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Locally Indecomposable Galois
Representations

Eknath Ghate and Vinayak Vatsal

Abstract. In a previous paper the authors showed that, under some technical conditions, the local Ga-

lois representations attached to the members of a non-CM family of ordinary cusp forms are indecom-

posable for all except possibly finitely many members of the family. In this paper we use deformation

theoretic methods to give examples of non-CM families for which every classical member of weight at

least two has a locally indecomposable Galois representation.

1 Introduction

Let ρ f be the global two dimensional p-adic Galois representation attached to a p-or-

dinary cuspidal eigenform f of weight at least two. The local representation obtained

by restricting ρ f to the decomposition subgroup at p is reducible. A natural question

is whether this representation is semi-simple. If f has complex multiplication, this is

known to be the case. The non-CM case is much more mysterious. For weight two

forms corresponding to rational elliptic curves without CM, the local representation

is not semi-simple or is indecomposable [Ser89]. In this paper we shall give the first

non-trivial explicit examples of non-CM forms of weight larger than two for which

ρ f is locally indecomposable.

To achieve this it is convenient to work in a broader context. Recall that every clas-

sical p-ordinary form f of weight at least two lives in a unique family of p-ordinary

forms in the sense of [Hid86]. Such an f is referred to as an arithmetic member of

the family to distinguish it from the non-classical p-adic members of the family, as

well as from the classical members of weight one. It is well known that the arithmetic

members of a family either all have CM or are all of non-CM type. In an earlier

paper [GV04], the authors showed that in the non-CM case all but finitely many of

the arithmetic members have an indecomposable local representation. (This result

was proved under some technical conditions: p is odd, and the residual representa-

tion is p-distinguished and absolutely irreducible when restricted to Q(
√

p∗) with

p∗
= (−1)(p−1)/2 · p). However, the possibility that there might be a finite number

of arithmetic members of the family, including possibly f , for which the local rep-

resentation is semi-simple remained. Indeed, it turns out that deciding whether the

local representation is indecomposable for a particular form f can be a rather delicate

matter.
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In this paper we will show that for the first few cusp forms f of level one, every

arithmetic member of the corresponding p-adic family, including f , has an inde-

composable local representation for all, except possibly one or two, small ordinary

primes p. More precisely, let ∆k be the unique normalized cusp form of level 1 and

weight k ∈ {12, 16, 18, 20, 22, 26}. We shall say that an ordinary prime p is a full

companion prime for f if the image of the corresponding residual representation

contains SL2, and the associated local residual representation is semi-simple. Then

we prove the following.

Theorem 1.1 Let f = ∆k be as above and let p be an ordinary prime for f . Assume

that p is not a full companion prime for f . Then every member of the p-adic family

attached to f has an indecomposable local Galois representation.

Each of the six cusp forms above has only at most one or two ordinary primes

p < 10, 000 that are full companion primes. Thus the theorem gives rise to sev-

eral explicit examples of locally indecomposable modular Galois representations (for

which see the main text). These examples may be regarded as further evidence to-

wards the general tendency of ordinary modular Galois representations to be locally

semi-simple exactly when the underlying form has CM. For illustrative purposes we

mention one example here. For the Ramanujan Delta function ∆ = ∆12, there are

no full companion primes in the above range and we obtain the following.

Corollary 1.2 The local Galois representation attached to ρ∆ is indecomposable for

every ordinary prime p < 10, 000.

1.1 Sketch of the Proof

The proof of Theorem 1.1 is quite different from the methods used in [GV04]. There

we studied the “large” Λ-adic representation attached to a family and showed that this

representation is locally indecomposable exactly when the family is of non-CM type

(under technical conditions similar to those mentioned above, see [GV04, Theorem

3]). The result for individual arithmetic members of the family then followed by a

descent argument, which naturally introduced a finite error into the final result.

The present approach uses instead the deformation theoretic methods introduced

by Mazur in his foundational paper [Maz89]. Briefly, the idea is as follows. Fix a

cuspidal eigenform f of arbitrary level and weight k ≥ 2. Let ρ̄ = ρ̄ f be the mod p

residual representation attached to f , and assume it is absolutely irreducible. Let

R = Rρ̄ be the universal deformation ring of ρ̄. If k > 2, then Weston [Wes04] has

shown that for all but finitely many primes p (in fact for all p ≥ k + 1 for the six

cusp forms above) the deformation problem attached to ρ̄ is unobstructed (see also

Yamagami [Yam04]), and so R is a power series ring in three variables over the Witt

vectors of the residue field.

