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Abstract
In deep learning (DL), the instability phenomenon is widespread and well documented, and the most commonly
used measure of stability is the Lipschitz constant. While a small Lipchitz constant is traditionally viewed as guar-
antying stability, it does not capture the instability phenomenon in DL for classification well. The reason is that a
classification function – which is the target function to be approximated – is necessarily discontinuous, thus having
an ‘infinite’ Lipchitz constant. As a result, the classical approach will deem every classification function unstable,
yet basic classification functions a la ‘is there a cat in the image?’ will typically be locally very ‘flat’ – and thus
locally stable – except at the decision boundary. The lack of an appropriate measure of stability hinders a rigorous
theory for stability in DL, and consequently, there are no proper approximation theoretic results that can guarantee
the existence of stable networks for classification functions. In this paper, we introduce a novel stability measure
S(f ), for any classification function f , appropriate to study the stability of classification functions and their approx-
imations. We further prove two approximation theorems: First, for any ε > 0 and any classification function f on
a compact set, there is a neural network (NN) ψ , such that ψ − f �= 0 only on a set of measure < ε; moreover,
S(ψ) ≥ S(f ) − ε (as accurate and stable as f up to ε). Second, for any classification function f and ε > 0, there
exists a NN ψ such that ψ = f on the set of points that are at least ε away from the decision boundary.

1. Introduction

With the rise of adversarial attacks in deep learning (DL) for image classification, the universal instability
of DL methods across various scientific fields has become evident [5, 8, 20, 24, 36, 54, 55, 56, 63, 67,
69]. This underscores the urgent need to investigate the stability properties of neural networks (NN).
Traditionally, the size of the Lipschitz constant has been a common metric for such investigations [14,
17, 33, 51]. While this approach is useful in many scenarios, it falls short for discontinuous functions,
which have ‘infinite’ Lipschitz constants. Consequently, expecting a NN to accurately approximate a
classification function with a ‘small’ Lipschitz constant is unrealistic, given that the target function is
inherently unstable. This issue is particularly problematic for DL, whose major strength lies in image
recognition [35, 36, 54, 59] – an inherently discontinuous task. Empirical observations of instabilities
and hallucinations in image recognition further highlight this problem [6, 9, 11, 43, 48, 50, 57, 64, 66,
68, 75, 76]. The instability issue in DL is considered one of the key problems in modern AI research, as
pointed out by Y. Bengio: ‘For the moment, however, no one has a fix on the overall problem of brittle
AIs’ (from ‘Why deep-learning AIs are so easy to fool’ [48]). This leads to the key problem addressed
in this paper:

Do stable neural networks exist for classification problems?
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Conceptually, there is a lack of a comprehensive theory for the stability of classification functions.
While it might be tempting to categorise all classification functions as unstable, this overlooks the vary-
ing degrees of instability among discontinuous functions. For instance, the Heaviside step function
intuitively appears more stable than the Dirichlet function, which is nowhere continuous. To address
this issue, we introduce a new stability measure called class stability. This measure is designed to study
the stability of discontinuous functions and their approximations by extending classical measure theory.
The proposed stability measure focuses on the closest points with different functional values, capturing
the phenomenon more effectively. This concept aligns with the emerging notion of the ‘margin’ in the
machine learning community, which is a local measure of stability [51]. Our concept of class stability
extends this notion to the entire function across its domain, allowing for a comparison of the stability of
different discontinuous functions. We provide two working definitions of class stability: one based on
an analytic distance metric, and an alternative defined in a measure theoretic way.

Finally, in the spirit of existing approximation papers [2–4, 12, 15, 19, 21, 27–31, 34, 40, 42,
44, 47, 49, 53, 60–62], we prove the existence of NNs with class stabilities approximating the target
function. Using results from approximation theory, analysis and measure theory, we prove two major
theorems. The first one states that NNs are able to interpolate on sets that have a class stability of at least
ε > 0, thereby proving that NNs can approximate any ‘stable’ function (see Lemma 2.3). The second is
regarding the ability for NNs to approximate any function, such that the class stability of the NN is at
most ε > 0 smaller than the class stability of the target function. These results demonstrate that the class
stability is appropriate to study stability for classification functions.

2. Main result

Our main contribution in this paper is the introduction of ‘class stability’ and two corresponding stability
theorems for NNs. The class stability is defined in (2.3) in Section 4. Intuitively, class stability represents
the average distance to the decision boundaries of the function. The first of the two theorems addresses
the restriction of classification functions to sets where the classification functions have a class stability
of at least ε > 0.

To state the main theorems, we need the following five concepts that will be formally defined later in
the paper:

(I) (Classification function). We call f : M→Y, where M⊂Rd is the input domain and Y⊂Z+ a
finite subset, a classification function. This is the function we are typically trying to learn.

(II) (Extension of a classification function). Given a classification function f : M→Y, we define its
extension to Rd as f : Rd →Y such that

f (x) =
{

f (x) if x ∈M,

−1 otherwise,
(2.1)

where Y=Y∪ {−1}.
(III) (Distance to the decision boundary). Given the extension of a classification function f : Rd →Y

and a real number 1 ≤ p ≤ ∞, we define hp

f̄
: Rd →R+, the �p-distance to the decision boundary, as

hp

f̄
(x) = inf{‖x − z‖p : f (x) �= f (z), z ∈Rd}. (2.2)

(IV) (Class stability). If M⊂Rd is compact, then, we define the �p-stability of f to be

Sp
M(f ) =

∫
M

hp

f̄
dμ, (2.3)

where μ is the Lebesgue measure on Rd. We will reference this as the class stability of the
function f .
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(V) (Class prediction function). For a given n ∈N, we define the class prediction function pn : Rn →
{1, . . . , n} as

pn(x) = min{i : xi ≥ xj, ∀j ∈ {1, . . . , n}}. (2.4)

The class prediction function has the same function as the ‘argmax’ function in, for example, the
numpy library of python. This function takes a vector and returns the index of the element that
has the highest value of all elements. If there are multiple such indices that satisfy the maximality,
we return the first index.

We can now state the first of our main theorems.

Theorem 2.1 (Interpolation theorem for stable sets). LetM, K⊂Rd, whereK is compact, and f : M→
Y⊂Z+ be a non-constant classification function where Y is finite. Define

Mε := {x | x ∈M, hp

f̄
(x)> ε}, ε > 0, (2.5)

as the ε-stable set of f , where hp

f̄
is the �p-distance to the decision boundary defined in (2.2). Then, for

any ε > 0 and any continuous non-polynomial activation function ρ, which is continuously differentiable
at least at one point with non-zero derivative at that point, we have the following:

(1) There exists one hidden layer (see Lemma 5.1) NN�1 : K→Y, with an activation function ρ, that
interpolates f on Mε , in particular

pq(�1(x)) = f (x) ∀x ∈Mε ∩K, (2.6)

where pq is the class prediction function, given by Eq. (2.4), that ‘rounds’ to discrete values and
q = |Y|.

(2) There exists a neural network �2 : K→Y, using the activation function ρ, with fixed ‘width’ (see
Definition 5.1) of d + q + 2, that interpolates f on Mε , in particular

pq(�2(x)) = f (x) ∀x ∈Mε ∩K. (2.7)

Remark 2.2 (Deep and Shallow neural networks). By a shallow network, we mean a NN Lemma 5.1
with one hidden layer, while the width of d + q + 2 refers to a NN with hidden layers of size less than
or equal to d + q + 2.

