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Fundamental domains for genus-zero and genus-one
congruence subgroups

C. J. Cummins

Abstract

In this paper, we compute Ford fundamental domains for all genus-zero and genus-one congruence
subgroups. This is a continuation of previous work, which found all such groups, including ones
that are not subgroups of PSL(2, Z). To compute these fundamental domains, an algorithm is
given that takes the following as its input: a positive square-free integer f , which determines
a maximal discrete subgroup Γ0(f)+ of SL(2, R); a decision procedure to determine whether a
given element of Γ0(f)+ is in a subgroup G; and the index of G in Γ0(f)+. The output consists
of: a fundamental domain for G, a finite set of bounding isometric circles; the cycles of the
vertices of this fundamental domain; and a set of generators of G. The algorithm avoids the use
of floating-point approximations. It applies, in principle, to any group commensurable with the
modular group. Included as appendices are: MAGMA source code implementing the algorithm;
data files, computed in a previous paper, which are used as input to compute the fundamental
domains; the data computed by the algorithm for each of the congruence subgroups of genus zero
and genus one; and an example, which computes the fundamental domain of a non-congruence
subgroup.

1. Introduction

The modular group PSL(2, Z) := SL(2, Z)/{±12} is a discrete subgroup of PSL(2, R) :=
SL(2, R)/{±12}. The principal congruence subgroup of level N of SL(2, Z) is

Γ(N) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
. (1.1)

A subgroup G of SL(2, Z) that contains some principal congruence subgroup is known as a
congruence subgroup. If G is a congruence subgroup, then the level of G is the smallest N such
that Γ(N)⊆G. Congruence subgroups of PSL(2, Z) are defined similarly.

Study of the modular group and its congruence subgroups was given renewed impetus with
the discovery of ‘monstrous moonshine’ [2, 5, 15, 21, 24, 25, 27]. The groups that appear
in this context are discrete subgroups of PSL(2, R) whose intersections with PSL(2, Z) are
congruence subgroups. They are not, however, necessarily subgroups of PSL(2, Z). Thus, it is
convenient to define a congruence subgroup of PSL(2, R) to be a discrete subgroup of PSL(2, R)
that contains some principal congruence subgroup.

The genus of a congruence subgroup is defined to be the genus of a certain Riemann
surface, which arises from the group’s action on the complex upper half-plane (see Section 2
for details). The groups that occur in ‘moonshine’ are congruence subgroups of genus zero.
It is known that there are infinitely many genus-zero subgroups of the modular group;
see, for example, [18]. However, Rademacher conjectured that there are only finitely many
genus-zero congruence subgroups of PSL(2, Z). This problem was studied by Knopp and
Newman [19], McQuillan [22, 23] and Dennin [10–12]. Thompson [28] proved a more general
result, motivated by the groups appearing in ‘monstrous moonshine’. His result is that, up to
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conjugation, there are only finitely many congruence subgroups of PSL(2, R) of fixed genus.
Zograf’s bound from [29] gives another proof of this result; see below. Cox and Parry [6, 7],
independently of Thompson, showed that there are only finitely many congruence subgroups of
PSL(2, Z) of fixed genus. Their work applies only to subgroups of PSL(2, Z), but for this case
they gave explicit bounds, which they then used to find the list of all congruence subgroups of
PSL(2, Z) of genus zero.

In [8, 9], all subgroups of PSL(2, R) of genus zero or one were computed up to conjugacy, by
making use of Zograf’s bound. This paper is a sequel to [8], and its aim is to find fundamental
domains of all the genus-zero and genus-one congruence subgroups. To this end, in Sections 2
and 3 the necessary background on congruence subgroups and Ford fundamental domains is
given. We include proofs of the required properties of Ford fundamental domains. Although
many of these properties are well known, a detailed treatment does not seem to be available in
the literature. In Section 4, the algorithm for computing the fundamental domains is discussed.
In outline, given a group G, the algorithm proceeds by constructing a sequence of sets of
isometric circles of G that (potentially) form part of the boundary of a Ford fundamental
domain of G. An area computation using the Gauss–Bonnet theorem is used to determine
when the algorithm terminates. Isometric circles are removed from the set if it is determined
that they cannot form part of the boundary. Section 5 explains in detail the procedure used
for finding hyperbolic areas. Finally, Section 6 gives a representative example, and explains the
format and conventions of the data files.

Appendix 1 contains complete MAGMA [3] source code implementing the algorithm.
Appendix 2 contains the data files from [8] which are used as input to compute the fundamental
domains. Appendix 3 contains the data computed by the algorithm for each of the genus-zero
and genus-one congruence subgroups. As the algorithm applies to any group commensurable
with the modular group, Appendix 4 contains example code for computing the fundamental
domain of a non-congruence subgroup.

2. Subgroups of PSL(2, R)

From a computational point of view, it is easier to work with subgroups of SL(2, Z) and SL(2, R)
than with subgroups of PSL(2, Z) and PSL(2, R). There is a one-to-one correspondence between
the subgroups of PSL(2, R) and the subgroups of SL(2, R) that contain−12. Thus, in this paper,
we work with subgroups of SL(2, R) that contain −12, rather than their images in PSL(2, R).
If G is a subgroup of SL(2, R), then G will denote its image in PSL(2, R).

Congruence subgroups of PSL(2, R) are examples of subgroups that are commensurable
with PSL(2, Z), where two subgroups are commensurable if their intersection has finite index
in both. If G is a subgroup of PSL(2, R), then G acts on the complex upper half-plane H by
fractional linear transformations. If, moreover, G is commensurable with PSL(2, Z), then G
acts on the extended upper half-plane H∗ =H ∪Q ∪ {∞} by fractional linear transformations.
In fact, Q ∪ {∞} is the set of parabolic fixed points of G; see Shimura [26, Proposition 1.30].
The orbit space H∗/G can be given the structure of a compact Riemann surface, and the
genus of G is defined to be the genus of this Riemann surface; see [26, Section 1.3]. If G is a
subgroup of SL(2, R), then, in this paper, by the geometric invariants, such as the genus or
cusp number of G, we shall mean the corresponding invariants of G.

We next make the following definitions.

Definition 2.1.

Γ0(f) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣ c≡ 0 (mod f)
}

;

Γ0(f)+ =
{
e−1/2

(
ae b
cf de

)
∈ SL(2, R)

∣∣∣ a, b, c, d, e ∈ Z, e > 0, e || f, ade2 − bcf = e

}
.
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In this definition, e || f means that e divides f and gcd(e, f/e) = 1. If f is square-free, then
the group Γ0(f)+ is the normalizer of Γ0(f) in SL(2, R). The importance of these ‘Helling
groups’ is illustrated by the following theorem.

Theorem 2.2 (Helling [16, 17]; see also [4]). If G is a subgroup of SL(2, R) that
is commensurable with SL(2, Z), then G is conjugate to a subgroup of Γ0(f)+ for some
square-free f .

For Γ0(f)+, the definition of the level of a subgroup is as follows. Let

G(n, f) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣ a− 1≡ d− 1≡ b≡ 0 (mod n), c≡ 0 (mod fn)
}
. (2.1)

It is easily verified that G(n, f) is a normal subgroup of Γ0(f)+ and that G(n, 1) = Γ(n).
We then define the level of a congruence subgroup G of Γ0(f)+ to be the smallest n such that
G(n, f) is a subgroup of G.

Let Area(G) and g(G) be the hyperbolic area and genus of H∗/G, respectively. Recall that

1
2π

Area(G) = 2(g(G)− 1) +m+
k∑
i=1

(
1− 1

ei

)
, (2.2)

where m is the number of inequivalent parabolic fixed points of G (the cusp number), k is the
number of inequivalent elliptic fixed points of G and ei, i= 1, . . . , k, are the orders of these
points; see, for example, [26, Theorem 2.20].

We then have the following theorem, due to Zograf.

Theorem 2.3 (Zograf [29]). Let K be any subgroup of SL(2, R) that is commensurable
with SL(2, Z); then for any congruence subgroup G of K we have

g(G) + 1>
3

128π
Area(K) Index(K :G). (2.3)

As a corollary to his result, Zograf notes that it implies Thompson’s theorem as follows. Let
K =G= Γ0(f)+, with f square-free. Then Area(Γ0(f)+) = (π/3)

∏
p|f ((1 + p)/2), where p is

prime. Writing g for g(Γ0(f)+), we have, by Theorem 2.3,∏
p|f

p prime

1 + p

2
< 128(g + 1). (2.4)

This bounds the possible values of f for a given genus. If k is the number of prime factors
of f , then 2k−2 < f/2k <

∏
p|f (1 + p)/2< 128(g + 1), where p is prime. This bounds k and

hence f . It follows that the set

H(g) = {Γ0(f)+ | f square-free, genus(Γ0(f)+) 6 g}

is finite. By Theorem 2.2, any congruence subgroup G that is commensurable with SL(2, Z) is
conjugate to a subgroup of Γ0(f)+ for some square-free f . By the Riemann–Hurwitz formula,
any subgroup of Γ0(f)+ has genus equal to, or larger than, the genus of Γ0(f)+. So if G has
genus g, then it is conjugate to a subgroup of bounded index of at least one of the groups in
H(g). As there are only finitely many such subgroups, Thompson’s theorem follows.