Now assume in addition that f is of level 1, and therefore not of CM type. Suppose

also that p is ordinary for f so that the residual representation ρ̄ is locally reducible.

For most such p the representation ρ̄ tends to be locally indecomposable. In such
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cases there is nothing to prove, since if f is p-distinguished (automatic in level 1 if

p is odd), then all characteristic 0 deformations of ρ̄ are also locally indecomposable

[Gha05, Proposition 6].

However, there are primes p for which ρ̄ is locally semi-simple or split; the exis-

tence of such primes p is closely related to the existence of a mod p companion form

for f in the sense of Serre, Gross [Gro90], Coleman, and Voloch. Assume then that

ρ̄ is locally split (and p-distinguished). Since f is a non-CM form, one still expects

ρ f to be locally indecomposable. To show this we consider instead all deformations

of ρ̄ that are ordinary and locally split. These are parametrized by a quotient of the

universal deformation ring R, which we denote by Rsplit, and we are reduced to show-

ing that this ring is “small”. In particular if the reduced tangent space t(Rsplit) of Rsplit

vanishes, then there is a paucity of characteristic 0 points of Rsplit. A case by case

inspection of these points sometimes allows one to conclude that Rsplit has no arith-

metic points (corresponding to classical cuspidal eigenforms of weight 2 or more),

thereby achieving our goal.

The computation of t(Rsplit) is in general a delicate matter. It is related to an ex-

plicit problem in class field theory. Let S be the set consisting of the primes p and ∞,

and let GS be the Galois group of the maximal extension of Q unramified outside S.

If W0 is the representation of GS defined via the usual conjugation action of ρ̄ on the

two by two trace zero matrices over the residue field, then the first cohomology group

H1(GS,W0) is known to have dimension 2 in the cases of interest. Let K denote the

inertia field in the finite Galois extension cut out by ρ̄. It turns out that t(Rsplit) = 0

if certain Z/p-extensions of K coming from certain classes in H1(GS,W0) are linearly

disjoint from the usual cyclotomic Z/p-extension of K, after completion.

For the six cusp forms above, the primes for which ρ̄ is locally semi-simple can be

classified into three types depending on the image of the global residual representa-

tion ρ̄ in GL2(Fp). Either this image is dihedral, or it is full (i.e., it contains SL2(Fp)),

or it triangular (i.e., the global representation is reducible).

In the (two) cases where the image of ρ̄ is dihedral, we solve the class field theory

problem mentioned above. In fact the argument simplifies somewhat, since it turns

out one has to show that the cyclotomic Z/p-extension of K is disjoint from only

one of the Z/p-extensions of K coming from H1(GS,W0), after completion. The

cases where ρ̄ has full image are more difficult and are not treated completely in this

paper. Even in the smallest example the number field K has degree about 106, making

explicit arguments intractable. This explains the occasional primes in the range p <
10, 000 that we presently exclude in Theorem 1.1. Finally, in the cases where the

residual representation is reducible, an application of a result of Ribet [Rib76] shows

directly that the local representation attached to ρ f is indecomposable.

2 Galois Representations

We start by recalling the basic objects we shall be studying. Let f be a primitive elliptic

modular cuspidal eigenform of level 1 and weight k ≥ 2. We remind the reader that

such a form f is necessarily not of CM type. Let p be a prime, and let ℘ be a prime of

Q lying over p that is ordinary for f . Let GQ = Gal(Q/Q) and let K be the number

field generated by the Hecke eigenvalues of f . Let ρ = ρ f : GQ → GL2(K℘ ) be the
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℘ -adic representation attached to f by Eichler, Shimura, and Deligne.

2.1 Ordinary Representations

Let Gp be a decomposition subgroup at ℘ . By a result of Mazur and Wiles [MW86]

and Wiles [Wil88], the ordinariness assumption implies that the restriction of ρ to

Gp is reducible. More concretely, it has the shape

ρ|Gp
∼

(

δ v

0 ǫ

)

,

where δ, ǫ : Gp → K×
℘ are characters, with ǫ unramified. More explicitly, if

λ(α) : Gp → K×
℘ denotes the unramified character of Gp that maps the Frobenius

at p to α ∈ K×
℘ , then ǫ = λ(αp), where αp is the unique p-adic unit root of

x2 − apx + pk−1, with ap the p-th Fourier coefficient of f . Thus δ = λ(αp)−1 · νk−1,

where ν : GQ → Z
×
p is the p-adic cyclotomic character.