Remark 2.3 (Interpretation of Lemma 2.1). This theorem says that NNs are able to interpolate any clas-
sification function restricted to compact sets on which the classification function attains some minimal
class stability. In a simplified way, one can say that NNs can interpolate on stable sets Mε , which are
essentially the original set M but with a small strip of width ε removed from the boundary of the set.
This way we ensure that we are left with points that are at least ε away from the decision boundary, and
then we simply interpolate on these sets. It is also important to mention that the approximation theorems
utilised here do allow for arbitrary width in the shallow NN case and for arbitrary depth in the deep NN
case.

The second theorem relates to the ability of NNs to approximate the stability of the original classifi-
cation function. The advantage of this theorem is that it also applies to the stability measure in a measure
theoretic frameworks and is in a sense a generalisation of the first theorem. To state the second theorem,
we need to introduce the measure theoretic versions of the distance to the decision boundary and the
class stability:

(VI) (Measure theoretic distance to the decision boundary). For an extension of a classification func-
tion f : Rd →Y and a real number p ≥ 1, we define τ p

f̄
: Rd →R+ the lp-distance to the decision

boundary as

τ
p

f̄
(x) = inf

{
r :

∫
Bp

r (x)

1f̄ (z)=f̄ (x) dμ �=
∫
Bp

r (x)

dμ, r ∈ [0, ∞)

}
.
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Here, μ denotes the Lebesgue measure and Bp
r (x) the unit closed ball with p-norm, and 1 is the

indicator function.
(VII) (Class stability (measure theoretic)). If M⊂Rd is a compact set, we define the (measure theo-

retic) �p-stability of f to be

T p
M(f ) =

∫
M
τ

p

f̄
(x) dμ. (2.8)

Theorem 2.4 (Universal stability approximation theorem for classification functions). For any
Lebesgue measurable classification function f : M⊂Rd →Y, where M is compact, and q = |Y|;
any set {(xi, f (xi))}k

i=1 with τ p

f̄
(xi)> 0 for all i = 1, . . . , k; and any ε1, ε2 > 0, there exists a NN ψ ∈

NN(ρ, d, q, 1, N) (see Lemma 5.1) such that we have the following. The class stability (as defined above
in Eq. (2.3)) of the NN satisfies

T p
M(pq(ψ)) ≥ T p

M(f ) − ε1, (2.9)

we can interpolate on the set

pq(ψ) = f (xi) i = 1, . . . , k , (2.10)

where pq is the class prediction function, given by Eq. (2.4), that ‘rounds’ to discrete values, and

μ(R)< ε2, R := {x | f (x) �= pq(ψ), x ∈M}, (2.11)

where μ denotes the Lebesgue measure.

Remark 2.5 (Interpretation of Lemma 2.4). This theorem proves that if one wants to use a NN to
approximate any fixed classification function, it is possible to achieve with a close to ideal stability,
perfect precision (described by the second property) and an arbitrarily good accuracy (third property).

2.1. Computability and GHA vs existence of NNs – Can the brittleness of AI be resolved?

While our results produce a new framework for studying stability of NNs for classification problems and
provide theoretical guaranties for the existence of stable NNs for classification functions, the key issue
of computability of such NNs is left for future papers. Indeed, as demonstrated in [27, 38], based on
the phenomenon of generalised hardness of approximation (GHA) [7, 9] in the theory of the Solvability
Complexity Index (SCI) hierarchy [12, 13, 25, 26, 45, 46], there are many examples where one can
prove the existence of NNs that can solve a desired problem, but they cannot be computed beyond an
approximation threshold ε0 > 0. Thus, what is needed is a theory that combines our existence theorems
with GHA for which one can determine the approximation thresholds ε0 that will dictate the accuracy
for which the NNs can be computed. This is related to the issue of NN dependency on the input.

Remark 2.6 (Non-compact domains and dependency on the inputs). Note that our results demonstrate
that on compact domains, one can always find a NN ε-approximation ψ to the desired classification
function f , where the stability properties of ψ are ε close to the stability properties of f . However, if the
domain is not compact, this statement seizes to be true. The effect of this is that stable and accurate NN
approximations to the classification function f (on a non-compact domain) can still be found; however,
the NNψ may have to depend on the input. Indeed, by choosing a compact domain Kx based on the input
x, one may use our theorem to find a NN ψx such that ψx(x) = f (x) and ψx is stable on Kx. However, ψx

may have to change dimensions as a function of x. Moreover, if it is possible to make the mapping
x �→ψx recursive is a big open problem. In particular, resolving the brittleness issue of moderns AI
hinges on this question. We mention in passing that there are papers in the machine learning community
that deal with local decision boundary estimates in terms of certificates [76], that potentially provide a
step towards computing class stable NNs.

https://doi.org/10.1017/S0956792525100181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100181


European Journal of Applied Mathematics 5

2.2. Related work
Instability in AI: Our results are intimately linked to the instability phenomenon in AI meth-
ods – which is widespread [5, 8, 11, 20, 24, 36, 54, 55, 56, 63, 67, 69] – and our results add
theoretical understandings to this vast research programme. Notably, our work shares significant
connections with the investigations conducted by F. Voigtlaender et al. [19], which also deals with
classification functions and their approximations via NNs. There has been significant work done
on adversarial attacks by S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard et al. [55, 56]. See also
recent developments by D. Higham, I. Tyukin regarding vulnerabilities of neural networks et al.
[10, 69]. Furthermore, our research aligns with the exploration of robust learning pursued by L.
Bungert, G.Trillos et al. [18] as well as by S. Wang, N. Si, J. Blanchet [71]. The stability prob-
lem in NN has also been extensively investigated by V. Antun et al. [27], see also the work by B.
Adcock and N. Dexter [2].
Existence vs computability of stable NNs: There is a substantial literature on existence results
of NNs [16, 61, 74], see, for example, the aforementioned work by F. Voigtlaender et al. [70],
review papers by A. Pinkus [62] and the work by R. DeVore, B. Hanin and G. Petrova [31] and
the references therein. For recent results, see the work by G. D‘Inverno, S. Brugiapaglia and M.
Ravanelli [32], by N. Franco and S. Brugiapaglia [37] and by B. Adcock, S. Brugiapaglia, N.
Dexter and S. Morage [1]. Our work also utilises the approximation theorems obtained by P. Kidger
and T. Lyons [52]. However, as established in [27] by M. Colbrook, V. Antun et al., only a small
subset of the NNs than can be proven to exist can be computed by algorithms. We also need to
point out that following the framework of A. Chambolle and T. Pock [22, 23], the results in [27]
demonstrate how – under specific assumptions – stable and accurate NNs can be computed. See
also the work by P. Niyogi, S. Smale and S. Weinberger [58] on existence results of algorithms
for learning.

3. Motivation for new stability measure

In this section, we will motivate the need for a new stability measure for classification functions. We
will first discuss the classical approach to stability in NNs, which is based on the Lipschitz continuity
and having a bounded Lipschitz constant. We will then demonstrate that the Lipschitz constant is not
a suitable measure for classification functions, and introduce the class stability as a new measure for
stability.

3.1. Classification functions and Lipschitz continuity

The Lipschitz constant is a standard measure of stability in NNs [14, 17, 33, 51]. While it is suitable
to use the Lipschitz constant for continuous functions, it is not appropriate for classification functions.
The main problem is summarised in the following proposition.