The results of [8] give a tabulation of the genus-zero and genus-one congruence subgroups
up to conjugacy in Γ0(f)+ for those square-free f such that Γ0(f)+ has genus zero or one.
The condition that the groups contain −12 is also assumed. The output of the computation
gives each group as a union of cosets over some G(n, f). One aim of the present paper is to
compute a standard set of generators and a fundamental domain for each of these groups.
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The next section gives the necessary background information on fundamental domains, in
particular Ford fundamental domains.

3. Fundamental domains

In this section we summarize the necessary facts concerning fundamental domains of Fuchsian
groups. This material is mostly standard and is contained, for example, in Beardon [1] or
Lehner [20]. We do, however, give proofs of the properties of Ford fundamental domains that
we need, as there seems to be no convenient reference; we shall make use of these properties
in subsequent sections. We assume in this section that the group G is a finitely generated
Fuchsian group of the first kind. The results are easier to state in this case, and the groups
we wish to consider are all of this type. Towards the end of this section, it will be necessary
to make the restriction to subgroups of Γ0(f)+, in order to obtain more precise information
about the structure of the boundary of the Ford fundamental domain.

A fundamental set for G is defined to be a subset of H that contains exactly one point from
each orbit of G. A fundamental domain is a domain (that is, an open and connected subset
of H) whose closure in H contains a fundamental set.

Definition 3.1. A subset D of H is a fundamental domain for G if and only if:
(i) D is a domain;
(ii) there is a fundamental set F of G such that D ⊂ F ⊂ D̃, where D̃ is the closure of D

in H;
(iii) Area(∂D) = 0, where ∂D is the boundary of D.

Without imposing further restrictions, fundamental domains may have certain undesirable
properties. Beardon, in [1, Example 9.2.5], gives an example of a fundamental domain that
is a convex, five-sided polygon but for which the natural map from D̃/G to H/G is not a
homeomorphism. This possibility can be avoided by considering fundamental domains that are
both convex (with respect to the hyperbolic metric) and locally finite, the latter term being
defined as follows.

Definition 3.2. A fundamental domain D of G is said to be locally finite if and only if
every compact subset of H has non-empty intersection with only finitely many G-images of D.

In order to list the properties of convex, locally finite, fundamental domains, it is convenient
to introduce the notions of sides and vertices of fundamental domains.

Definition 3.3. A side of a fundamental domain D is a geodesic segment of positive
(hyperbolic) length that has the form D̃ ∩ g(D̃) for some g in G. A vertex v of D is a point of
H such that {v}= D̃ ∩ gD̃ ∩ hD̃, for some g and h in G which are distinct and not equal to
the identity element.

Let S(D) be the set of sides of D, and let P (D) be the set of elements g in G such that
D̃ ∩ gD̃ is a side of D. We then have the following result.

Theorem 3.4. Let D be a convex, locally finite, fundamental domain for G, a finitely-
generated Fuchsian group of the first kind. Then the following properties hold.

(i) Area(D)<∞, where Area(D) is the hyperbolic area of D.
(ii) D has only finitely many sides.

(iii) The boundary of D is the union of the sides of D.
(iv) Each vertex lies on exactly two sides and is a common endpoint of each of the two sides.
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(v) If two sides have non-empty intersection, then they meet in a vertex, which is a common
endpoint of the two sides.

(vi) The map φ : P (D)→ S(D) defined by φ(g) = D̃ ∩ gD̃ is a bijection.
(vii) The elements of P (D) generate G.

Proof. See Beardon [1, Sections 9.3 and 10.1].

The sets {g, g−1}, for g in P (D), partition P (D) into subsets of size 1 or size 2, with the
size being 1 precisely when g has order 2. The map φ then yields a corresponding partition
of the sides of D. If {s, s′} is the image of {g, g−1}, then s= D̃ ∩ gD̃ and s′ = D̃ ∩ g−1D̃.
Moreover, g(s′) = s and g−1(s) = s′. We thus have a pairing of the sides of D by elements from
P (D), which constitute what we shall call the set of pairing transformations. We include the
possibility that a side may be ‘self-paired’ by an element g of order 2.

There are different approaches to constructing convex, locally finite, fundamental domains.
We shall find it convenient to use a method first introduced by Ford [13]. To define a Ford
fundamental domain, we first need to define the isometric circles of the group G.

Definition 3.5. Suppose c 6= 0. The isometric circle Ig of the matrix g =
(
a b
c d

)
∈ SL(2, R)

is the circle in the complex plane with centre −d/c and radius 1/|c|; that is, Ig = {z ∈ C |
|cz + d|= 1}. If G is a subgroup of SL(2, R) and g ∈G, then we say that Ig is an isometric
circle of G. We also define Ext(Ig) = {z ∈ C | |cz + d|> 1} and Int(Ig) = {z ∈ C | |cz + d|< 1}.

We shall use isometric circles to construct a fundamental domain for G. The key properties
of the isometric circle Ig that we shall use are as follows.

Lemma 3.6. Let g =
(
a b
c d

)
be an element of SL(2, R) such that c 6= 0.

(i) The transformation of C given by z 7→ g(z) = (az + b)/(cz + d) is the transformation
obtained by performing an inversion in Ig followed by a reflection in the perpendicular bisector
of the line from the centre of Ig to the centre of Ig−1 . If Ig = Ig−1 , then the reflection is in the
line through the centre of Ig parallel to the imaginary axis.

(ii) The transformation z 7→ g(z) maps Ext(Ig) ∪ {∞} bijectively to Int(Ig−1).

Proof. Statement (i) follows from a direct calculation. Statement (ii) follows from
statement (i).

For any element g in SL(2, R), let cg be the lower left entry of g. Let G∞ be the subgroup of
G that stabilizes ∞. Then g ∈G∞ if and only if cg = 0. Thus g has an isometric circle if and
only if g ∈G−G∞. We shall assume from this point on that G∞ is equal to {±(1 kT0 1 ) | k ∈ Z}
for some T > 0. This is the case for all the groups we wish to consider.

We next define some subsets of H.

Definition 3.7.

R∞(G) = {z ∈H | 0< <(z)< T},

R1(G) = H ∩
⋂

g∈G−G∞

Ext(Ig),

R2(G) = H ∩
⋃

g∈G−G∞

Int(Ig),

R3(G) = {z ∈H | ∃g ∈G−G∞ such that z ∈ Ig and z 6∈R2(G)},

R(G) = R∞ ∩R1(G).

(3.1)
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We shall show that R(G) is a convex, locally finite, fundamental domain for G. This type
of fundamental domain was originally introduced by Ford, so we shall call R(G) the Ford
fundamental domain of G. As most references give a full treatment only for the case where G∞
is trivial, we shall provide a detailed discussion.

The image of an isometric circle of a group G upon transformation by an element h of
SL(2, R) is not necessarily an isometric circle of the group obtained by conjugating G by h. It
follows that a conjugated Ford fundamental domain of G is not necessarily a Ford fundamental
domain of the group obtained by conjugating G, even though it is a fundamental domain for
this group. See [1, Section 7.36] for a more detailed discussion of this point.

For an isometric circle I of the group G, let 〈I〉 be the set of circles obtained upon translating
I by the transformations corresponding to the elements of G∞. Let S = {〈Ig〉 | g ∈G−G∞}.

Lemma 3.8. The map ϕ :G∞(G−G∞)G∞→ S given by ϕ(G∞gG∞) = 〈Ig〉 is a bijection.

Proof. That ϕ is well-defined on the double cosets is easily verified. Clearly, ϕ is surjective. If
ϕ(G∞gG∞) = ϕ(G∞g′G∞), then Ig = t1(Ig′) for some t1 ∈G∞, and so Ig = Ig′t1 . This implies
that g = t2g

′t1 for some t2 ∈G∞, and so the two double cosets are equal, as required.

Let r(〈I〉) be the (Euclidean) radius of I. This is well-defined, since each circle in 〈I〉 has
the same radius.

Lemma 3.9.

(i) With G as above, there is some M > 0, depending only on G, such that r(〈I〉) 6M for
all 〈I〉 ∈ S.

(ii) For all N > 0, the set {〈I〉 ∈ S |N 6 r(〈I〉) 6M} is finite.

Proof. By using Lemma 3.8, both assertions follow from [26, Lemmas 1.24 and 1.25].

Proposition 3.10. Let C be any compact subset of H. Then there are only finitely many
isometric circles of G that meet C. Moreover, there are only finitely many isometric circles
whose interiors meet C.

