)/n and b = (n − 1 +
√

n + 1)/n.

Corner Vectors vk = [ck, . . . , ck, dk, . . . , dk] whose first k coordinates are equal to

ck, and last n − k coordinates are equal to dk, where

ck =
n + 1 − k +

√
n + 1

√

k(n + 1 − k)(n + 2 + 2
√

n + 1)
, dk =

−k
√

k(n + 1 − k)(n + 2 + 2
√

n + 1)
.
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Reflection group The reflection group An ⊂ O(R
n) is generated by the following:

r(αi) =
[

t e1, . . . ,
t ei−1,

t ei+1,
t ei ,

t ei+2, . . . ,
t en

]

for 1 ≤ i ≤ n − 1,

r(αn) =

[

In−1 − a2(t j j) −abt j

−ab j 1 − b2

]

,

where In is the identity matrix of size n, and j is the all-ones row vector.

Orbits Let U1 be the set of all vectors such that k coordinates are equal to ck, and

other n− k coordinates are equal to dk. Let U2 be the set of all vectors such that k− 1

coordinates are equal to c ′k, and other n + 1 − k coordinates are equal to d ′
k, where

c ′k =
n + 1 − k

√

k(n + 1 − k)(n + 2 + 2
√

n + 1)
, d ′

k =
−k −

√
n + 1

√

k(n + 1 − k)(n + 2 + 2
√

n + 1)
.

Then the orbit vAn

k = U1∪U2. Furthermore, we have Nk =
(

n+1
k

)

and vAn

k = −vAn

n+1−k.

Harmonic Molien Series

1

(1 − t3)(1 − t4) · · · (1 − tn+1)
=











1 + t3 + t6 + · · · , if n = 2,

1 + t3 + t4 + t6 + · · · , if n = 3,

1 + t3 + t4 + t5 + · · · , if n ≥ 4.

G-invariant harmonic polynomials

1. Degree 3: Note that dim Harm3(R
n)An = 1 for any n ≥ 2. Harm3(R

n)An is spanned

by the following:

(i) n = 2.

f3 = x3
1 − 3x2

1x2 − 3x1x2
2 + x3

2.

(ii) n = 3.

f3 = sym(x3
1) − 3

2
sym(x1x2

2) − 3

4
sym(x1x2x3).

(iii) n ≥ 4.

f3 = sym(x3
1) − 3

n − 1
sym(x1x2

2) +
6(2 −

√
n + 1)

(n − 1)(n − 3)
sym(x1x2x3).

2. Degree 4: Note that dim Harm4(R
2)A2 = 0 and dim Harm4(R

n)An = 1 for any

n ≥ 3. The following are Sn-invariant harmonic polynomials:

h4,1 = sym(x4
1) − 6

n − 2
sym(x2

1x2
2),

h4,2 = sym(x1x2x3x4),

h4,3 = sym(x1x3
2) − 6

n − 2
sym(x1x2x2

3).

Harm4(R
n)An is spanned by the following:
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(i) n = 3.

f4 = h4,1 −
20

13
h4,3.

(ii) n ≥ 4.

f4 = h4,1 + c4,2h4,2 + c4,3h4,3,

where

c4,2 =
24(n + 2)(n2 − 5n − 12 + 4

√
n + 1)

(n − 1)(n − 2)(n3 − 2n2 − 15n − 16)
,

c4,3 = −4(n + 2)(n2 − 2n − 7 − (n − 1)
√

n + 1)

(n − 1)(n3 − 2n2 − 15n − 16)
.

3. Degree 5: Note that dim Harm5(R
n)An = 0 for n = 2, 3, and dim Harm5(R

n)An =

1 for any n ≥ 4. The following are Sn-invariant harmonic polynomials:

h5,1 = sym(x5
1) − 10

n − 1
sym(x2

1x3
2) +

30

(n − 1)(n − 2)
sym(x1x2

2x2
3),

h5,2 = sym(x5
1) − 10

n − 1
sym(x2

1x3
2) +

5

n − 1
sym(x1x4

2),

h5,3 = sym(x1x2x3
3) − 9

n − 3
sym(x1x2x3x2

4),

h5,4 = sym(x1x2x3x4x5).