The function v : Gp → K℘ is a continuous map. The goal of this paper is to give

examples of forms f as above for which v cannot be made zero even after a change of

basis. Put another way, we would like to show that the class of the cocycle c = ǫ−1 · v

in H1(Gp, K℘ (δǫ−1)) is non-zero. To do this, we will frequently work over the inertia

subgroup Ip ⊂ Gp at ℘ . This is because the local representation ρ|Gp
splits if and

only if the representation ρ|Ip
splits. Indeed the restriction map

H1(Gp, K℘ (δǫ−1)) → H1(Ip, K℘ (δǫ−1))

is injective: its kernel is H1(Gp/Ip, K℘ (δǫ−1)Ip ) = 0, since δ 6= ǫ on Ip.

We need to recall some terminology. If the reductions δ̄ and ǭ of δ and ǫ are distinct

on Gp, one says that f (or more precisely the residual representation attached to f )

is p-distinguished. This condition is automatic in our setting if p is an odd prime.

Indeed let ω be the mod p cyclotomic character. Then δ̄|Ip
= ωk−1 6= 1, since k is

even ( f has level 1) and ǭ|Ip
= 1.

2.2 Residual Representation

Let F denote the residue field of the ring of integers of K℘ , and let ρ̄ : GQ → GL2(F)

be the residual representation attached to ρ. Its isomorphism class is only determined

up to semi-simplification.

Even though ρ is expected not to be locally split, it is possible for the residual

representation ρ̄ to be locally split or semi-simple. It is this phenomenon that makes

the question studied in this paper interesting. For the six cusp forms f above, the

primes for which this happens are listed in the following table, according to the image

of the global residual representation ρ̄ in GL2(Fp).
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f Non ordinary

primes (< 106)

Dihedral Full (< 104) Reducible

∆ 2, 3, 5, 7, 2411 23 2, 3, 5, 7, 691

∆16 2, 3, 5, 7, 11, 13,

59, 15271, 18744

31 397 2, 3, 5, 7, 11,

3617

∆18 2, 3, 5, 7, 11, 13 271 2, 3, 5, 7, 11, 13,

43867

∆20 2, 3, 5, 7, 11, 13,

17, 3371, 64709

139, 379 2, 3, 5, 7, 11, 13,

283, 617

∆22 2, 3, 5, 7, 13, 17,

19

2, 3, 5, 7, 13, 17,

131, 593

∆26 2, 3, 5, 7, 11, 13,

17, 19, 23

107 2, 3, 5, 7, 11, 17,

19, 657931

Table 1. Primes for which ρ̄ is locally split

The third column contains all such primes for which the image of ρ̄ is dihedral,

and is taken from Serre [Ser73]. There are only two cases, and for both the image is

isomorphic to S3. The fourth column contains such primes < 10, 000 for which the

image of ρ̄ is full, i.e., contains SL2(Fp). That these are the only primes up to 3, 500

is mentioned at the end of Gross’ paper [Gro90] on companion forms and is due to

Atkin and Elkies. C. Citro has recently checked that these are the only such primes

up to 10, 000. The last column contains such primes for which ρ̄ is reducible, and is

again taken from [Ser73]. Finally, the second column describes all the non-ordinary

primes for f less than a million, as compiled by Gouvêa in [Gou97]. Note that only

one or two of the “reducible” primes are ordinary.

3 Deformation Theory

3.1 Universal Locally Split Deformation Ring

This ring will play a key role in what follows. We establish its existence in this section

using ideas introduced by Mazur in [Maz89]. See also [Oht06].

We work somewhat generally. Let p be a prime and let F be a finite field of charac-

teristic p. Let S = {p,∞}, and let GS be the Galois group of the maximal extension

of Q unramified outside S. Let ρ̄ : GS → GL2(F) be any Galois representation, such

that

(3.1) ρ̄|Ip
∼

(

δ̄ 0

0 1

)

,

where δ̄ : Ip → F× is a character with δ̄ 6= 1. In particular the representation ρ̄ is

p-distinguished.