Proof. Let z be any point of H. The hyperbolic distance from z to C is bounded, and thus
C lies inside some hyperbolic disc centred on z, which is a Euclidean circle E contained in H.
In particular, C is bounded away from the real axis in the Euclidean metric. It follows from
Lemma 3.9(ii) that there are only finitely many equivalence classes 〈I〉 such that some isometric
circle in 〈I〉 meets C. Furthermore, if I meets E, then there are only finitely many circles in
〈I〉 that meet E and hence finitely many that meet C. We conclude that only finitely many
isometric circles meet C, as required. A similar argument shows that there are only finitely
many isometric circles whose interiors meet C.

Corollary 3.11. If z is a point in H, then z has a neighborhood that meets only finitely
many isometric circles of G.

Proof. As every neighborhood of z contains a closed hyperbolic disc, which lies in H, this
result follows from Proposition 3.10.

Proposition 3.12.

(i) The three sets R1(G), R2(G) and R3(G) form a partition of H, and each set is invariant
under the group G∞.

(ii) R1(G) and R2(G) are open sets.
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(iii) R1(G) ∪R3(G) is the closure of R1(G) in H and R3(G) = ∂R1(G).

(iv) The closure of R(G) in H is (R3(G) ∩ R̃∞(G)) ∪ (R1(G) ∩ R̃∞(G)).
(v) The boundary of R(G) is the disjoint union of L0 ∩R1(G), LT ∩R1(G) and R3(G) ∩

R̃∞(G), where Lx = {z ∈H | <(z) = x}.

Proof.
(i) That the three sets are disjoint follows immediately from their definitions. If z is not in

either R1(G) or R2(G), then there is at least one isometric circle I such that z is not in either
Ext(I) or Int(I). So z is in R3(G) and therefore R3(G) is the complement of R1(G) ∪R2(G)
in H. As the set of isometric circles is invariant under translations in G∞, it follows that
R1(G) and R2(G) are invariant under translations in G∞. As R3(G) is the complement of
R1(G) ∪R2(G) in H and H is invariant under translations in G∞, it follows that R3(G) is also
invariant.

(ii) The set R2(G) is open, since it is the intersection of a union of open sets with H. To
show that R1 is open, suppose z ∈R1. Then, by Corollary 3.11, z has a neighborhood that
meets only finitely many isometric circles. However, as z lies in the exterior of every isometric
circle, it cannot lie on an isometric circle. Thus, there is some open hyperbolic disc centred on
z that meets no isometric circles. As this disc is connected and meets no isometric circles, it is
in either the interior or the exterior of each isometric circle. But it cannot be in any interior,
as that would imply that z is not a point of R1. So the disc must be contained in the exterior
of every isometric circle and hence contained in R1. Thus R1 is open as required.

(iii) Since R1(G) and R2(G) are open, it follows that ∂R1(G) is a subset of R3(G). So we
need to show that every point of R3(G) is in the closure of R1(G). Suppose z ∈R3(G) and
let r = {z + iy ∈H | y > 0} be the vertical ray with endpoint z. Suppose z′ = z + iy′ ∈ r, z′ ∈ r
and z′ 6∈R1(G). Then z′ ∈R3(G) ∪R2(G), and so z′ lies on or inside some isometric circle. But
then z lies inside the same isometric circle and is therefore in R2(G), which is a contradiction.
Thus, z′ ∈R1(G) for all z′ ∈ r and so z is in the closure of R1(G), as required.

(iv) Note first that ˜R1(G) ∩R∞(G)⊆ R̃1(G) ∩ R̃∞(G). By part (iii), R̃1(G) is the disjoint
union of R1(G) and R3(G). It follows that R̃1(G) ∩ R̃∞(G) is equal to the disjoint union
(R3(G) ∩ R̃∞(G)) ∪ (R1(G) ∩ R̃∞(G)). Thus the proof will be complete once we show that
every element of this disjoint union is a limit point of R1(G) ∩R∞(G). Now, R̃∞(G) is
the disjoint union of R∞(G) and the two lines L0 and LT . Thus R1(G) ∩ R̃∞(G) is the
disjoint union of R1(G) ∩R∞(G), R1(G) ∩ L0 and R1(G) ∩ LT . If z ∈R1(G) ∩ L0, then every
sufficiently small neighborhood of z is contained in R1(G) and contains points with positive
real parts, which are therefore in R1(G) ∩R∞(G). Hence R1(G) ∩ L0 is in the closure of
R1(G) ∩R∞(G) and, similarly, so is R1(G) ∩ L1. Thus R1(G) ∩ R̃∞(G) is in the closure of
R1(G) ∩R∞(G). Next, consider R3(G) ∩ R̃∞(G). Once again, this set decomposes into the
disjoint union of three sets, A, A0 and AT , say. The set A consists of those points of R3(G)
whose real parts are strictly between 0 and T ; A0 consists of the points of R3(G) with real parts
equal to 0; and AT consists of those points with real parts equal to T . By the same argument as
in part (iii), A consists of points in the closure of R1(G) ∩R∞(G). It is possible that A0 and AT
are empty, in which case we are done. Since R3(G) is invariant under translations in G∞, if A0 is
non-empty, then so is AT . Suppose that A0 is not empty. Then it consists of exactly one point,
because if not, it would contain two points z1 and z2 with <(z1) = <(z2), =(z1)< =(z2) and
z2 ∈ I for some isometric circle I; but then z1 ∈ Int(I), which is a contradiction. Let A0 = {iy0}.
As before, the ray r = {z ∈H | z = iy, y > y0} is contained in R1(G). Take a sequence of points
r1, r2, r3, . . . of r that converge to iy0. Since R1(G) is open, there is a sequence of positive
numbers ε1, ε2, . . . converging to zero such that the εi-neighborhood of each ri is contained in
R1(G). Each such neighborhood contains points of R1(G) ∩R∞(G), so we obtain a sequence
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of points of R1(G) ∩R∞(G) that converges to iy0, as required. A similar argument shows that
if AT is non-empty, then it is in the closure of R1(G) ∩R∞(G).

(v) This follows from the proof of part (iv).

Corollary 3.13. The set R(G) is a convex domain.

Proof. If R(G) is convex, then it is connected, so we need to show that R(G) is convex and
open. It is sufficient to show that R1(G) is convex and open, since R∞(G) is convex and open.
But this is clearly true: R1(G) is convex because it is the intersection of convex sets, and it is
open by the previous proposition.

The following proposition is based on Lehner [20, p. 57].

Proposition 3.14. R(G) is a fundamental domain of G.

Proof. By Proposition 3.12(v), the boundary of R(G) has zero hyperbolic area. If z is
in R(G), then any translation in G takes z out of R(G). If g is not a translation, then
g(z) ∈ Int(Ig)⊂R2(G) and so, again, g(z) is not in R(G). Thus each orbit of G intersects
R(G) at most once, and so R(G) is contained in some fundamental set of G. It remains to
show that every orbit of G has non-empty intersection with R̃(G). We first show that if z is
not in R̃1(G), then there is some g ∈G such that g(z) is in R̃1(G). By Proposition 3.12, if
z0 6∈ R̃1(G), then z0 is in R2(G). Let z0 = x0 + iy0. There is some g0 such that z0 is inside
Ig0 . Let z1 = g0(z0) and z1 = x1 + iy1. Since the action of g0 is an inversion in Ig0 followed by
reflection in a line parallel to the imaginary axis, it follows that y1 > y0. Continuing in this way,
either we find some zi that is in R̃1(G), or we have a sequence of distinct points z0, z1, z2, . . .
that are all on the same G-orbit and all elements of R2(G). Their imaginary parts are thus
bounded above by the bound M from Lemma 3.9(i) and bounded below by y0. These points
may be translated by appropriate elements of G∞ so that they are in R̃∞(G). The resulting
points are still distinct as their imaginary parts are unchanged. This yields an accumulation
point of an orbit of G that is H, but this is impossible since G is discrete.

We conclude that the orbit of z0 must intersect R̃1(G). So, by applying a translation in G∞
if necessary, we obtain a point in R̃∞(G) and hence in R̃(G), as required.

Proposition 3.15. R(G) is locally finite.

Proof. We have to show that every compact subset of H meets only finitely many G-
images of R(G). Suppose not; then we can find some compact subset C, a sequence of points
z0, z1, . . . in R(G) and a sequence of distinct elements g0, g1, . . . in G such that gi(zi) is in
C for i= 1, 2, 3, . . . . Since C is bounded in the hyperbolic metric, it is contained in some
hyperbolic disc of finite radius, which is some Euclidean disc contained in H. It follows that
there are only finitely many translations t in G such that t(R(G)) has non-empty intersection
with C.