Harm4(R
n)An is spanned by the following:

(i) n = 4.

f5 = h5,1 +
17 − 20

√
5

58
h5,2 +

10(18 +
√

5)

87
h5,3.

(ii) n ≥ 5.

f5 = h5,1 + c5,2h5,2 + c5,3h5,3 + c5,4h5,4,

where

c5,2 = −2n3 + 5n2 − 21n − 90 − n(n + 6)
√

n + 1

4n3 + 3n2 − 60n − 180
,

c5,3 =
20(2n3 + 6n2 − 32n − 168 + (n2 − 8n + 12)

√
n + 1)

(n − 1)(n − 2)(4n3 + 3n2 − 60n − 180)
,

c5,4 = −120(n + 6)(n2 − 11n − 78 + (2n2 − 2n + 12)
√

n + 1)

(n − 1)(n − 2)(n − 3)(4n3 + 3n2 − 60n − 180)
.
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Substitute vk for G-invariant Harmonic Polynomials

1. Degree 3: For n = 2, n ≥ 4,

f3(vk) = − k − n+1
2√

k(n + 1 − k)
φ3(n),

where

φ3(n) =
2(n3 + 3n2 − 12n − 16 + (3n2 − 4n − 16)

√
n + 1)

(n − 1)(n − 3)(n + 2 + 2
√

n + 1)
3
2

.

For n = 3,

f3(v1) =
729

4
, f3(v2) = 0, f3(v3) = −729

4
.

2. Degree 4: For n ≥ 3,

f4(vk) =
(k − α)(k − β)

k(n + 1 − k)
φ4(n),

where

φ4(n)

=
6(n + 1)(n5 + 7n4 − 24n3 − 160n2 − 256n − 128 + 4(n4 − 20n2 − 48n − 32)

√
n + 1)

(n − 1)(n − 2)(n3 − 2n2 − 15n − 16)(n + 2 + 2
√

n + 1)2
,

α =
n + 1

2
−

√
3(n2 − 1)

6
, β =

n + 1

2
+

√
3(n2 − 1)

6
.

3. Degree 5: For n ≥ 4,

f5(vk) = − (k − n+1
2

)(k − α ′)(k − β ′)

(k(n + 1 − k))
3
2

φ5(n),

where

φ5(n) =
24(n + 1)(2n6 + 31n5 + 50n4 − 448n3 − 2144n2 − 3200n − 1536)

(n − 1)(n − 2)(n − 3)(4n3 + 3n2 − 60n − 180)(n + 2 + 2
√

n + 1)
5
2

+
24(n + 1)(11n5 + 50n4 − 96n3 − 1120n2 − 2432n − 1536)

√
n + 1

(n − 1)(n − 2)(n − 3)(4n3 + 3n2 − 60n − 180)(n + 2 + 2
√

n + 1)
5
2

,

α ′
=

n + 1

2
−

√
3(n + 1)(2n − 3)

6
, β ′

=
n + 1

2
+

√
3(n + 1)(2n − 3)

6
.

Theorem 4.5 There is no choice of J, R, and w for which (X(An, J),w) is a Euclidean

6-design.
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Proof The polynomial of degree 6:

f (x1, x2, . . . , xn) = sym(x1x5
2) − 10

3
sym(x3

1x3
2)

is harmonic for any n ≥ 2. We can calculate

∑

x∈v
An
k

f (x) = g1(n, k)
(

k(k − n − 1)
(

4k2 − 4(n + 1)k + n2 + 5n + 4
)

g2(n) + g3(n)
)

,

where

g1(n, k) =
n(n + 1)

3k3(n + 1 − k)3(n + 2 + 2
√

n + 1)3

(

n − 1

k − 1

)

,

g2(n) = 5(n2 + 11n + 12 + (6n + 12)
√

n + 1),

g3(n) = (n + 1)2(n + 2)(2n2 + 28n + 30 + (15n + 30)
√

n + 1).