Let O = W (F). Let CLN(O) be the category whose objects are complete local

noetherian O-algebras with residue field F and morphisms are local homomorphisms
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that induce the identity map on F. Let R be an object of this category and let ρ : GS →
GL2(R) be a continuous homomorphism whose composition with the residue map

R → F induces the homomorphism ρ̄. Two such homomorphisms ρ1 and ρ2 are said

to be strictly equivalent if there is a matrix M ∈ GL2(R) that reduces to the identity

under the residue map R → F such that ρ2(g) = M · ρ1(g) · M−1 for all g ∈ GS.

A deformation of ρ̄ to GL2(R) is a strict equivalence class of such representations

ρ : GS → GL2(R).

Let SETS be the category of sets. Consider the functor

Dρ̄ : CLN(O) → SETS

defined by Dρ̄(R) = {deformations of ρ̄ to GL2(R)}.
Assume that the scalar matrices are exactly the matricies in M2(F) that commute

with the image of ρ̄, i.e., End(ρ̄) = F. This happens for instance if ρ̄ is absolutely irre-

ducible. This assumption also holds in the case when ρ̄ is reducible and has the shape

(6.1) below. In any case, under this assumption it is known that the functor Dρ̄ is rep-

resentable. That is, there is a ring Rρ̄ ∈ CLN(O) such that Dρ̄(R) = Hom(Rρ̄, R) for

all R ∈ CLN(O). More concretely, there is a universal deformation to GL2(Rρ̄) such

that every deformation to GL2(R) is obtained by composing with a map Rρ̄ → R.

Now consider deformations ρ : GS → GL2(R) of ρ̄, which in addition are p-split,

namely,

ρ|Ip
∼

(

δ 0

0 1

)

,

where δ : Ip → R× is a character whose reduction is δ̄. In particular δ 6= 1. More

precisely, let Mρ = R2 be a model for ρ. Then ρ is said to be p-split if the sub-module

MIp ⊂ Mρ is free of rank 1 over R, and has a free of rank 1 over R complement

M ′ that is Ip-stable with Ip-action given by δ. Notice that if ρ is p-split, then all the

members of the strict equivalence class of ρ are also p-split. Now consider the finer

deformation functor

D
split
ρ̄ : CLN(O) → SETS

defined by D
split
ρ̄ (R) = {p-split deformations of ρ̄ to GL2(R)}. Thus D

split
ρ̄ ⊂ Dρ̄ is a

sub-functor of the usual deformation functor.

Proposition 3.1 The functor D
split
ρ̄ is also representable.

Proof Consider the full sub-category LA(O) of CLN(O) whose objects are local

artinian O-algebras with residue field F. Recall that a local artinian algebra is au-

tomatically complete and noetherian. Let Fρ̄ and F
split
ρ̄ respectively be the defor-

mation functors corresponding to the two deformation problems above restricted

to this smaller sub-category. It is a fact that D
split
ρ̄ is representable if and only

if F
split
ρ̄ is pro-representable, that is, there is a ring R

split
ρ̄ ∈ CLN(O) such that

F
split
ρ̄ (R) = Hom(R

split
ρ̄ , R) for all R ∈ LA(O). So it suffices to show that F

split
ρ̄ is

pro-representable. Now a similar statement applies to the representable functor Dρ̄
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so the functor Fρ̄ is known to be pro-representable. In particular Fρ̄ satisfies Sch-

lessinger’s conditions (H1) through (H4). We must show that F
split
ρ̄ also satisfies these

conditions.

Since F
split
ρ̄ ⊂ Fρ̄ is a sub-functor, it suffices to show that F

split
ρ̄ satisfies con-

dition (H1). The other conditions then follow. Let us recall this condition. Let

R3 = R1 ×R0
R2 be a fiber product in the category LA(O) and let

(∗) : F
split
ρ̄ (R3) −→ F

split
ρ̄ (R1) ×

F
split
ρ̄ (R0)

F
split
ρ̄ (R2)

be the induced map on the level of sets. Then (H1) says that

if R2 → R0 is small (i.e., surjective with kernel a principal ideal annihilated by the

maximal ideal of R2), then the map (∗) is surjective.

We shall show that (∗) is surjective, where R2 → R0 is any (not necessarily small)

surjective map. We first prove the following lemma.

Lemma 3.2 Assume R2 → R0 is surjective. Let ρi : GS → GL2(Ri) for i = 1, 2 be ho-

momorphisms whose compositions with the maps Ri → R0 for i = 1, 2 induce the same

homomorphism to GL2(R0). Let ρ3 : GS → GL2(R3) be the induced homomorphism to

the fiber product. Then, if ρi is p-split for i = 0, 1, 2, then so is ρ3.