Proposition 3.1 (Unbounded Lipschitz continuity for classification functions). Let M be a connected
subset of Rd and f : M→Y be a classification function that is not a constant function a.e. on M. Then,
f is not Lipschitz continuous.

The proof is elementary and simply follows from the fact that any non-constant discrete function on
a connected domain has a discontinuity. This proposition is nothing novel and there are certain methods
that researchers have used to deal with the issues caused by the discontinuities. One common assumption
that is made is that the classes are separated by some minimal distance, as demonstrated in [73]. This
is essentially dropping the connectedness from our assumptions. Furthermore, the issue of isolating the
Lipschitz constant is highlighted by the fact that the classes themselves can be labelled by arbitrary
numbers. This causes a problem for approaches such as the one in [73] where the distance between any
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two examples from different classes is assumed to be at least 2r, for some fixed value r . As an example
take the following functions

Example 3.2. Fix an ε > 0. Let H1 : [ − 1, −ε] ∪ [ε, 1] → {0, 1} defined by

H1(x) =
{

1 x> 0,

0 x< 0.

Similarly, we define the function H2 : [ − 1, −ε] ∪ [ε, 1] → {0, 1000} defined by

H2(x) =
{

1000 x> 0,

0 x< 0.

These two examples illustrate two separate problems with using Lipschitz continuity for classifications
functions. First, both functions are examples of separating different classes of a Heaviside step function
by a small interval ( − ε, ε), thereby leading to a finite Lipschitz constant. However, the value of the
constant depends on the value of ε, and diverges as ε→ 0. The implication of this is that in a machine
learning setting, the more data we gather about the target function, the smaller we would expect the
minimal distance between different classes to be, which corresponds to a smaller ε. As the target func-
tion in common machine learning tasks is discrete, this would lead to an unbounded Lipschitz constant.
Second, the two functions demonstrate that the Lipschitz constant is not invariant under rescaling of the
inputs. The function H2 has a much bigger Lipschitz constant than H1, even though they are describ-
ing the same classification problem. This showcases that the arbitrary choice of representing different
classes as integers, has also an effect on the Lipschitz stability of the function, which we argue is not a
desired property.

3.2. A spectrum of discrete instabilities

Next, we will give examples of functions that all have an unbounded Lipschitz constant, yet somehow
one could consider them to have different ‘stability’. These examples will also be used to demonstrate
desired properties of a more general stability measure.

Example 3.3. Let f1, f2, f3 : [ − 1, 1] → {−1, 1} be defined by: f1(x) = sgn(x),

f2(x) =
{

−sgn(x) if x ∈ {−0.5, 0.5},
sgn(x) otherwise,

and

f3(x) =
{

sgn(x) if x ∈Q,

−sgn(x) if x ∈R \Q.

Here, the function sgn : R→ {−1, 1} is the sign function (for the sake of the argument, we will assign 0
as positive), that is,

sgn(x) =
{

1 if x ≥ 0,

−1 if x< 0.

All three functions take discrete values, and as such have an unbounded Lipschitz constant. However,
one could argue that f1 is more stable than f2, which in turn is more stable than f3. The function f2

is just a more unstable version of f1, with f3 being a ‘minefield’ of instabilities, as any open interval
contains points of different labels. This motivates us to define a local measure which takes into account
the discontinuities but also the position of them, since a point close to the discontinuity would be more
unstable in the sense of ‘What is the smallest perturbation needed to change the output of the function?’.
The three functions are displayed in Figure 1.
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Standard step function. Step function with extra dis-

continuities, making it more ‘un-

stable’.

A function that seems as un-

stable as it is possible.

(a) (b) (c)

Figure 1. Different classes of unstable classification functions.

4. Class stability as a measure for ‘robustness’

In light of the previous examples, we would like to now define a stability measure that is capable of
discerning functions such as f1, f2, f3, while yielding the same stability for H1 and H2. First, we will
remind the reader about the definition of the distance to the decision boundary as stated in the second
section.

Definition 4.1 (Distance to the decision boundary). For the extension of a classification function
f : Rd →Y and a real number 1 ≤ p ≤ ∞, we define hp

f̄
: Rd →R+ the �p-distance to the decision

boundary as

hp

f̄
(x) = inf{‖x − z‖p : f (x) �= f (z), z ∈Rd}.

It is easy to check that this definition indeed captures the intuitive notion of the ‘distance to the
decision boundary’. Indeed, the decision boundary is really just the closest points where the label flips.
Having the local stability measure, we can now proceed to defining a global measure which would help
us differentiate the different types of stabilities of, for example, functions f1, f2 and f3. To assess the
stability of a compact set A ⊂Rd, we define the stability of a function f to be the following:

Definition 4.2 (Class stability of discrete function). Let f : Rd →Y be a extension of a classification
function and A ⊂Rd a compact set. Then, for a real number 1 ≤ p ≤ ∞, we define the �p-stability of f
on A to be

hp

f̄
(A) =

∫
A

hp

f̄
dμ.

We call this stability measure the class stability of the function f on the set A.

This measure is a generalisation of the local stability measure, as it takes into account the stability
of the function on the whole set. If the original classification function was defined on a compact set
M⊂Rd, then Sp(f ) the �p-class stability of f Eq. (2.3) is well defined.

Let us now examine the �1-stability of the functions f1, f2 and f3 on the compact set M= [ − 1, 1].
For f1, the distance to the decision boundary for a point x is given by h1

f̄
(x) = |x|. A straightforward

calculation yields S1(f̄1) = 1. Similarly, we can compute the other values, obtaining S1(f̄2) = 0.5 and
S1(f̄3) = 0. While the specific values depend on the �p norm chosen, the usefulness of this measure lies
in its ability to quantify f3 as completely unstable. In fact, f3 is deliberately selected to represent one of
the worst cases, where any perturbation can cause an extreme change.
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f1, the original step function. f4, the shifted step function.

(a) (b)

Figure 2. Step functions with differently placed steps.

4.1. Properties of the class stability

Consider two classification functions f1, f4 : M= [ − 1, 1] → {−1, 1} where

f1(x) = sgn(x), f4(x) = sgn
(
x + 1

2

)
.

The �1 class stability of these functions on M are 1 and 5
4

correspondingly. In fact, it is true for any p> 0
that the �p norm of f1 is lower than for f4. We can see from Figure 2 that in both functions, there is a
region (shaded blue) for which the points have the exact same stability properties as the relative distance
to the decision boundary remains the same. For the remaining points, we can see that the remaining
portion f4 is more stable than the remaining portion of f1. This property makes sense in the context of
how the average stability of the function looks like. If the instability is hidden away from most points,
then, in some sense, this is more beneficial to the overall stability.

5. Definitions

In order to prove our main theorems, we will need to define some basic concepts.

Definition 5.1 (Neural network). LetNNρ

N,L,d where N = (NL = |Y|, NL−1, . . . , N1, N0 = d) denote the set
of all L-layer NNs. That is, all mappings φ : Rd →RNL of the form:

φ(x) = WL(ρ(WL−1(ρ( . . . ρ(W1(x)) . . . )))), x ∈Rd,

where Wl : RNl−1 →RNl , 1 ≤ l ≤ L is an affine mapping and ρ : R→R is a function (called the activation
function) which acts component-wise (Note that WL : RNL−1 →R|Y|). Typically this function is given by
ρ(x) = max{0, x}. L is also referred to as the number of hidden layers.

We will also need to define specific sets of NNs as they are crucial to approximation theorems. To
this end, we will use the following notation.