Thus, by passing to a subsequence if necessary, we can assume that each term of the sequence
g1, g2, . . . has an isometric circle. By Proposition 3.10, there are only finitely many isometric
circles whose interiors meet C. Thus, again, by passing to a subsequence if necessary, we
can assume that we have an infinite sequence of distinct group elements g0, g1, g2, . . . such
that Ig−1

i
= Ig−1

j
for all i, j > 1. (Recall that by Lemma 3.6(ii), gi(zi) is a point in Int(Ig−1).)

This implies that for i= 1, 2, 3, . . . , gi = g0ti for some translation ti ∈G∞. As the gi are all
distinct, the translations ti are all distinct. It follows that |<(ti(zi))| →∞ as i→∞. But then
=(gi(zi)) = =(g0(ti(zi)))→ 0 as i→∞, and this is a contradiction since C is bounded away
from the real axis.
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We have now shown that R(G) is a convex, locally finite, fundamental domain of G. We
next investigate the structure of the boundary of R(G) in more detail. Following Beardon [1,
p. 218], we shall call the maximal geodesic segments of the boundary of R(G) the edges of
R(G). Although an edge of R(G) is not necessarily a side of R(G), we shall see later (in
Proposition 3.26) that this is usually the case. We start by finding the decomposition of
R3(G) ∩ R̃∞(G) into edges of R(G).

Lemma 3.16. There are finitely many distinct isometric circles I1, I2, . . . , Ik such

that R3(G) ∩ R̃∞(G) is the union γ1 ∪ γ2 ∪ · · · ∪ γk where γi = Ii ∩R3(G) ∩ R̃∞(G) for i=
1, . . . , k. Each γi is an edge of R(G). If an endpoint of γi is in H, then γi includes this
endpoint. If i 6= j, then the intersection γi ∩ γj is empty, except possibly when j = i+ 1. When
j = i+ 1, then either the intersection is empty, in which case the circles Ii and Ij meet in a
single point on the real line, or the intersection γi ∩ γj consists of a single point, which is then

the common endpoint of γi and γi+1 in H. Each side of R(G) is either L0 ∩ R̃1(G), LT ∩ R̃1(G)
or a sub-geodesic segment of some γi. Each γi contains only finitely many sides of R(G).

Proof. First, we observe that if t is the translation z 7→ z + T , then

t(R̃(G)) ∩ R̃(G) = t(R̃1(G) ∩ R̃∞(G)) ∩ R̃(G)

= R̃1(G) ∩ t(R̃∞(G)) ∩ R̃(G)

= R̃1(G) ∩ LT = (LT ∩R1(G)) ∪ (LT ∩R3(G)).

Let sT = (LT ∩R1(G)) ∪ (LT ∩R3(G)). Then sT and s0 = (L0 ∩R1(G)) ∪ (L0 ∩R3(G)) are
sides of R(G), which are paired by t and t−1.

Now consider the part of the boundary of R(G) consisting of R3(G) ∩ R̃∞(G); call this β.
Since R(G) is a locally finite, fundamental domain, by Theorem 3.4 we have β =

⋃n
j=1 sj where

the sj , j = 1, . . . , n, are sides of R(G). Let s be one of these sides, and let z be a point of s
that is not an endpoint. As z is in R3(G), there is some isometric circle I such that z ∈ I. If
s is not a subset of I, then as both s and I ∩H are geodesics, they must meet at z and at
no other points of H. But then there must be points of s that are in Int(I) and hence are not
points of β, which is a contradiction. It follows that s is a subset of I. Thus there are finitely
many isometric circles Ii, i= 1, . . . , k, such that β =

⋃n
j=1 sj =

⋃k
i=1 β ∩ Ii. For i= 1, . . . , k,

let γi = β ∩ Ii, so that each γi is a union of finitely many sides of R(G).
Now let I be any one of the isometric circles I1, . . . , Ik. If z1 and z2 are distinct points of

I ∩ β and z lies on the geodesic segment between z1 and z2, then z cannot be in R2(G) since
this would imply that either z1 or z2 also lies in R2(G). So γ = I ∩ β is a convex set and hence
an edge of R(G). We thus have the required decomposition of β into edges of R(G).

Two of these edges intersect in at most one point, which, if it exists, must be a common
endpoint, since otherwise points of one of the edges would be in the interior of the isometric
circle corresponding to the other edge.

If γ is an edge contained in β, then its projection onto R is an interval Projγ . If γ′ is another
edge contained in β, then Projγ and Projγ′ intersect in at most one point, since otherwise there
would be points on one edge that lie in the interior of the isometric circle corresponding to
the other edge. Thus, we can reorder the edges by, say, the midpoints of the corresponding
intervals. If two consecutive projected intervals did not meet at a common endpoint, then the
hyperbolic area of R(G) would be infinite, which is a contradiction. So, either two consecutive
edges meet in H, or their closures in C meet at a point on the real line. Thus, the decomposition
of β into a union of edges has the required intersection properties.

Some authors adopt a convention in which every elliptic fixed point of order 2 on the
boundary of R(G) is considered to be a vertex. In this convention, the single ‘self-paired’
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side s is considered as two sides meeting at the fixed point. We do not follow this convention
here. It is, however, useful to keep track of these points. To do so, we shall call a fixed point of
order 2 on a ‘self-paired’ side a pseudo-vertex.

We have now established all of the standard properties, as given in Theorem 3.4, for the Ford
fundamental domain R(G). In order to develop an algorithm for finding the Ford fundamental
domain of a group G, it will be helpful to record some additional properties. We start with a
lemma concerning the orbit of a vertex.

Lemma 3.17. If v is a vertex of R(G) and g is an element of G such that g(v) is also a
vertex of R(G), then there is some sequence of side-pairing elements g1, g2, . . . , gw ∈ P such
that g = gwgw−1 . . . g2g1. Moreover, for j = 2, . . . , w, the two sides φ(g−1

j ) and φ(gj−1) have a

common endpoint gj−1gj−2 . . . g2g1(v). Also, v is an endpoint of φ(g−1
1 ).

Proof. This follows from Beardon [1, Theorem 9.3.3]. See also Ford [13, Section 26] for an
extended discussion.

The cycle of a vertex V is defined to be the intersection of the orbit G(v) with R̃(G).
By Lemma 3.17, the cycle of a vertex can be calculated using only the action of the pairing
transformations on the sides of R(G).

The sum of the angles subtended by R(G) at each vertex of a cycle is related to the order
of the stabilizer of any vertex in the cycle, as described in the following lemma.

Lemma 3.18. Let O =O(v) = {v1, v2, . . . , vn} be the cycle of the vertex v, where v1 = v,
and for i= 1, . . . , n let θi be the angle subtended by R(G) at vi. Let Ord(v) be the order of
the subgroup of G=G/{±12} ∩G that stabilizes v; this is finite and equal to the order of the
stabilizer of any element of O(v). Then θ1 + θ2 + · · ·+ θn = 2π/Ord(v).

Proof. See Beardon [1, Theorem 9.3.5].

Note that, as explained in [13, Section 26], Lemma 3.17 can be used to find a generator
for the stabilizer of v. We do not discuss the details of this computation, as it is not used in
the algorithm given below for finding the Ford fundamental domain. These generators were,
however, computed and are included in the data files.

The points of R which are in the closure of R(G) in C, together with the point∞, are called
the vertices at infinity of R(G). By Lemma 3.16, there are finitely many vertices at infinity of
R(G). In the terminology of [1, Definition 9.3.7], these points are proper vertices at infinity
of R(G); that is, they are common endpoints ‘at infinity’ of two sides of R(G). In general, a
Fuchsian group may have vertices at infinity which are improper; see, for example, [1, p. 223] for
a discussion. The results given above for vertices of R(G) hold, with minimal modifications,
for vertices at infinity of R(G). If v is a vertex at infinity of R(G), then let the cycle of v be
the intersection of G(v) with the set of vertices at infinity of R(G).

Lemma 3.19. Let v be a vertex at infinity of R(G), where G is a finitely generated Fuchsian
group of the first kind.

(i) The cycle of v is finite.
(ii) The subgroup of G that stabilizes v is a parabolic subgroup.

(iii) If g is an element of G such that g(v) is also a vertex at infinity of R(G), then there
is some sequence of side-pairing elements g1, g2, . . . , gw ∈ P such that g = gwgw−1 . . . g2g1.
Moreover, for j = 2, . . . , w, the two sides φ(g−1

j ) and φ(gj−1) have a common endpoint in E,

namely gj−1gj−2 . . . g2g1(v). Also, v is an endpoint of φ(g−1
1 ).
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Proof. The finiteness of the cycle of v follows from Lemma 3.16. That the stabilizer of v
is parabolic follows from [1, Theorem 9.3.8], which says that the stabilizer is either parabolic
or trivial, and [20, Theorem 2, Section 41], which tells us that the stabilizer cannot be trivial
if the fundamental domain has finitely many sides. (This section of [20] concerns Dirichlet
fundamental domains, but the proof of that particular theorem applies more generally.) The
proof of the last part of the lemma is essentially identical to the proof in the case where v is a
vertex.