Note that g1(n, k) > 0 for 1 ≤ k ≤ n. Define

F(k) = k(k − n − 1)
(

4k2 − 4(n + 1)k + n2 + 5n + 4
)

g2(n) + g3(n).

For a fixed n, we prove that F(k) < 0 for 1 ≤ k ≤ n. We have

d

dk
F(k) = 16

(

k − n + 1

2

)

(k − α ′ ′)(k − β ′ ′)g2(n),

where

α ′ ′
=

n + 1

2
−

√
2(n + 1)(n − 2)

4
, β ′ ′

=
n + 1

2
+

√
2(n + 1)(n − 2)

4
.

If F(1) = F(n) < 0, F((n + 1)/2) < 0, and F(α ′ ′) = F(β ′ ′) < 0, then F(k) < 0 for

all 1 ≤ k ≤ n. Indeed for n ≥ 2,

F(1) = F(n)

= −(n − 1)(3n4 + 27n3 + 10n2 + 26n + 60 + (15n3 + 15n2 + 60)
√

n + 1) < 0,

F(α ′′) = F(β ′ ′)

= − 1

16
n(n + 1)2(5n3 + 63n2 + 68n − 16 + (30n2 + 60n)

√
n + 1) < 0,

F
( n + 1

2

)

= −1

4
(n − 1)(n + 1)2(7n2 + 59n + 60 + (30n + 60)

√
n + 1) < 0.

Therefore,
∑

k∈ J

∑

x∈v
An
k

wkrk f (x) < 0 for any J, R, and w.
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|R| t n J ri wi

1 2 any {1} r1 = 1 w1 = 1

2 any {n} rn = 1 wn = 1

3 3 {2} r2 = 1 w2 = 1

5 2 {1, 2} r1 = r2 = 1 w1 = w2 = 1

5 7 {2, 6} r2 = r6 = 1 w2 = w6 = 1

2 4 2 {1, 2} r1 = 1, r2 6= 1 w1 = 1, w2 =
1
r3

2

4 4 {1, 3} r1 = 1, r3 =
1√

6
w1 = 1, w3 = 27

4 4 {2, 4} r4 = 1, r2 =
1√

6
w4 = 1, w2 = 27

4 5 {1, 4} r1 = 1, r4 =

√

8
5

w1 = 1, w4 =
1
2

4 5 {2, 5} r5 = 1, r2 =

√

8
5

w5 = 1, w2 =
1
2

4 6 {1, 5} r1 = 1, r5 =
√

15 w1 = 1, w5 =
1

81

4 6 {2, 6} r6 = 1, r2 =
√

15 w6 = 1, w2 =
1

81

5 3 {1, 2, 3} r1 = r3 = 1, r2 6= 1 w1 = w3 = 1, w2 =
9

8r4
2

5 5 {1, 3, 5} r1 = r5 = 1, r3 6= 1 w1 = w5 = 1, w3 =
27

25r4
2

Table 4.1: Tight Euclidean t-designs from X(An, J)

Theorem 4.6 X(An, J) is not a tight Euclidean t-design except for the cases in Ta-

ble 4.1.

Proof We prove only the classification of tight Euclidean 4-designs on two concen-

tric spheres obtained from X(An, J). The other cases can be proved in a similar way.

Define f3(vk) and φ3(n) as above. Since φ3(n) > 0 for n > 1, f3(vk) = 0 if and

only if n ≡ 1 (mod 2) and k = (n + 1)/2. Clearly f3(vk) > 0 for k < (n + 1)/2,

and f3(vk) < 0 for k > (n + 1)/2. Therefore J must contain k1 and k2 such that

k1 < (n + 1)/2 < k2 by Corollary 4.4.

The size of a tight Euclidean 4-design on two concentric spheres is (n+1)(n+2)/2.