Definition 5.2 (Class of neural networks). Let NN(ρ, n, m, D, W) denote the set of NNs NNρ

N,L,d with
an activation function ρ, input dimension n, output dimension m, depth D and width W. In relation to
the previous definition, this means

ρ = ρ, L = D, d = n, NL = m, max
i=1,...,L−1

Ni = W.

We will also denote the NN class with unbounded depth by NN(ρ, n, m, N, W), and similarly the NN
class with unbounded width by NN(ρ, n, m, D, N).
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Definition 5.3 (Class prediction function). For a given n ∈N, we define the class prediction function
pn : Rn → {1, . . . , n} as

pn(x) = min{i : xi ≥ xj, ∀j ∈ {1, . . . , n}}. (5.1)

The class prediction function has the same function as the ‘argmax’ function in for example the
numpy library of python. This function takes a vector and returns the index of the element that has the
highest value of all elements. If there are multiple such indices that satisfy the maximality, we return
the first index.

Remark 5.4 (Training a neural network on a classification task). By training a NN on a classification
task we mean that we want to approximate a classification function f , more precisely, its extension. To
illustrate why we want the extension, imagine something simple as MNIST. We have 10 target classes,
hence Y= {1, 2, . . . , 10} (‘zero’ is represented by 10 and each other number is represented by itself).
Then, we either want to learn f which labels well-defined images correctly, while labelling undefined
images randomly, or we want to learn f where we label undefined images as −1. Here, f is the ground
truth (might be debatable whether it actually exists, but for the purpose of the argument assume it does).

6. Proof of Lemma 2.1

We are now equipped to prove our first main result. Our proof relies on the following two approximation
results, the first being the classical approximation theorem for single layer NNs.

Theorem 6.1 (Universal approximation theorem [62]). Let ρ ∈ C(R) (continuous functions on R) and
assume ρ is not a polynomial. Then, NN(ρ, n, m, 1, N) (the class of single layer NNs with an activation
function of ρ) is dense in C(Rn;Rm).

The second theorem is a newer result that proves the universal approximation property for fixed width
NNs.

Theorem 6.2 (Kidger and Lyons [52]). Let ρ : R→R be any non-affine continuous function which is
continuously differentiable at at least one point, with non-zero derivative at that point. Let K⊂Rn be
compact. Then, NN(ρ, n, m, N, n + m + 2)(the class of NNs with input dimension n, output dimension
m and width of at most n + m + 2) is dense in C(K; Rm) with respect to the uniform norm.

Before we prove Lemma 2.1, we will first prove a lemma. We start by defining the following functions.
For each i ∈Y, let us define the functions Hi : M→R as:

Hi(x) =
{

hp

f̄
(x) f̄ (x) = i,

0 otherwise.
(6.1)

This function can be thought of as an element-wise version of the distance to the decision boundary
Eq. (2.2).

Lemma 6.3. Hi is continuous for all i ∈Y.

Proof. Let {xm}∞
m=0 be a sequence in K with xm → x′ as m → ∞, where x′ ∈K. First, we take care of the

simple case where f (x′) �= i. Then, we know that Hi(x′) = 0 and that for xm we have 0 ≤ Hi(xm) ≤ ‖xm −
x′‖p. Thus, Hi(xm) → Hi(x′) as m → ∞. Therefore, we can assume f (x′) = i in which case we distinguish
three cases.

Case 1 : ∃j ∈N such that f (xm) = i, ∀m> j. Pick an ε > 0. Then, there exists a l ∈N such that ‖xm −
x′‖p < ε/2 for all m> l. As f (x′) = i, it follows by the definition of hp

f̄
, that there must exist a sequence

of {z′
α
}∞
α=0 such that

‖x′ − z′
α
‖p → hp

f̄
(x′) as α→ ∞, with f (z′

α
) �= i.
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This also means that there exists a β ′ ∈N such that ‖x′ − z′
α
‖p < hp

f̄
(x′) + ε/2, ∀α > β ′, hence

hp

f̄
(xm) ≤ ‖xm − z′

α
‖p ≤ ‖xm − x′‖p + ‖x′ − z′

α
‖p < hp

f̄
(x′) + ε ∀α > β ′ and m> l.

Notice that since f (xm) = i, we also have a sequence {zα}∞
α=0 such that

‖xm − zα‖p → hp

f̄
(xm) as α→ ∞,

∀m> l. This also means that there exists a β ∈N such that

‖xm − zα‖p < hp

f̄
(xm) + ε/2 ∀α > β and m> l,

hence

hp

f̄
(x′) ≤ ‖x′ − zα‖p ≤ ‖xm − x′‖p + ‖xm − zα‖p < hp

f̄
(xm) + ε ∀α > β and m> l.

Putting these together, we obtain |hp

f̄
(x′) − hp

f̄
(xm)|p < ε ∀m> l, ε > 0. Thus hp

f̄
(xm) → hp

f̄
(x′) as m → ∞

and therefore Hi(xm) → Hi(x′) as m → ∞.
Case 2: ∃j ∈N such that f (xm) �= i, ∀m> j. In this case hp

f̄
(x′) = 0, since the subsequence has only

points containing points that do not map to label i, whereas f (x′) = i. Similarly, ‖xm − x′‖p serves as an
upper bound for hp

f̄
(xm) for all m> j, but since xm → x′ as m → ∞, we must also have hp

f̄
(xm) → hp

f̄
(x′).

Case 3: ∀j ∈N ∃m, l> j such that f (xm) = i and f (xl) �= i. In this case, there exists a subsequence
{xhk}∞

k=1 such that f (xhk ) �= i for all k ∈Z and xhk → x′ as k → ∞. This means that hp

f̄
(x′) = 0. To show that

hp

f̄
(xm) → 0 as m → ∞, we use the fact that the sequence is also a Cauchy sequence, and that elements

that map to label i and ones that do not map to label i occur infinitely many times in the sequence.
Combining these gives us Hi(xm) → Hi(x′) as m → ∞ as required.

With this lemma, we are now ready to prove our first main result Lemma 2.1.

Proof of Theorem 2.1. The proof will rely on two steps. First, we show that we can find a continuous
function g : K→ [0, 1]q that satisfies

pq ◦ g(x) = f (x) ∀x ∈Mε ∩K.

Then, we apply the corresponding form of the universal approximation theorem to find an approximator,
which we will show will also be an interpolator.

By the lemma 6.3, we know that Hi : K→Rq (defined in Eq. (6.1)) are all continuous; hence, we can
proceed to define the following vector valued function H : K→Rq

H(x) = (H1(x), H2(x), . . . , Hq(x)), (6.2)

which must be continuous. Note that pq ◦ H(x) = f (x) for x ∈Mε . As our activation function is a contin-
uous non-polynomial, we can apply the universal approximation theorem [62] on the function H. This
guarantees us a single layer NN� : K→Rq such that supx∈K ‖H(x) −�(x)‖p < ε/2. We will show that

pq ◦�(x) = f (x) ∀x ∈Mε ∩K. (6.3)

Observe that on the setsMε the function H is of the form H(x) = λ ∗ ef (x) where λ ∈R, λ> ε and ek ∈Rq

is a k’th unit vector. Therefore, �(x) = (ψ1(x),ψ2(x), . . . ,ψq(x)) such that

ψi(x)< ε/2 if i �= f (x), ψi(x)> ε/2 if i = f (x).

The result (6.3) follows immediately from this. This proves part (2.6).
For the (2.7), we recall Theorem 6.2. As our activation function was is non-polynomial, therefore,

it must also be non-affine, it satisfies all the conditions of Theorem 6.2 and the rest proceeds as in the
shallow network case.