Proof Let vi , v ′
i be a basis for Mρi

for i = 0, 1, 2, with Ip-acting trivially on vi and

by δi on v ′
i . Since the map R2 → R0 is surjective, we may in fact assume that both v1

and v2 map to v0 under the maps R1 → R0 and R2 → R0 respectively. Indeed choose

v0 to be the image of v1 under R1 → R0. Then the image of an arbitrary Ip-invariant

vector in R2 under R2 → R0 must differ from v0 by a unit in R0. Modifying v2 by an

appropriate scalar (using the surjectivity of R2 → R0) we may assume that v2 does

indeed map to v1. A similar argument applies to the complementary basis vectors,

v ′
1, v ′

2 and v ′
0. Let v3 and v ′

3 be the vectors in Mρ3
= R2

3 whose components in the

fiber product R3 = R1 ×R0
R2 are constructed out of the components of the pairs of

vectors (v1, v2) and (v ′
1, v ′

2) respectively. Clearly v3, v ′
3 is a basis of R2

3 with the desired

properties.

To finish the proof of the proposition, let ρ1 and ρ2 be deformations to GL2(R1)

and GL2(R2) respectively that yield strictly equivalent homomorphisms to GL2(R0),

say differing by an element M̄ ∈ GL2(R0). Since R2 → R0 is surjective, we may con-

jugate ρ2 by a pre-image M of M̄ in GL2(R2), and then ρ1 and Mρ2M−1 induce the

same homomorphism to GL2(R0). Since ρ2 is p-split, so is Mρ2M−1. Hence their

fiber product ρ1 × Mρ2M−1 is also p-split, by the above lemma. Clearly this homo-

morphism maps to (ρ1, ρ2) under the map (∗). This proves that (∗) is surjective.

For ease of notation write R = Rρ̄ for the universal deformation ring attached

to ρ̄. We also let Rord
= Rord

ρ̄ denote the universal deformation ring that parametrizes

deformations of ρ̄ which are ordinary at p. The existence of this ring was shown

by Mazur. Finally we let Rsplit
= R

split
ρ̄ denote the universal deformation ring that

parametrizes deformation that are ordinary at p, and split on Ip, i.e., the ring that

represents the sub-functor D
split
ρ̄ above. We have surjections R ։ Rord

։ Rsplit.
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3.2 Locally Split Tangent Space

Keep the notation of the last sub-section. In particular ρ̄ : GS → GL2(F) is a fixed

residual representation that is locally split.

For any algebra A ∈ CLN(O) with residue field F, let

t(A) = Hom(mA/(p, m2
A), F)

denote the (reduced) tangent space of A.

Let W = Ad(ρ̄) be M2(F) with the conjugation action of GS via ρ̄. For the univer-

sal deformation ring R, we identify the F-vector space t(R) with deformations of ρ̄ to

the dual numbers F[ε]/(ε2). All such deformations are in bijection with H1(GS,W ).

More explicitly we have a linear isomorphism

(3.2) H1(GS,W )
∼−→ t(R)

given by assigning to the class of the cocycle U : GS → W the strict equivalence class

of the homomorphism ρU : GS → GL2(F[ε]/(ε2)) defined by ρU (g) = ρ̄(g) · 1 +

U (g)ρ̄(g) · ε.

Recall that ρ̄ is locally split. Let t(Rsplit) ⊂ t(R) denote the tangent space of the

universal locally split ring Rsplit. This vector space can be identified with a certain

Selmer group. Fix a basis in which ρ̄ has the shape (3.1). An easy computation shows

that under the identification (3.2), the class of the cocycle

U (g) =

(

ag bg

cg dg

)

corresponds to an ordinary locally split deformation if and only if the classes of the

cocycles bg in H1(Ip, F(δ̄)), cg in H1(Ip, F(δ̄−1)), and dg in H1(Ip, F(δ̄)), obtained by

restricting g to Ip, all vanish. In other words:

(3.3) t(Rsplit) = ker
(

H1(GS,W ) → H1(Ip,W/W1)
)

,

where W1 ⊂ W is defined, in this basis, by W1 =
{(

a 0
0 0

)}

.

We now proceed to compute the “locally split” Selmer group in (3.3) in various

cases.