By noting that (n + 1)(n + 2)/2 < N3 = Nn−2 for n > 5, we can determine that

J = {1, n − 1}, (or equivalently J = {2, n}) for any n > 2, or J = {1, 2} for n = 2.

For n = 2, we can obtain tight Euclidean 4-designs on two concentric spheres as in

Table 4.1.

Define f4(vk), φ4(n), α, and β as above. Note thatφ4(n) 6= 0, α > 1, and β < n for

any integer n > 2. Therefore 1 < α < n − 1 < β, (or equivalently α < 2 < β < n)

holds by Corollary 4.4. The integers satisfying the condition are only n = 4, 5, 6. For

n = 4, 5, 6, we can obtain tight Euclidean 4-designs on two concentric spheres as in

Table 4.1.

4.2 Group Bn

Dynkin diagram t t t · · · t t

α1 α2 α3 αn−1 αn

4
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Exponents 1, 3, . . . , 2n − 1

Fundamental roots αi := ei − ei+1 for 1 ≤ i ≤ n − 1 and αn :=
√

2en.

Corner Vectors vk = [1/
√

k, . . . , 1/
√

k, 0, . . . , 0], where vk has k coordinates equal

to 1/
√

k.

Reflection group The reflection group Bn ⊂ O(R
n) is generated by the following:

r(αi) =
[

t e1, . . .
t ei−1,

t ei+1,
t ei ,

t ei+2, . . . ,
t en

]

for 1 ≤ i ≤ n − 1,

r(αn) =
[

t e1, . . .
t en−1,−t en

]

.

Orbits The orbit vBn

k is the set of vectors with exactly k nonzero coordinates equal

to ±1/
√

k. Note that vBn

k is antipodal and Nk = 2k
(

n
k

)

.

Harmonic Molien series

1

(1 − t4)(1 − t6) · · · (1 − t2n)
=

{

1 + t4 + t8 + · · · , if n = 2,

1 + t4 + t6 + · · · , if n ≥ 3.

G-invariant harmonic polynomials

1. Degree 4: Note that dim(Harm4(R
n)Bn ) = 1 for any n ≥ 2. The following is a

Bn-invariant harmonic polynomial of degree 4:

f4 = sym(x4
1) − 6

n − 1
sym(x2

1x2
2).

2. Degree 6: Note that dim(Harm6(R
2)B2 ) = 0 and dim(Harm6(R

n)Bn ) = 1 for any

n ≥ 3. The following is a Bn-invariant harmonic polynomial of degree 6:

f6 = sym(x6
1) − 15

n − 1
sym(x2

1x4
2) +

180

(n − 1)(n − 2)
sym(x2

1x2
2x2

3).

Substitute vk for G-invariant Harmonic Polynomials

1. Degree 4:

f4(vk) =
1

k

(

1 − 3
k − 1

n − 1

)

.

2. Degree 6:

f6(vk) =
1

k2

(

1 − 15
k − 1

n − 1
+ 30

(k − 1)(k − 2)

(n − 1)(n − 2)

)

.

Theorem 4.7 ([2]) There is no choice of R, J, and w for which (X(Bn, J),w) is a

Euclidean 8-design.
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|R| t n J ri wi

1 3 any {1} r1 = 1 w1 = 1

3 2 {2} r2 = 1 w2 = 1

7 2 {1, 2} r1 = r2 = 1 w1 = w2 = 1

2 5 2 {1, 2} r1 = 1, r2 6= 1 w1 = 1, w2 =
1
r4

2

5 3 {1, 3} r1 = 1, r3 6= 1 w1 = 1, w3 =
9

8r4
2

7 4 {1, 2, 4} r1 = r4 = 1, r2 6= 1 w1 = w4 = 1, w2 =
1
r6

2

3 7 3 {1, 2, 3} r1 = 1, r2 =

√

2r2
3

5r2
3−3

, (ri 6= r j) w1 = 1, w2 =
4

5r6
2
, w3 =

27
40r6

3

Table 4.2: Tight Euclidean t-designs from X(Bn, J)

Theorem 4.8 ([2]) We have that X(Bn, J) is not a tight Euclidean t-design except for

the cases in Table 4.2.