Remark 6.4. There are slightly stronger versions of this theorem. If the activation function is only
continuous and non-polynomial, then there exists a shallow NN that interpolates f on M. On the other
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hand, if the activation function is non-affine continuous that is continuously differentiable at at least one
point, with non-zero derivative at that point, then there exists a deep NN with finite with that interpolates
f on M.

An interesting note here is that one can notice that the function H is in fact 1-Lipschitz, so the proof
also shows that there exists a NN that is stable in the Lipschitz framework. The caveat, however, is that
in practice, the loss function is minimising the difference between � and f , not pq ◦� with f , which
means that the algorithms usually do not converge at H.

Proposition 6.5. For the norm ‖ · ‖p where 1 ≤ p ≤ ∞, the function H : Rd →Rq has Lipschitz
constant 1.

Proof. We want to show that ‖H(x) − H(y)‖p ≤ ‖x − y‖p. Recall that H is defined as the vector that
consists of Hi Eq. (6.2). From the Eq. (6.1), we see that H(x) will have elements equal to 0, unless the
index i is equal to f (x). Given this, we can distinguish two cases.

Case 1. f (x) = f (y) We know that there is a sequence {zi}∞
i=1 such that

‖y − zi‖p → hp

f̄
(y), where f (zi) �= f (y). (6.4)

Furthermore, ‖x − zi‖p ≥ hp

f̄
(x), as f (x) = f (y). Without the loss of generality let us assume that hp

f̄
(x) ≥

hp

f̄
(y). Since x, y have the same label, we obtain from (6.4) that for any ε > 0

‖H(x) − H(y)‖p = |hp

f̄
(x) − hp

f̄
(y)| = hp

f̄
(x) − hp

f̄
(y)

≤ ‖x − zi‖p − ‖y − zi‖p + ε ≤ ‖x − y‖p + ε ∀i ∈N.

Taking ε→ 0, we obtain the desired result.
Case 2. f (x) �= f (y) In this case, let us look at the line segment

L= {tx + (1 − t)y : t ∈ [0, 1]},
and consider the following two points w1, w2

w1 = t1x + (1 − t1)y t1 = inf{t : f (tx + (1 − t)y) �= f (y)}, (6.5)
w2 = t2x + (1 − t2)y t2 = sup{t : f (tx + (1 − t)y) �= f (x)}. (6.6)

By linearity, we have w1+w2
2

= t1+t2
2

x + (1 − t1+t2
2

)y. Clearly t1 ≤ t2, because otherwise t2 <
t1+t2

2
< t1 and

by the definitions (6.5) , (6.6)

f

(
w1 + w2

2

)
= f

(
t1 + t2

2
x + (1 − t1 + t2

2
)y

)
= f (y) as

t1 + t2

2
< t1,

f

(
w1 + w2

2

)
= f

(
t1 + t2

2
x + (1 − t1 + t2

2
)y

)
= f (x) as

t1 + t2

2
> t2.

This is a contradiction with f (x) �= f (y). Therefore, t1 ≤ t2 and hence

‖H(x) − H(y)‖p = (|hp

f̄
(x)|p + |hp

f̄
(y)|p)1/p ≤ (|‖x − w1‖p|p + |‖y − w2‖p|p)1/p

≤ ‖x − w1‖p + ‖y − w2‖p ≤ ‖x − y‖p.

Note that we could have also proven the theorem using Urysohn’s lemma, and we would obtain the
same result. Using Urysohn’s lemma, we would construct a continuous function H∗ : K→Rq such that
pq ◦ H∗(x) = f (x), for all x ∈Mε ∩K. This would be done by applying Urysohn’s lemma for indicator
functions 1i : K→ {0, 1} for each label i ∈Y

1i(x) =
{

1 if f (x) = i,

0 if f (x) �= i.
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on disjoint subsets of Mε , call this function obtained from Urysohn’s lemma Ui : K→ [0, 1]. Then,
the final function H∗ would simply just be H∗(x) = (U1(x), U2(x), . . . , Uq(x)). The drawback here is that
this function does not necessarily have a bounded Lipschitz constant. In the following examples, we
will illustrate that there are certain cases where the two functions H and H∗ have different Lipschitz
constants, yet their class stability is the same.

Example 6.6. Consider the classification function fl:[0, 2] → {0, 1} where

fl =
{

0 if x< 1,

1 if x ≥ 1.

The Mε set for ε < 1 here would therefore be the set [0, 1 − ε) ∪ (1 + ε, 2]. As we have shown in Lemma
6.5, the function H will always have a Lipschitz constant of 1. However, the function H∗ will satisfy

H∗(x) =
{

(1, 0) if x< 1 − ε,

(0, 1) if x> 1 + ε.

This means that we have a lower bound on the Lipschitz constant L by

L ≥ ‖(1, −1)‖p

2ε
.

As this expression diverges as ε→ 0, we see that the Lipschitz constant diverges as well. However, for
both functions, we have

pq ◦ H(x) = pq ◦ H∗(x) = fl(x) ∀x ∈Mε .

Thus, pq ◦ H and pq ◦ H∗ have the same class stability.

7. Stability revised

One relevant question one might have when talking about the class stability is how that relates to measure
theory. In fact, if we were to look at the class stability from that point of view, one might argue that of
the functions mentioned in Section 3, function f3 might be considered the most stable and f1, f2 equally
stable since the unstable points have measure 0. We can define the class stability in the following sense
to keep consistency.

Definition 7.1 (Measure theoretic distance to the decision boundary). For an extension of a classifica-
tion function f : Rd →Y and a real number p ≥ 1, we define τ p

f̄
: Rd →R+ the lp-distance to the decision

boundary as

τ
p

f̄
(x) = inf

{
r :

∫
Bp

r (x)

1f̄ (z)=f̄ (x) dμ �=
∫
Bp

r (x)

dμ, r ∈ [0, ∞)

}
.

Here,μ denotes the Lebesgue measure and Bp
r (x) the unit closed ball with p-norm, and 1 is the indicator

function.

Correspondingly, we can define the class stability in the following way.

Definition 7.2 (Class stability (measure theoretic)). If M⊂Rd is a compact set, we define the (measure
theoretic) �p-stability of f to be

T p
M(f ) =

∫
M
τ

p

f̄
(x) dμ. (7.1)

Remark 7.3 (Properties of the measure theoretic distance to the decision boundary). One unfortunate
thing for this definition is that the function is no longer continuous as can be seen by looking at the
following function f2 at the point 1/2. The stability of that point is 0, whereas now its neighbourhood
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has a non-zero stability as 1/2 is an isolated point with a different label. Fortunately, we can show that
the stability remains measurable if f itself was measurable.

Lemma 7.4 (Measurability of stability). Let f : M→Y be a measurable classification function. Then,
the measure theoretic distance to the decision boundary τ p

f̄
is measurable.