As we shall see in Section 5, we make use of the cycles of the vertices of R(G) in the
calculation of the hyperbolic area of R(G). To find the cycles, we need an efficient method of
finding the pairing transformations. The following lemma supplies this method, provided that
we know the isometric circles and sides which appear in Lemma 3.16.

Lemma 3.20. Suppose that s is a side of R(G) contained in an isometric circle I. Suppose
that g ∈G pairs s with the side s′. Then I = Ig.

Proof. Suppose not; that is, suppose Ig and I are distinct. As their intersections with H
are hyperbolic geodesics, they intersect in at most one point in H. Since no points of s are
in R2(G), with the exception of at most one point, s must be contained in Ext(Ig). It follows
that, except for perhaps one point, g(s) is contained in Int(Ig−1). But then s′ cannot be a side
of R(G), which is a contradiction.

Lemma 3.20 determines g up to a translation. But, as s and s′ lie between 0 and T ,
this translation is easily found and so we have a simple algorithm for finding the pairing
transformations, given the isometric circles and sides bounding R(G).

In order to implement the algorithms of the next sections, we shall need a more precise
description of the relationship between the sides and edges of R(G) than that given in
Lemma 3.16.

We start with some preliminary lemmas.

Lemma 3.21. Suppose that g = e−1/2
(
ae b
cf de

)
is an element of Γ0(f)+, where c 6= 0. Let

Lx = {z ∈H | <(z) = x}. Then, for each integer i, either Ig ∩ Li is empty or the centre of Ig
lies on Li.

Proof. By translating by an integer if necessary, we can assume x= 0. The circle Ig
has centre −de/cf and radius

√
e/f |c|. If −de/cf < 0, then Ig intersects L0 if and only if

−de/cf +
√
e/f |c|> 0. (Note that by definition L0 does not contain the origin.) This implies

that d2e < 1, and, as d and e are integers and e > 0, we must have d= 0, which is a contradiction.
A similar argument in the case where −de/cf > 0 also leads to a contradiction. We conclude

that d= 0, and so if Ig ∩ L0 is not empty, then the centre of Ig is on the line L0.

This lemma is useful in two ways. As we shall see below, it allows us to simplify the
classification of the sides of R(G), since with our choices the edges of R(G) are the sides
of R(G), with at most one exception.

It also tells us that we need only consider those isometric circles whose centres are in the
interval [0, T ], as follows.

Corollary 3.22. Suppose that G is a subgroup of Γ0(f)+ and Ig is an isometric circle of
G. If Ig ∩R∞(G) is not empty, then the centre of Ig lies in the interval [0, T ].
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Proof. If the centre of Ig does not lie in the interval [0, T ] but Ig has non-trivial intersection
with R∞(G), then Ig meets either L0 or LT . In either case we obtain a contradiction.

Lemma 3.23. If z ∈R3(G) and g ∈G−G∞ is such that g(z) ∈R3(G), then z ∈ Ig.

Proof. Since z is in R3(G), there is some isometric circle I such that z ∈ I. If I = Ig, then
we are done. So suppose I 6= Ig. Since the intersections of I and Ig are geodesics, I ∩ Ig ∩H
consists of at most one point. If this point is z, again we are done; so suppose not. Then, since
z is not in R2(G), we must have z ∈ Ext(Ig). But then g(z) ∈ Int(Ig−1)⊆R2(G), which is a
contradiction. So z ∈ Ig as required.

Lemma 3.24. If z1 and z2 are in R3(G) and z2 = g(z1) for some g in G, then =(z1) = =(z2).

Proof. If g is an element of G∞, then g acts as a translation and so the imaginary parts
of z1 and z2 are equal. Otherwise, we can apply Lemma 3.23 to conclude that z1 ∈ Ig, so the
action of g is to reflect z1 in a line parallel to the imaginary axis; thus z1 and z2 again have
the same imaginary part.

As in Lemma 3.16, a maximal geodesic segment of positive length contained in R3(G) will
be called an edge of R3(G). Note that in Lemma 3.16, the segments γ2, . . . , γk−1 are edges of
both R(G) and R3(G). Although γ1 and γk are edges of R(G), they may or may not be edges
of R3(G).

Thus an edge of R3(G) is not necessarily an edge of R(G), but, as we now show, they are
closely related.

Lemma 3.25. Suppose that γ ⊆R3(G) is a geodesic segment of positive length. Let z1 and
z2 be distinct points in γ. If g is an element of G such that g(z1) ∈R3(G) and g(z2) ∈R3(G),
then g(γ)⊆R3(G). In particular, if γ is an edge of R3(G) and g(γ) intersects R3(G) in at least
two points, then g(γ) is an edge of R3(G).

Proof. First, if g is a translation, then since R3(G) is invariant under translations it follows
that g(γ)⊆R3(G). Suppose next that g is not a translation. Then, by Lemma 3.23, we have
z1 ∈ Ig and z2 ∈ Ig. Since Ig ∩H is a geodesic and Ig ∩ γ contains the distinct points z1 and z2,
it follows that we must have γ ⊆ Ig. Suppose there is some point s ∈ γ such that g(s) is not in
R3(G). We will show that this leads to a contradiction. Since g(s) ∈ Ig−1 , we have that g(s)
is not in R1(G) and so g(s) is in R2(G). Hence there is some g′ such that g(s) ∈ Int(Ig′), and
then =(g′(g(s)))> =(s). Continuing in this way, we obtain a sequence of points with strictly
increasing imaginary parts. As in Proposition 3.15, if all these points are in R2(G), then we
obtain an accumulation point of an orbit of G, which gives a contradiction. Otherwise, after a
finite number of steps, we obtain a point w that is in either R1(G) or R3(G). By Lemma 3.24,
w cannot be in R3(G) and so must be in R1(G). But R1(G) is invariant under translations,
and the image of a point of R1(G) by an element of G that is not a translation is in R2(G);
so there are no points of R1(G) that are images of points in R3(G), and hence w is not an
element of R1(G). This is a contradiction. Therefore, for every point s of γ, g(s) is in R3(G)
as required.

Finally, if γ is an edge of R3(g) and g(γ) intersects R3(G) in at least two points, then, as we
have just shown, g(γ) is contained in R3(G) and hence is contained in some edge γ′ of R3(G).
But then g−1(γ′) contains γ and so must be equal to γ, since γ is an edge of R3(G). Thus
g(γ) = γ′, as required.

Roughly speaking, Lemma 3.25 says that the sides of R3(G) are the edges of R3(G). We
will use this result, together with Lemma 3.21, to show that the edges of R(G) are sides, with
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one possible exception. This assumes our choice of R∞(G) and that G is a subgroup of some
Γ0(f)+. First, we require some notation. The reader may find it helpful at this point to look
at the example in Section 6.

If there is some edge E of R3(G) such that E ∩ L0 is not empty, then the translate of E by
T meets LT in H also. In this case, we let El be the part of E whose points have non-negative
real parts and let Er be the part of the translate of E by T whose points have real parts less
than or equal to T . This is illustrated in Figure 1 (see Section 6). In this example, side 2 is El
for this fundamental domain while side 8 is Er.

We next describe the sides of R(G). Recall the notation A0 and AT from the proof of
Proposition 3.12(iv).

Proposition 3.26. The sides of R(G) are as follows:

(i) s0 = (L0 ∩R1(G)) ∪A0;
(ii) sT = (LT ∩R1(G)) ∪AT ;
(iii) El, if it exists;
(iv) Er, if it exists;
(v) all the edges of R3(G) that are contained in R∞(G), with at most one exception, which

is described below.
(vi) The exception occurs if there is some edge γ of R3(g) that is contained in R∞(G) and

for which there exists some pairing transformation g with g(γ) ∩ L0 not empty. In this
case, let x0 be the centre of the isometric circle that contains γ. Then Lx0 intersects γ,
and the point of intersection is a vertex of R(G). The edge γ consists of two sides which
meet at this common vertex. These two sides are paired with El and Er. If this exception
does not occur, and if El and Er exist, then El and Er are paired.

Proof. That the union of these sets form the boundary of R(G) follows from
Proposition 3.12. By Proposition 3.12(v) and Lemma 3.16, s0 and sT are sides and edges
of R(G) paired by the translation z 7→ z + T and its inverse.

Suppose that γ is an edge of R(G), other than s0 or sT , which contains a side s. Suppose
also that s is paired with the side s′ by g and that s′ is contained in an edge γ′ of R(G). So γ′

is also neither s0 nor sT .
If γ is an edge of R3(G), then by Lemma 3.25 g(γ) is also an edge of R3(G). If g(γ) is

contained in R∞(G), then by Lemma 3.16 it is an edge of R(G); but then it must also be a
side of R(G), since it is contained in the side R̃(G) ∩ gR̃(G). So we have that s= γ and s′ = γ′.
Since g(γ) contains γ′, if g(γ) is not contained in R∞(G), then γ′ is not an edge of R3(G).