Remark 4.9 We can also prove Theorems 4.7 and 4.8 by the Bn-invariant harmonic

polynomials.

4.3 Group Dn

Dynkin diagram t t t · · · t
a
a

aa

!
!

!!
t

t

α1 α2 α3 αn−2

αn−1

αn
Exponents 1, 3, . . . , 2n − 3, n − 1

Fundamental roots αi := ei − ei+1 for 1 ≤ i ≤ n − 1 and αn := en−1 + en.

Corner Vectors vk = [1/
√

k, . . . , 1/
√

k, 0, . . . , 0], where vk has k coordinates equal

to 1/
√

k for 1 ≤ k ≤ n − 2, vn−1 = [1/
√

n, 1/
√

n, . . . , 1/
√

n,−1/
√

n] and vn =

[1/
√

n, 1/
√

n, . . . , 1/
√

n].

Reflection group The reflection group Dn ⊂ O(R
n) is generated by the following:

r(αi) =
[

t e1, · · · t ei−1,
t ei+1,

t ei ,
t ei+2, · · · , t en

]

for 1 ≤ i ≤ n − 1,

r(αn) =
[

t e1, · · · t en−2,−t en,−t en−1

]

.

Orbits For 1 ≤ k ≤ n − 2, vDn

k = vBn

k . The orbit vDn
n (resp. vDn

n−1) consists of

the vectors {±1/
√

n}n with an even (resp. odd) number of negative coordinates.

Note that vDn
n = −vDn

n−1 for odd n, and both vDn
n and vDn

n−1 are antipodal for even n.

Furthermore, |Nn−1| = |Nn| = 2n−1.
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Harmonic Molien series

1

(1 − t4)(1 − t6) · · · (1 − t2n−2)(1 − tn)
=































1 + 2t4 + t6 + 3t8 + · · · , if n = 4,

1 + t4 + t5 + t6 + 2t8 + · · · , if n = 5,

1 + t4 + 2t6 + 2t8 + · · · , if n = 6,

1 + t4 + t6 + t7 + 2t8 · · · , if n = 7,

1 + t4 + t6 + 2t8 · · · , if n ≥ 8.

G-invariant Harmonic Polynomials

1. Degree 4: Note that dim(Harm4(R
4)D4 ) = 2 and dim(Harm4(R

n)Dn ) = 1 for any

n ≥ 5. The following are Dn-invariant harmonic polynomials of degree 4:

f4 = sym(x4
1) − 6

n − 1
sym(x2

1x2
2).

The following is a D4-invariant harmonic polynomial of degree 4, which is linearly

independent of f4:

f4,2 = x1x2x3x4.

2. Degree 5: Note that dim(Harm5(R
5)D5 ) = 1 and dim(Harm5(R

n)Dn ) = 0 for any

n 6= 5. The following is a D5-invariant harmonic polynomial of degree 5:

f5 = x1x2x3x4x5.

3. Degree 6: Note that dim(Harm6(R
6)D6 ) = 2 and dim(Harm6(R

n)Dn ) = 1 for any

n 6= 6. The following is a Dn-invariant harmonic polynomial of degree 6:

f6 = sym(x6
1) − 15

n − 1
sym(x2

1x4
2) +

180

(n − 1)(n − 2)
sym(x2

1x2
2x2

3).

The following is a D6-invariant harmonic polynomial of degree 6, which is linearly

independent of f6:

f6,2 = x1x2x3x4x5x6.

Substitute vk for G-invariant harmonic polynomials

1. Degree 4: For 1 ≤ k ≤ n − 2,

f4(vk) =
1

k

(

1 − 3
k − 1

n − 1

)

.

For k = n − 1, n,

f4(vk) = −2

n
.
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For n = 4,

f4,2(v1) = 0, f4,2(v2) = 0, f4,2(v3) = − 1

16
, f4,2(v4) =

1

16
.