Proof. To show that τ p

f̄
is measurable, it suffices to show that for every real number α ≥ 0, the set

{x ∈M : τ p

f̄
(x)<α} is measurable. We will show this by showing that the set {x ∈M : τ p

f̄
(x)<α} is a

countable union of measurable sets. Let α ≥ 0 be fixed. Then, we know that
{x ∈M : τ p

f̄
(x)<α} =

⋃
q∈Q,0≤q<α

{x ∈M :μ
(
Bp

q(x) ∩ {z ∈Rd:f̄ (z) �= f̄ (x)})> 0}. (7.2)

Therefore, all we need to show is that the function φq(x) =μ
(
Bp

q(x) ∩ {z ∈Rd:f̄ (z) �= f̄ (x)}) is measurable
for every non-negative q ∈Q. Clearly for q = 0, the function is constant and hence measurable. Hence,
we will only consider q> 0. The function φq can be rewritten as a integral:

φq(x) =
∫
Rd

1Bp
q(x)(z)1{z∈Rd :f̄ (z)�=f̄ (x)}(z) dz. (7.3)

We will finish of the proof by showing that the integrand is measurable with respect to the product
σ -algebra σ (Rd) ⊗ σ (Rd), as the measurability of φq follows by Fubini’s theorem [72]. We will look
at the two parts of the integrand separately. In both cases, we will show that the underlying set of the
indicator function is measurable.

For the first term is the indicator function of the set A = {(x, z) ∈Rd ×Rd : z ∈Bp
q(x)}. This set is

measurable as it is the preimage of ( − ∞, q] under the continuous (therefore measurable) function
h : Rd ×Rd →R given by h(x, z) = ‖z − x‖p.

The second term is the indicator function of the set B = {(x, z) ∈Rd ×Rd : f̄ (z) �= f̄ (x)}. This set can
be written as the finite union of sets

B =
⋃

i,j∈Y,i �=j

{(x, z) ∈Rd ×Rd : f̄ (x) = j and f̄ (z) = i}

For each label k ∈Y, let Ck = {x ∈Rd : f̄ (x) = k}. Since the classification function f̄ is measurable, each
set Ck is measurable in Rd. Therefore, the set {(x, z) : f̄ (x) = yi and f̄ (z) = yj} is simply the Cartesian
product Ci × Cj, which is measurable in the product σ -algebra. Since B is a finite union of such measur-
able sets, it is measurable. Therefore, the integrand is measurable with respect to the product σ -algebra
σ (Rd) ⊗ σ (Rd), and hence the function φq is measurable.

For the rest of the document, we will always assume f to be measurable.

8. Proof of Lemma 2.4

We are now set to prove our next main result Lemma 2.4. To prove this theorem, we will first show the
following theorem.

Proposition 8.1. Let f : M→Y be a measurable classification function. Then, for any set of pairs
{(xi, f (xi))}k

i=1 such that τ p

f̄
(xi)> 0 for all i = 1, . . . , k (the distance to the decision boundary Eq. (2.2)

is non-zero) and ε1, ε2 > 0, there exists a continuous function g : M→R such that the class stability
Eq. (2.3) satisfies

T p
M(�g�) ≥ T p

M(f ) − ε1 (8.1)
and the functions agree on the set {xi}k

i=1, i.e.:
f (xi) = g(xi) i = 1, . . . , k, (8.2)

and
μ(R)< ε2, R := {x | f (x) �= g(x), x ∈M}, (8.3)
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where μ denotes the Lebesgue measure and �·� is the function that rounds to the nearest integer.

Note that the class stability of �g� is well defined as it is a discrete function defined on a compact
set M.

Proof of Lemma 8.1. We define the following disjoint sets, based on the distance to the decision
boundary function Lemma 7.1: For ξ > 0, let

Sξ := {x | τ p

f̄
(x) ≥ ξ , x ∈M}, Uξ := {x | τ p

f̄
(x)< ξ , x ∈M},

U := {x|τ p

f̄
(x) = 0 , x ∈M}.

First, notice that for any ξ1 < ξ2, we have Uξ1 ⊂ Uξ2 and that for any η > 0 the following holds true⋂
ξ<η

Uξ = U. (8.4)

Since τ p

f̄
is measurable and we can write U = {x | τ p

f̄
(x) ≤ 0} as τ p

f̄
is non-negative, we know that the set

U is measurable. In fact, by the same reasoning, all three sets are.
Consider the closure Sξ of the set Sξ , and the adjusted sets U′

ξ
= Uξ − Sξ and U0

ξ
= U − Sξ . As Sξ

is closed, it must be measurable and also the difference of two measurable sets is measurable, thus
Sξ , U′

ξ
, U0

ξ
are all measurable.

Claim 1: μ(U ∩ Sξ ) = 0. To show the claim, we will start by considering the collection {Bp
ξ/2(x) | x ∈

Sξ } of open balls or radius ξ in the p-norm, and noting that it is an open cover of Sξ . Therefore, since
Sξ ⊂M, which is bounded, and since Sξ is closed, there must exist a finite subcover, in particular there
must exist a finite subset S∗ ⊂ Sξ such that Sξ ⊂ ⋃

x∈S∗ Bp
ξ/2(x). Now, suppose that μ(U ∩ Sξ )> 0, then we

would neccesarily have

μ(U ∩ (
⋃
x∈S∗

Bp
ξ/2(x)))> 0, hence μ(

⋃
x∈S∗

(U ∩ Bp
ξ/2(x)))> 0. (8.5)

By subadditivity (as S∗ is finite), there must exist a point x0 such that μ(U ∩ Bp
ξ/2(x0))> 0. Recall that

x0 ∈ Sξ means τ p

f̄
(x0) ≥ ξ which implies

inf{r ∈ [0, ∞) |
∫
Bp

r (x0)

1f̄ (z)=f̄ (x0) dμ �=
∫
Bp

r (x0)

dμ} ≥ ξ . (8.6)

Thus, the function f is constant on Bp
ξ/2(x0) almost everywhere and any point z of the set

Lx0,ξ/2 := {z | z ∈ Bp
ξ/2(x0), f (z) = f (x0)} (8.7)

satisfies τ p

f̄
(z) ≥ ξ/2 as x0 satisfies τ p

f̄
(x0) ≥ ξ . This means that μ(U ∩ Lx0,ξ/2) = 0 as all z′ ∈ U have

τ
p

f̄
(z′) = 0 . Finally, from the fact that f is constant on Bp

ξ/2(x0) almost everywhere, we must have
μ(Bp

ξ/2(x0) − Lx0,ξ/2) = 0, which means that we cannot have μ(U ∩ Bp
ξ/2(x0))> 0, giving us the required

contradiction and we have shown Claim 1.
Claim 2: f is continuous on Sξ and there exists a unique continuous extension of f to Sξ . We start by

showing that f is continuous on Sξ . For any x0 ∈ Sξ , consider the neighbourhood Bp
ξ/2(x0) as before and

recall that f is constant on this ball almost everywhere, with the constant being f (x0). Suppose now that
there is a z ∈ Sξ ∩ Bp

ξ/2(x0) such that f (x0) �= f (z). As z ∈ Sξ (recall (8.6)), we must also have that f constant
on Bp

ξ/2(z) almost everywhere, with the constant being f (z). However, as Bp
ξ/2(x0) and Bp

ξ/2(z) intersect,
we obtain our contradiction. The second part of this claim follows a similar argument. Let x∗ be a limit
point of Sξ . Consider the set Bp

ξ/2(x∗) ∩ Sξ . By arguing as in the first part of the proof of the claim, no
two points in this set can have different labels. Thus, this means that any sequence xi → x∗ as i → ∞
with xi ∈ Sξ we have xi ∈ Bp