Thus it remains to consider the cases where either γ or γ′ is not an edge of R3(G). Without
loss of generality we can assume it is γ that is not an edge of R3(G). So γ is contained in
some edge δ of R3(G). Again, by Lemma 3.16, if δ is contained in R∞(G), then it is an edge of
R(G). This implies γ = δ, which is a contradiction, and so δ contains either El or Er. Suppose
that δ contains El (the case where δ contains Er is similar). In particular, the side s of R(G)
is contained in El. The image g(γ) is contained in some edge δ′ of R3(G) such that g(δ) = δ′.
One possibility is that δ′ is contained in R∞(G) and hence is an edge of R(G). In this case, we
have g−1δ′ = δ and so g−1δ′ ∩ R̃(G) = El. This implies that El is a side of R(G) and so s= El.
Similarly, Er is a side of R(G) which is paired with a subsegment of δ′ via a translation by −T
followed by the transformation g. As δ is the union of El and the translation of Er by −T and
δ′ is the image of δ by g, we see that δ′ consists of two sides, one of which is paired with El
and the other with Er. By Lemma 3.24, the common vertex of these two sides is on the vertical
line passing through the centre of the isometric circle I that contains δ′.

The other possibility is that δ′ is not contained in R∞(G). In this case, part of δ′ is Er.
(It cannot contain El by Lemmas 3.21 and 3.24.) Thus the side s is contained in El and is paired

https://doi.org/10.1112/S1461157008000041 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157008000041


FUNDAMENTAL DOMAINS FOR CONGRUENCE SUBGROUPS 235

with the side s′, which is contained in Er, by some g in G. It again follows that g(δ) = δ′, and
so if t is the translation z 7→ z − T , we have that tg(δ) = δ by Lemma 3.25. Thus h= tg is an
element of projective order 2 and δ is contained in Ih = Ih−1 . It follows that the imaginary axis
is an axis of symmetry of δ. So g = t−1h maps El to Er. Thus, in this case also, El and Er are
sides of R(G).

We emphasize again that the simple form of the sides of R(G) in the previous proposition
depends on the fact that G is a subgroup of some Γ0(f)+ and also on the choice of R∞(G).

Finally, we record the following technical lemma, which will be needed in the next section.

Lemma 3.27. Let C be a finite set of isometric circles. Let I1, I2 and J be isometric circles
with centres x1, x2 and xJ , respectively, where x1 < xJ < x2. For i= 1, 2, let Di = C ∪ {Ii}
and D =D1 ∪D2; also let ρi =

⋂
I∈Di

Ext(I) ∩H and ρ= ρ1 ∩ ρ2. Suppose that for any I in C
with centre xI , we have xI 6∈ [x1, x2]. Suppose also that there are geodesic segments γ1 and γ2

in H of positive length such that γ1 ∈ I1 ∩ ρ2 and γ2 ∈ I2 ∩ ρ1. Then there is a geodesic segment
γ in H of positive length such that γ ⊆ J ∩ ρ if and only if I1 ∩ I2 ⊆ Int(J), J 6⊆ I1 ∪ Int(I1)
and J 6⊆ I2 ∪ Int(I2).

Proof. We consider the three cases of I1 ∩ I2 = ∅, I1 ∩ I2 = {p} (with p ∈ R) and I1 ∩ I2 =
{p, p} with p ∈H. In the case where the intersection is empty, let S be the subinterval of
[x1, x2] consisting of the points exterior to both circles together with the two endpoints.
Suppose S = [a, b]. Then no circle in C can meet the region K = {z ∈ C | a 6 <(z) 6 b}, since
any such circle would contain either I1 or I2. But this contradicts the assumption of the
existence of the geodesics γ1 and γ2. Now, if J ⊆ I1 ∪ Int(I1) or J ⊆ I2 ∪ Int(I2), then it follows
that no points of J are external to both I1 and I2 and so there is no γ contained in J ∩ ρ.
Conversely, if J 6⊆ I1 ∪ Int(I1) and J 6⊆ I2 ∪ Int(I2), then J must meet the interior of K. Taking
γ = J ∩K ∩H, we have that γ is external to both I1 and I2 and, by the argument above,
external to the circles of C; hence it is contained in J ∩ ρ as required.

If I1 ∩ I2 = {p}, let r be the ray z = p+ iy, y > 0. As in the first case, the circles in C cannot
meet r, owing to the assumption of the existence of γ1 and γ2. Now, if {p} 6⊆ Int(J), then
necessarily either J ⊆ Int(I1) or J ⊆ Int(I2), and once again there is no γ. Conversely, if p is
in Int(J) (and hence also J 6⊆ I1 ∪ Int(I1) and J 6⊆ I2 ∪ Int(I2)), then J meets r at some point,
say z. Thus there is some open neighborhood N of z that is contained in ρ, and so N ∩ J is
the required geodesic γ.

Finally, suppose I1 ∩ I2 = {p, p} with p ∈H. Let r be the ray p+ iy, y > 0. Suppose that I
is a circle in C with centre xI such that x2 < xI . If I meets r, then the points of I2 ∩H with
real parts greater than or equal to the real part of p are contained in I. It is possible that I
meets I2 in H, but the point of intersection has real part less than the real part of p, so the
points of I2 that are external to I are inside I1. Thus, no part of I2 is in ρ1, which contradicts
the existence of γ2. A similar argument for when the centre of I is less than x1 shows that
no circle in C meets r. Now, let W be the complement of Int(I1) ∪ Int(I2) in C. The set W
is closed, and so the Euclidean distance d(z, xJ) from xJ to z ∈W has a minimum value.
A calculation in elementary geometry shows that the minimum is attained at p and p. Thus, if
p is in Ext(J) ∪ J , then there is no geodesic segment of J of positive length that is in ρ. Con-
versely, if p is in the interior of J (so that necessarily J 6⊆ I1 ∪ Int(I1) and J 6⊆ I2 ∪ Int(I2)), then
J meets r. Again, there is a neighborhood N of this intersection point that is contained in ρ.
So J ∩N yields the required geodesic segment.

4. The algorithm

In this section, we describe an algorithm for computing the Ford fundamental domains for the
groups described in Section 2.
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Fix a discrete subgroup G of SL(2, R) and assume that G contains −12. Then G is countable,
since any discrete subgroup of SL(2, R) is countable. So the set of isometric circles of G is a
countable set. Thus we can select some sequence S consisting of all the isometric circles of G.
It will be explained shortly how to generate such a sequence given a decision procedure for
membership of G. For simplicity, however, we present the algorithm in a form for which it is
more straightforward to verify correctness.

As explained in Section 2, we will assume that G is a subgroup of Γ0(f)+ for some square-free,
positive integer f .

Algorithm for computing the fundamental domain

Input: a decision procedure to determine whether an element of Γ0(f)+ is in the subgroup G;
the index of G in Γ0(f)+; a sequence S = I1, I2, . . . containing every isometric circle of G.

Output: a finite set C of isometric circles of G which, together with L0 and LT , bound a
fundamental domain R(G) of G.

C←{}

T ← the smallest positive integer T such that
(
1 T
0 1

)
is in G

R∞←{x+ iy ∈ C | y > 0, 0< x < T}

while Area(C) 6= Index(Γ0(f)+ :G)×Area(Γ0(f)+)

I ← next isometric circle from S

if I contains a geodesic segment of positive length that is contained in R∞
and is external to all the circles of C, then

C← C ∪ {I}
remove any circles whose geodesic segments in R∞ external to the other circles in C
are now contained in I ∪ Int(I)

end if

end while

return C

The procedure Area(C) is any procedure that returns either −1 or the hyperbolic area of
the region R(C) =R∞ ∩

⋂
I∈C Ext(I), with the restriction that it must return the hyperbolic

area if R(C) =R(G). A specific choice of such a procedure is given in the next section. The
details of the inner if loop will be explained in more detail shortly.

Proposition 4.1. The algorithm terminates and returns a set of isometric circles that,
together with L0 and LT , bound a Ford fundamental domain of G.

Proof. By the results of Section 3, the Ford fundamental domain R(G) is bounded by
(segments of) finitely many isometric circles of G and (segments of) L0 and LT . So for the
sequence S, there is a smallest integer N such that all the isometric circles bounding R(G) occur
in the first N terms of S. We will show that the algorithm terminates after exactly N iterations.
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Let Ci, i > 1, be the set of isometric circles after the ith iteration of the while loop. If
Ci contains one of the circles that bounds R(G), then this circle will never be removed,
since it contains some geodesic segment of positive length that is external to all the other
isometric circles of G. Moreover, CN will contain no circle I that is not a bounding circle, since
such an I would have to contain a geodesic segment of positive length contained in R1(G),
which is impossible. Thus CN consists of precisely the isometric circles that bound R(G). So
Area(R(CN )) returns Area(G), and the algorithm terminates after at most N iterations.