2. Degree 5: For n = 5,

f5(v1) = 0, f5(v2) = 0, f5(v3) = 0, f5(v4) = − 1

25
√

5
, f5(v1) =

1

25
√

5
.

3. Degree 6: For 1 ≤ k ≤ n − 2,

f6(vk) =
1

k2

(

1 − 15
k − 1

n − 1
+ 30

(k − 1)(k − 2)

(n − 1)(n − 2)

)

.

For k = n − 1, n, f6(vk) = 16
n2 . For n = 6,

f6,2(v1) = 0, f6,2(v2) = 0, f6,2(v3) = 0, f6,2(v4) = 0,

f6,2(v5) = − 1

216
, f6,2(v6) =

1

216
.

Theorem 4.10 There is no choice of J, R, and w for which (X(Dn, J),w) is a Euclidean

8-design.

Proof The following is a Dn-invariant harmonic polynomial of degree 8:

f8 = sym(x8
1) − 28

n − 1
sym(x2

1x6
2) +

70

n − 1
sym(x4

1x4
2).

For 1 ≤ k ≤ n − 2,

f8(vk) =
1

k3

(

1 + 7
k − 1

n − 1

)

,

and for k = n − 1, n, f8(vk) = 8
n3 . Therefore, f8(vk) > 0 for all k.

Theorem 4.11 Assume that J contains n or n − 1. Then X(Dn, J) is not a tight

Euclidean design except for the cases in Table 4.3.

Proof By Theorem 4.10 and Dn-invariant harmonic polynomials, the proof is simi-

lar to that of Theorem 4.6.

Remark 4.12 The tight Euclidean designs in Tables 4.1, 4.2, and 4.3 are already

known in [2, 3, 5–7, 9].

Remark 4.13 For each G = F4, H3, H4, E6, E7, E8, by checking the cardinality of a

union of several vG
k , we can prove that X(G, J) is not a tight Euclidean design except

for known tight spherical designs [21, 22].
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|R| t n J ri wi

1 7 8 {2, 7} r2 = r7 = 1 w2 = w7 = 1

7 8 {2, 8} r2 = r8 = 1 w2 = w8 = 1

2 5 6 {1, 5} r1 = 1, r5 6= 1 w1 = 1, w5 =
9

8r4
2

5 6 {1, 6} r1 = 1, r6 6= 1 w1 = 1, w6 =
9

8r4
2

7 4 {1, 2, 3, 4} r1 = r3 = r4 = 1, r2 6= 1 w1 = w3 = w4 = 1, w2 =
1
r6

2

Table 4.3: Tight Euclidean t-designs from X(Dn, J), where n or n − 1 ∈ J

5 Concluding Remarks

In this paper we made some observations on invariant cubature formulas and Eu-

clidean designs in connection with the Sobolev theorem. First, we gave an alternative

proof of the celebrated theorems by Xu on necessary and sufficient conditions for the

existence of cubature formulas with radial symmetry. The new proof is much shorter

and simpler compared to the original. Thus researchers in analysis will be reminded

of the importance of the Sobolev theorem. Moreover, our proof gives a general in-

terpretation of the analytically-written conditions of Xu’s theorems, and so will allow

researchers in algebra and combinatorics to become more familiar with Xu’s the-

orems. Second we extended the Neumaier–Seidel theorem to invariant Euclidean

designs, and thereby classified tight Euclidean designs obtained from unions of the

orbits of the corner vectors. The classification generalizes Bajnok’s theorem to other

finite reflection groups beside groups of type B. Bajnok’s theorem and results ob-

tained in Section 4 may imply that invariant cubature formulas of high degree could

hardly exist. Xu pointed out, however, that the general Lie groups have been used for

studying cubature formulas in a different setting (cubature rules on the fundamen-

tal domain of the group, which are for exponential or trigonometric functions), and

they yield Gaussian type cubature for algebraic polynomials of very high orders; for

instance see [15, 17] for details. We believe this direction of research in analysis will

also motivate the study of cubature formulas in other areas of mathematics.
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