ξ/2(x∗) ∩ Sξ for all large i, and thus all the labels will eventually have to be the
same. Therefore, there is a unique way of defining the extension of f to Sξ , which proves Claim 2. We
will call this unique extension

f ∗ : Sξ →Y. (8.8)
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Claim 3: Consider any x0 ∈ Sξ , and define a = τ
p

f̄
(x0) − ξ . We claim that Bp

a(x0) ⊂ Sξ . We first show
that τ p

f̄
≥ ξ on Bp

a(x0) almost everywhere for any fixed x0 ∈ Sξ . As before, it suffices to only consider
the points z ∈ Bp

a(x0) such that f (z) = f (x0), as f is constant almost everywhere on this set. Suppose there
exists z ∈ Lx0,a (as defined in Eq. (8.7)) such that τ p

f̄
(z)< ξ . The ball centred at x0 with a radius ‖x0 − z‖p +

τ
p

f̄
(z) has to contain the ball centred at z with a radius of τ p

f̄
(z). Thus, by the definition of the distance

to the decision boundary, we must have τ p

f̄
(x0) ≤ ‖x0 − z‖p + τ

p

f̄
(z)< a + ξ = τ

p

f̄
(x0), which gives the

contradiction. Therefore, τ p

f̄
≥ ξ on Bp

a(x0) almost everywhere and hence

Lx0,a ⊂ Sξ . (8.9)

Now consider any x ∈ Bp
a(x0). Since the ball is open, there exists a δ0 > 0, such that Bp

δ(x) ⊂ Bp
a(x0) for all

δ < δ0. Moreover, as μ(Bp
δ(x))> 0 for any δ > 0, there must be a sequence {xi}∞

i=1 ⊂ Lx0,a such that xi → x
as i → ∞, as Lx0,a ⊂ Bp

a(x0) and μ(Bp
a(x0) − Lx0,a) = 0. This means that x ∈ Lx0,a the closure of Lx0,a and

from Eq. (8.9) we obtain x ∈ Sξ for all x ∈ Bp
a(x0). Therefore Bp

a(x0) ⊂ Sξ which proves Claim 3.
Claim 4: μ(Sξ − Sξ ) = 0. To see this, we first show that for any x ∈ Sξ − Sξ we have τ p

f̄
(x) = 0. Since

x /∈ Sξ , we must have τ p

f̄
(x)< ξ . Suppose τ p

f̄
(x) = κ , where ξ > κ > 0. From the definition of the measure

theoretic distance to the decision boundary, we have that

inf{r ∈ [0, ∞) |
∫
Bp

r (x)

1f̄ (z)=f̄ (x) dμ �=
∫
Bp

r (x)

dμ} = κ > 0. (8.10)

As a consequence, we must have ∫
Bp

1
2 κ

(x)

1f̄ (z)=f̄ (x) dμ=
∫
Bp

1
2 κ(x)

dμ. (8.11)

Furthermore, since x ∈ Sξ there must be a sequence {xi}∞
i=1 ⊂ Sξ such that xi → x as i → ∞. Pick an

j ∈N,such that xj ∈Bp
1
2 κ

(x). Then, by the definition of the measure theoretic distance to the decision
boundary, we must have that τ p

f̄
(xj) ≥ ξ . This means that∫

Bp
1
2 ξ

(xj)

1f̄ (z)=f̄ (xj) dμ=
∫
Bp

1
2 ξ

(xj)

dμ. (8.12)

However, as xj ∈Bp
1
2 κ

(x), we must have that Bp
1
2 ξ

(xj) ∩Bp
1
2 κ

(x) �= ∅. Combining this with the fact that
1f̄ (z)=f̄ (x) + 1f̄ (z)=f̄ (xj) ≤ 1, we must have that∫

Bp
1
2 ξ

(xj)∩Bp
1
2 κ

(x)

dμ≥
∫
Bp

1
2 ξ

(xj)∩Bp
1
2 κ

(x)

1f̄ (z)=f̄ (x) + 1f̄ (z)=f̄ (xj) dμ

=
∫
Bp

1
2 ξ

(xj)∩Bp
1
2 κ

(x)

1f̄ (z)=f̄ (x) dμ+
∫
Bp

1
2 ξ

(xj)∩Bp
1
2 κ

(x)

1f̄ (z)=f̄ (xj) dμ

= 2
∫
Bp

1
2 ξ

(xj)∩Bp
1
2 κ

(x)

dμ. (8.13)

As the
∫
Bp

1
2 ξ

(xj)∩Bp
1
2 κ

(x)
dμ> 0, we obtain our contradiction. Hence, τ p

f
(x) = 0 for all x ∈ Sξ − Sξ . This is

equivalent to saying that for any x ∈ Sξ − Sξ , we have x ∈ U. Therefore, for any x ∈ Sξ − Sξ , we have
x ∈ U ∩ Sξ , which by Claim 1 implies that μ(Sξ − Sξ ) = 0. This proves Claim 4.

Next, we apply Lusin’s Theorem for the function f on the set U0
ξ

and obtain, for any α > 0, a closed
set Uα

ξ
⊂ U0

ξ
such that

μ(U0
ξ
− Uα

ξ
)<α, f is continuous on Uα

ξ
. (8.14)
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We can now define gα,ξ : Sξ ∪ Uα
ξ
→ [a, b], where a := min{Y} and b := max{Y}, where

gα,ξ (x) =
{

f ∗(x) if x ∈ Sξ ,

f (x) if x ∈ Uα
ξ
.

Finally, as both sets Sξ and Uα
ξ

are compact, since they are closed and subsets of M, which is compact,
we can apply Tietze’s extension theorem. More precisely, we will use Tietze’s extension theorem to
extend the restriction of the function gα,ξ : Sξ ∪ Uα

ξ
→ [a, b], to a continuous function on the whole set

M. Then, by Tietze’s extension theorem, we obtain a continuous function g∗
α,ξ : M→ [a, b] such that

g∗
α,ξ (x) = gα,ξ (x) x ∈ Sξ ∪ Uα

ξ
.

Having constructed the function, all we need to do is to check that the properties (8.1) (8.2) and (8.3)
are satisfied for some particular choices of α and ξ . Let us first estimate the loss in class stability for the
rounded function �g∗

α,ξ�. For any fixed ξ , we can bound the stability by:

T p
�g∗
α,ξ � =

∫
M
τ

p
�g∗
α,ξ � dμ=

∫
Sξ∪U′

ξ

τ
p
�g∗
α,ξ � dμ.

We know that f ∗ (defined in Eq. (8.8)) and g∗
α,ξ agree on Sξ , hence �g∗

α,ξ� agrees with f ∗ as well. From
Claim 3, we know that for any point x0 ∈ Sξ , Bp

a(x0) ⊂ Sξ , where a = τ
p

f̄
(x0) − ξ , while from Claim 2, we

know that f ∗ is continuous on Sξ , therefore f ∗ is constant on Bp
a(x0) as it is a discrete function. Thus, we

must have τ p
�g∗
α,ξ �(x0) ≥ τ p

f̄
(x0) − ξ for all x0 ∈ Sξ . This means that

T p
�gα,ξ � =

∫
Sξ∪U′

ξ

τ
p
�gα,ξ � dμ≥

∫
Sξ∪U′

ξ

τ
p
�gα,ξ � dμ≥

∫
Sξ

τ
p

f̄
− ξ dμ

=
∫
M−Uξ

τ
p

f̄
dμ− ξμ(Sξ ) = T p(f ) −

∫
Uξ

τ
p

f̄
dμ− ξμ(Sξ )

> T p(f ) − ξμ(Uξ ) − ξμ(Sξ ) = T p(f ) − ξμ(M).