The algorithm cannot terminate before N iterations. If Area(R(Ci)) is infinite, then the
algorithm does not terminate at the ith iteration. If the hyperbolic area of R(Ci) is finite for
i < N , then its hyperbolic area is strictly larger than the hyperbolic area of R(G), since a circle
is added only if it contains points external to the circles of Ci, which would produce a region
with strictly smaller hyperbolic area.

The algorithm terminates correctly for any choice of sequence S. However, it is clearly
desirable to make an efficient choice. By Corollary 3.22, for a subgroup G of some Γ0(f)+, if I
is an isometric circle of G, then I meets R∞(G) if and only if the centre of I lies in the interval
[0, T ]. Thus we need only consider such circles. To generate all the isometric circles I of G such
that the radius of I lies in the interval (r1, r2], for 0< r1 < r2, while the centre of I lies in the
interval [0, T ], we proceed as follows.

If m= e−1/2
(
ae b
cf de

)
, the constraints on the radius and centre of Im yield a finite set of values

for e, c and d as follows. As e is a divisor of f , there are only finitely many choices for e. The
radius of Im is e1/2/|c|f , and c is an integer, so the bounds on the radius of Im are satisfied
by only finitely many values of c. Finally, the centre of Im is at −de/cf and so, given c and e,
since d is an integer there can only be finitely many values of d such that the centre of Im is in
the interval [0, T ]. Given the values of e, c and d, we can then find some choice for m by finding
some solution to the determinant equation ade2 − bcf = e for a and d. The other elements of
Γ0(f)+ with the same isometric circle are ±tim, where i ∈ Z and t is the translation z 7→ z + 1.
Thus, Im is an isometric circle of G if and only if tim ∈G for some i ∈ {0, 1, 2, . . . , T − 1}.
This we can easily test, since we assume that we have a decision procedure to test membership
of G. Thus, we can generate all the isometric circles of G that satisfy the given constraints. The
maximum radius of an isometric circle in any Γ0(f)+ is 1; therefore, if we choose the intervals
(r1, r2] so that they partition (0, 1], then this procedure will generate all of the isometric circles
of G whose centres lie in the interval [0, T ], as required.

The main algorithm requires a procedure for ‘refining’ a collection of isometric circles. This
is provided by the following algorithm. More specifically, given C = Ci and the next isometric
circle I, this algorithm determines whether or not I contains a geodesic segment of positive
length that is external to all the circles in Ci and contained in R∞. If so, I is added to C, and
any circles with geodesic segments that were originally contained in R∞ and external to the
other circles in C but which are now contained in I ∪ Int(I) are removed. If I fails the test,
then the algorithm just returns C. The algorithm assumes that the set C is presented as a list,
sorted by the positions of the centres of the circles in C. The algorithm returns a list that is
again sorted by the positions of the centres of the circles.

Algorithm to accept or reject the next circle

Input: a list C of isometric circles of G ordered by the positions of their centres; an isometric
circle I of G.

Output: if I contains a geodesic segment of positive length that is external to all the circles in
Ci and lies in R∞, then return a new ordered list of isometric circles including I but excluding
any circles of C whose geodesic segments exterior to the other circles of C are now inside or
on I; otherwise, return C.
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i← Position(C, I)

n← Card(C)

if n= 0 then

return a list containing only I

end if

if i= 1 then

if I ⊆ I1 ∪ Int(I1) then
return(C)

else
return(Insert(C, I))

end if

elif i= n+ 1 then

if I ⊆ In ∪ Int(In) then
return(C)

else
return(Insert(C, I))

end if

else

if I ⊆ Ii−1 ∪ Int(Ii−1) or I ⊆ Ii ∪ Int(Ii) or Ii−1 ∩ Ii 6⊆ Int(I) then
return(C)

else
return(Insert(C, I))

end if

end if

Notes.
(1) The function Position(C, I) is defined as follows. Suppose C = [I1, I2, . . . , In], where

the centre of the circle Ii is xi, with x1 < x2 < x3 < · · ·< xn. If x is the centre of I, then
Position(C, I) is either the smallest i such that x 6 xi, or n+ 1 if x > xn.

(2) The function Insert(C, I) inserts I into the list C, keeping the ordering by centres; it
then removes any circle with a geodesic segment that was inside R∞ and external to the circles
of C but which is now contained in I ∪ Int(I).

(3) The algorithm depends on n through the functions Position and Insert. In the particular
implementation in Appendix 1, Position was implemented as a binary search with a run-time
of O(log(n)), but Insert was implemented as a simple linear calculation with a run-time of
O(n). This was sufficiently fast for our particular application.

(4) The correctness of the cases where i is not equal to 1 or n follows from Lemma 3.27. The
correctness at the endpoints follows from a similar, but easier, argument using Lemma 3.21,
which we omit.

(5) These procedures involve only computations in Quad = Q(
√

2,
√

3,
√

5, . . . ). More
specifically, the procedures can be written so that the only numerical computations are tests
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of whether a given number in Quad is positive, negative or zero. We shall return to this point
below.

5. The procedure Area(C)

The procedure Area(C) attempts to compute the hyperbolic area of the domain bounded by
the circles of C and the vertical lines <(z) = 0 and <(z) = T , using the Gauss–Bonnet formula.
This area may be infinite, for example when there is some subinterval of [0, T ] that is not inside
any of the circles in C. In this case, Area(C) returns −1. However, there are other cases where
the hyperbolic area is finite but for which it is convenient to have Area(C) return −1, as we
shall discuss below.

As described in Lemmas 3.17 and 3.18, the set of vertices V of R(G) is partitioned into
cycles under the action of G. The sum of the angles subtended by R(G) at each vertex of a
cycle results in an angle of 2π/m, where m is the order of the stabilizer in G of each vertex.
By Lemma 3.19, this result also applies to vertices at infinity, where the sum is zero and the
stabilizer is a parabolic subgroup of G (and G).

By Proposition 3.26, with possibly one exception the sides of R(G) are the edges of R(G).
The exception, if it exists, can be found by testing the edges of R3(G) that meet L0 and LT and
adding an extra vertex to one of the edges of R3(G) contained in R∞(G), if necessary. Thus,
the algorithm for computing Area(C) proceeds by first attempting to find a pairing of the sides
of R(G) by elements of G using Lemma 3.20. If a complete set of pairing transformations is
found, then the algorithm tries to compute the induced partition of the vertices and vertices
at infinity using Lemmas 3.17 and 3.19. If C is not a set of bounding circles of the Ford
fundamental domain, then it is possible that these computations will fail. If this happens, then
the procedure returns −1.

If a partitioning of the vertices is found, then for each cycle the sum θ is computed. By
considering possible traces of elements of Γ0(f)+, it is not difficult to show that the only
possible (projective) orders of elliptic elements of Γ0(f)+ are 1, 2, 3, 4 and 6. So if θ is not
equal to 2π/m for m= 1, 2, 3, 4 or 6, then the bounding circles cannot bound a fundamental
domain and −1 is returned.

If all of the resulting angles for vertices in the upper half-plane are 2π/m for m= 1, 2, 3, 4
or 6, then the hyperbolic area is computed using the Gauss–Bonnet formula. The area and the
other computed data are then returned. Note that the partitioning of the vertices at infinity
is not required for the computation of the area, since the sum of the angles subtended at
these vertices is zero. This information is, however, still useful; for example, the number of
equivalence classes of vertices at infinity is the cusp number of G.

It might seem that the computation of the angle θ requires calculations outside the field
Quad. However, it is a simple matter to verify that the sine and cosine of the angle formed
by the intersection of two circles or of a line and a circle are in Quad. Thus, using the angle
addition formulas, the sine and cosine of the sum of angles in a cycle are also in Quad. Hence,
the whole algorithm can be performed using only arithmetic and order relations in Quad. These
operations were implemented without using floating-point approximations.

Algorithm for computing Area

Input: a decision procedure to determine whether an element of Γ0(f)+ is in a subgroup G
which is assumed to contain −12; a set C of isometric circles of G.

Output: if a pairing of the sides of R(C), the induced partitioning of the vertex set V , a set of
angles associated with each cycle of vertices and Area(R(C)) are found, then return this data;
otherwise, return −1.
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If there is some subinterval [a, b] of [0, T ], with 0 6 a < b 6 T , such that [a, b] is not
contained in any of the circles in C, then return −1.

For each edge of R(C), starting with the edge that meets L0 (if it exists)

if the edge can be mapped to another edge then
record the pairing and group element (the two edges are sides);
for the exceptional case, where the initial edge meets L0 and is mapped to a subset
of some other edge γ with γ contained in R∞, γ is divided into two sides with a
common endpoint at the apex of γ

else if no pairing exists then
return −1

end if

end for

From the pairing of the sides, compute the induced partitioning of the vertices.