The last inequality comes from the fact that τ p

f̄
(x)< ξ for x ∈ Uξ . By choosing ξ ≤ ε1

μ(M)
, we obtain

Eq. (8.1).
To ensure (8.2), we simply need to guarantee that the set {xi}k

i=1, from the statement of the proposition,
satisfies {xi}k

i=1 ⊂ Sξ . This can be achieved by choosing ξ <mini=1,...,k{τ p

f̄
(xi)}.

Finally, we observe that R ⊂ (
U′
ξ
− Uα

ξ

) + (
Sξ − Sξ

)
, where we recall R from Eq. (8.3). Therefore, we

have

μ(R) ≤μ (
U′
ξ
− Uα

ξ

) +μ
(
Sξ − Sξ

) =μ
(
U′
ξ
− Uα

ξ

) ≤μ(U′
ξ
− U0

ξ
) +μ(U0

ξ
− Uα

ξ
)

<μ(U′
ξ
− U0

ξ
) + α =μ((Uξ − Sξ ) − (U − Sξ )) + α =μ(Uξ − U) + α. (8.15)

Thus, to establish Eq. (8.3), it suffices to show thatμ(Uξ ) →μ(U) as ξ → 0, and then by setting α= ε2/2
we could choose a small enough ξ to finally obtain (8.3). Thankfully, this is true as we have shown that
Uξ is decreasing in ξ and since Uξ ⊂M, we know that the measure μ(Uξ ) ≤μ(M). Therefore, μ(Uξ )
is bounded and because of Eq. (8.4) we can apply Theorem 3.26 from [72] to obtain μ(Uξ ) →μ(U) as
ξ → 0.

Proof of Lemma 2.4. Using Lemma 8.1, we construct a continuous function g : M→R that satisfies
the conditions. Next, we construct a continuous function G : M→Rq such that

T p
M(pq(G)) ≥ T p

M(f ) − ε1, (8.16)

we can interpolate on the set

pq(G) = f (xi) i = 1, . . . , k , (8.17)
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and

μ(R)< ε2, R := {x | f (x) �= pq(G), x ∈M}, (8.18)

where μ denotes the Lebesgue measure. Recall from the proof of Lemma 8.1 that g is constant on
Sξ ∪ Uα

ξ
for ξ > 0. Furthermore, from the proof it is clear that any function that agrees with g on the set

Sξ ∪ Uα
ξ

will also have to satisfy all three conditions of the theorem. Therefore, it is enough to construct G

such that pq(G) agrees with g on Sξ ∪ Uα
ξ
. To construct the function G, consider the function ω : R→R

defined by

ωi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ i − 1,

x − (i − 1) i − 1< x ≤ i,

(i + 1) − x i< x ≤ i + 1,

0 i + 1 ≤ x.

(8.19)

Having this, we can simply define G(x) = (ω1(g(x)), . . . ,ωq(g(x))), which will be continuous as ω is
continuous. Furthermore, pq(G) agrees with g on Sξ ∪ Uα

ξ
and thus satisfies all three conditions of the

theorem. We now just need to apply the universal approximation theorem on the function G to obtain a
NN ψ : M→Rq that differs from G in the uniform norm by less than 1/2. This NN will give the same
labels on Sξ ∪ Uα

ξ
as G and thus must satisfy all three conditions of the theorem, thereby completing the

proof.

9. Emprical estimation of the class stability

Having established the theoretical results, we conclude this paper with a discussion on how one might
determine the class stability of a NN in practice. Both versions of the distance to the decision boundary
(Eqs. (2.2) and (7.1)) are in practice extremely difficult to compute. To remedy this, we will propose an
empirical method to estimate the class stability using a NN.

Instead of calculating the distance to the decision boundary, we can use adversarial attacks to estimate
the distance to the decision boundary. More specifically, we can use adversarial attack algorithms to
find the smallest perturbation that changes the label of a data point. This perturbation will then be an
upper bound on the actual distance to the decision boundary. To highlight the fact that this estimate is
contingent on the adversarial attack algorithm used, we will index the estimate with the name of the
algorithm.

For the numerical examples, we will use the MNIST dataset and a few NNs with different
architectures but similar performance. The models used are two custom networks, a fully con-
nected network (FCNN) and a convolutional network (CNN), a ResNet18 [47] and a VGG16 [65].
The algorithms used to estimate the distance to the decision boundary are Fast Gradient Sign
Method (FGSM) [41], DeepFool (DF) [56], Projected Gradient Descent (PGD) [54] and L-infinity
Projected Gradient Descent (LinfPGD) [39]. The documentation for the code can be found at
https://github.com/zhenningdavidliu/paper_measure_code.

The precise method to estimate the class stability is as follows.

(1) Select a problem (e.g. MNIST) and a NN (e.g. a VGG16).
(2) Train the NN on the problem.
(3) Select an adversarial attack algorithm (e.g. PGD).
(4) For each data point in the dataset, use the adversarial attack algorithm to find the smallest

perturbation that changes the label of the data point.
(5) Use the perturbation to estimate the distance to the decision boundary.
(6) Take the sample mean of the estimated distances to obtain an estimate of the class stability.
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Table 1. Stability and performance metrics for different models. We have tested two custom networks,
a ResNet18 and a VGG16. The custom networks are simple implementations of a fully connected
network and a convolutional network, respectively. The algorithms used to estimate the distance to
the decision boundary are F: FGSM, D: DPG, P: PGD, and L: LinfPGD. The results suggests that
VGG16 is the most stable model, according to the definition of class stability

Model Name (fi) Params Accuracy S2
M,F(fi) S2

M,D(fi) S2
M,P(fi) S2

M,L(fi)
Custom FCNN f1 101,770 95.48 % 7.25 3.18 4.14 4.17
Custom CNN f2 1,625,866 98.67 % 19.65 4.28 4.92 4.95
ResNet18 f3 11,181,642 97.97 % 5.90 3.27 4.09 4.31
VGG16 f4 134,301,514 98.8 % 56.00 13.74 17.30 16.70

In other words, we will estimate hp

f̄
(x) by hp

f ,PGD(x) for the PGD attack, where hp
f ,PGD(x) is the empirical

estimate of the distance to the decision boundary for the PGD attack for the data point x. We will then
use this estimate to estimate the class stability by

Sp
M(f ) ≈ 1

k

k∑
i=1

hp
f ,PGD(xi), (9.1)

where k is the number of data points in the dataset. To have consistent notation for our tables, we will
reference the empirical estimate of the class stability as Sp

M,�(f ), where � is the name of the adversarial
attack algorithm used. For example, Sp

M,PGD(f ) is the empirical estimate of the class stability for the PGD
attack.

9.1. Empirical estimation of class stability for neural networks

The empirical class stability provides a way to measure robustness of a model with respect to adversarial
attacks. One of the main advantages of this approach is the simplicity of the method, as it only requires
running existing adversarial attack algorithms on models, without the need for additional training or
optimisation. To demonstrate this, we will use the MNIST dataset and a few NNs with different archi-
tectures but similar performance. We use several adversarial attack algorithms to estimate the distance
to the decision boundary for each data point in the dataset. We then use the estimated distances to esti-
mate the class stability using the method described above. Table 1 shows the performance and stability
of the different models. The higher the score for the stability, the more stable the model is, as it is more
difficult to find adversarial examples. The final column shows the minimum ε for the aggregate of all
the adversarial attack algorithms we used. This is an estimate of the distance to the decision boundary,
and thus the higher the score, the more stable the model is.
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