For each cycle of vertices

compute the sine and cosine of the sum of the angles at each vertex

if the corresponding sum of angles is 2π/m for m= 1, 2, 3, 4 or 6
or the angle is zero then
record the angle

else
return −1

end if

end for

Compute the hyperbolic area using the Gauss–Bonnet formula.

Return the area and all computed data.

In practice, it seems to be more efficient to avoid invoking this area algorithm after the
addition of a single circle to C. A better strategy appears to be to add a set of circles, for
example all the circles whose radii are in some interval, using the accept/reject algorithm. The
resulting set C is then tested with the area algorithm. This approach will usually mean some
unnecessary attempts to add circles after the fundamental domain has been found but not yet
tested. In practice, however, since the area algorithm involves more computation, the ‘delayed
evaluation’ strategy seems faster, and this is what is used in the code given in Appendix 1.

Note that the algorithm does not require that the subgroup G be a congruence subgroup.
Appendix 4 contains a procedure that takes a permutation representation of PSL(2, Z) on the
cosets of a subgroup G and returns the fundamental domain data for G. An example for a
non-congruence group of index 7 is included.

6. An example

It is straightforward to use the data in Appendix 2 to create a decision procedure for
determining whether or not a given element of Γ0(f)+ is in G, where G is a congruence
subgroup of genus zero or genus one, as follows. The data gives the image of G as a subgroup
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H of Γ0(f)+/G(n, f), where n is the level of G. So an element Γ0(f)+ is in G if and
only if its image in Γ0(f)+/G(n, f) is in H. For efficient computations, these groups were
constructed as permutation groups; see [8] and the data files for more details. Applying the
algorithms of Section 2 then gives the fundamental domain of G, together with generating
elements, side pairings, vertices corresponding to the classes of elliptic elements and vertices
at infinity corresponding to the classes of parabolic fixed points. The output data is presented
in Appendix 3 in the following format.

i, j, level, label, genus, f, index: the i and j labels are internal labels used to identify the
groups in the data computed in [8]. The level, genus and f values are the level and
genus of the group G and the value of f corresponding to the maximal discrete subgroup
Γ0(f)+ that contains G. Together with the label value, these give the corresponding
entry in [8, Table 2], where the (conjugacy class of) the group G is labeled using the
notation (level)(label)genus

f .
Cover: the bounding circles of the fundamental domain. The notation [x, y, z] means a circle

with centre −y/x and radius 1/(x
√
z)

ram classes: information on the set of parabolic and elliptic elements stabilizing (some of)
the vertices of the fundamental domain. Each entry is a pair. The second entry of the pair
is a list of integers [a, b, c, d] such that the elliptic or parabolic element is g = e−1/2

(
a b
c d

)
,

where e= ad− bc. The first entry of the pair is the smallest vertex label in the cycle
of the fixed point of g, or 0 if g stabilizes ∞. Also included in this list is the case
where the cycle corresponds to an ordinary point (that is, m= 1); in this case, the group
element is given by the list [1, 0, 0, 1]. If a bounding circle is ‘self-paired’ by an elliptic
element of (projective) order 2, then we call the fixed point of this element a pseudo-
vertex; it is labeled by the half-integer between the integers labeling the endpoints of the
corresponding side. The first pair in ram classes always contains as its second entry
a parabolic element stabilizing ∞. The vertex ∞ is always labeled by 0. Here we use
i to denote the ith vertex and i to denote the ith side. In the data file, the over-bars
are omitted. The vertices are labeled counterclockwise in such a way that the side i is
bounded by vertices i− 1 and i. By convention, we do not distinguish between vertices
and vertices at infinity in this labeling scheme.

Pairs: the pairing of the sides of the fundamental domain. The numbering starts at 1 on the
imaginary axis and then runs counterclockwise. A side mapped to itself by an elliptic
element of order 2 is included as a ‘self-paired’ side, rather than being split into two
sides.

pairing mats: the matrices of the group that pair the sides. These generate the group.
intersection matrices: if a vertex is at the intersection of two consecutive circles, a matrix

obtained by inversion in first one circle and then the other is listed. For a pseudo-
vertex, the matrix is [1, 0, 0, 1] by convention. The ordering of circles, vertices and
pseudo-vertices is as given above.

intersection points: the coordinates of the vertices, vertices at infinity and pseudo-vertices.
The notation is that [x, y1, y2] is the point x+ iy1(−y2)1/2 with y2 square-free.

v: the cycles of the vertices and vertices at infinity of the fundamental domain. Pseudo-vertices,
which are labeled by half-integers, are not included in this list, since they always form
cycles consisting of one point.

The following example was selected as it illustrates the conventions and phenomena
mentioned above. A picture of the fundamental domain is given in Figure 1. The entry 5A0

1

in [8, Table 2] is the first conjugacy class (hence the label A) of level-5, genus-zero subgroups
of SL(2, Z) = Γ0(1)+. This conjugacy class contains five conjugate subgroups of SL(2, Z), each
of index 5. They are cycloidal subgroups; that is, they have cusp number equal to one. Each of
these subgroups is conjugate to a ‘rational non-monstrous moonshine group’ containing Γ0(25)
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0 1 2 3 4 5

Figure 1. Fundamental domain for 5A0
1. Sides are labeled by integers, and vertices are labeled by

integers with an over-bar. There is one pseudo-vertex labeled by 4.5. By convention, ∞ is labeled
by 0.

and labeled by 25A0 in [8] and by 5a in [14]. For the particular choice of subgroup given here,
the conjugating element is

(
1 2
0 5

)
.

The corresponding entry containing the information on the fundamental domain for this
group is as follows.

[* 1,22, 5,"A",0,1, 5,

[ [ 1,0,1 ],
[ 1,-1,1 ],
[ 1,-2,1 ],
[ 1,-3,1 ],
[ 1,-4,1 ],
[ 1,-4,1 ],
[ 1,-5,1 ] ],

[ [* 0, [ 1,5,0,1 ] *],
[* 1, [ 1,0,0,1 ] *],
[* 2, [ 1,0,0,1 ] *],
[* 3, [ 1,-3,1,-2 ] *],
[* 9/2, [ 3,-10,1,-3 ] *],
[* 7, [ 4,-21,1,-5 ] *] ],

[ [ 1,9 ],
[ 2,6 ],
[ 3,4 ],
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[ 5,5 ],
[ 7,8 ] ],

[ [ 1,5,0,1 ],
[ 4,-1,1,0 ],
[ 2,-3,1,-1 ],
[ 3,-10,1,-3 ],
[ 5,-21,1,-4 ] ],

[ [ 0,1,-1,0 ],
[ 1,-1,1,0 ],
[ 2,-3,1,-1 ],
[ 3,-7,1,-2 ],
[ 4,-13,1,-3 ],
[ 1,0,0,1 ],
[ 5,-21,1,-4 ],
[ -5,26,-1,5 ] ],

[ [ 0,1,-1 ],
[ 1/2,1/2,-3 ],
[ 3/2,1/2,-3 ],
[ 5/2,1/2,-3 ],
[ 7/2,1/2,-3 ],
[ 4,1,-1 ],
[ 9/2,1/2,-3 ],
[ 5,1,-1 ] ],

[ [ 1,6,8 ],
[ 2,4,5 ],
[ 3 ],
[ 7 ] ] *]

Thus, the group is labeled by the pair [1, 22] in the raw data file from [8] and by 5A0
1 in [8,

Table 2]. The group has index 5 in SL(2, Z).
There are six circles bounding the fundamental domain. The fifth circle is included twice in

the list. Its intersection with itself is, by convention, vertex 6, which is a vertex with angle π.
This vertex is required for closure of the cycle containing the vertices 1 and 8. The three vertices
1, 6 and 8 form a cycle corresponding to an ordinary point (the sum of the angles is 2π). This
corresponds to the entry [* 1, [1, 0, 0, 1] *] in the list ram classes. The cycle consisting of
the vertices 2, 4 and 5 also corresponds to an ordinary point. Vertices 3 and 7 each form cycles
with one element and are fixed points of elements of (projective) order 3.

The side 5 is paired with itself and so there is an additional pseudo-vertex with angle π. This
is labeled by 9/2, since it is between the vertices 4 and 5. This pseudo-vertex is stabilized by an
element of (projective) order 2, and the corresponding cycle contains only this pseudo-vertex.

7. The appendices

The electronic appendices available with this paper contain external data and code files.
Appendix 1. These files contain complete MAGMA source code implementing the
algorithm.
Appendix 2. These files contain input data used to compute the fundamental domains.
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Appendix 3. These files contain output data giving the fundamental domains for a
representative of each conjugacy class of congruence subgroups of genus zero or genus
one, as described in Section 4.
Appendix 4. These files contain example code for computing the fundamental domain of
a non-congruence subgroup.
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