4 Dihedral Case

Let p be an odd prime and assume that p ≡ 3 mod 4. Let K0 = Q(
√−p) be an

imaginary quadratic field and let GK0
= Gal(Q/K0). Let CK0

denote the class group

of K0 and let hK0
be the class number of K0. Note that p 6

∣

∣ hK0
. Let F be a finite field of

characteristic p and let χ̄ : CK0
→ F× be a character of order hK0

. If H is the Hilbert

class field of K0, then χ̄ may also be thought of as a character of Gal(H/K0). Let τ be

a generator of Gal(K0/Q) and write τ also for a fixed lift to GQ . Let χ̄τ denote the

conjugate character.
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The basic object of study in this section is the residual representation

ρ̄ = Ind
GQ

GK0
(χ̄).

We fix a basis e1, e2 (which we shall refer to as “the global basis” of ρ̄) for which we

have

(4.1) ρ̄ ∼







(

χ̄ 0
0 χ̄τ

)

on GK0
,

(

0 1
1 0

)

for τ ∈ GQ \ GK0
.

Let W (F) denote the Witt vectors of F and let χ : CK0
→ W (F)× denote the

Techimüller lift of χ̄. Set ρ = Ind
GQ

GK0
(χ). If χ is non-trivial, then the theta series

f1 =

∑

a

χ(a)qN(a),

where the sum is over all integral ideals a of K0 is well known to be a cuspidal eigen-

form of weight 1, level p and character χ−p, where χ−p is the quadratic character

of K0. Further if ρ f1
is the Deligne–Serre Galois representation attached to f1, then

ρ f1
∼ ρ.

Now let f be one of the “first six” cusp forms of level 1 and assume p is ordinary

for f . It sometimes happens that the weight 1 member of the corresponding p-adic

family is the form f1. This happens in particular for the two pairs f = ∆ and p = 23,

and f = ∆16 and p = 31. Since the residual representation is an invariant of the

family, in these cases we have ρ̄ f ∼ ρ̄ f1
∼ ρ̄. As we shall see below this representation

is locally split. We wish to show that the locally split tangent space t(Rsplit) vanishes

in these two cases.

The field H cut out by ρ̄ has Galois group isomorphic to S3 in these cases. (Such

S3-cases were studied in considerable detail in [BM89].) In fact H is the Galois clo-

sure of the cubic field K = Q(α), with α a root of q(x) = x3 ∓ x + 1, of discriminant

−23 and −31, respectively. The lattice of fields cut out by ρ̄ is given in the diagram

on the left below.

H

3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

~~
~~

~~
~

K

3

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

K0

2~~
~~

~~
~

Q

P2
1P2

2P2
3

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

ww
ww

ww
ww

w

q1q2
2

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

p2

wwwwwwwwww

p
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If β and γ denote the other roots of q(x), then τ fixes α and switches β and γ, so

Gal(H/K) = 〈τ〉. All the number fields above have class number 1 except for K0, and

hK0
= 3.

The diagram on the right describes the prime decomposition of p in the various

number fields above. It turns out that the residue degree f (Pi/p) = 1 for all Pi |p.

The discriminant of K is −p = (β − γ)2(γ − α)2(α − β)2, and this factorization

corresponds exactly to the three primes of H lying over p. If P1 = (β − γ), then the

decomposition subgroup G(P1/p) and the inertia subgroup I(P1/p) are both equal

to Gal(H/K). In particular K is the fixed field of inertia. The arithmetic of this field

plays a vital role in what follows.

Now ρ̄|Gp
is trivial, since Gp = GP1

⊂ GH . So ρ̄|Gp
factors through the decompo-

sition subgroup G(p/p) of K0. Since G(p/p) = Gal(K0/Q), and τ has eigenvalues 1

and −1, evidently ρ̄|Gp
∼ χ−p ⊕ 1. Thus ρ̄ is ordinary and locally split. (A similar

argument shows that ρ|Gp
∼ χ−p ⊕ 1 is also ordinary and locally split.) Fix a basis

f1, f2 for which ρ̄ has the following shape:

ρ̄|Gp
∼

(

χ−p 0

0 1

)

.

We refer to this basis as “the local basis” of ρ̄. We wish to compute the Selmer group

(3.3) in this basis.

4.1 Selmer Group Computations

To proceed further we note that the group H1(GS,W ) decomposes. Indeed since ρ̄ is

dihedral, we have

(4.2) W = 1 ⊕ χ−p ⊕ ρ̄

as a GS-module (the two-dimensional term above is Ind
GQ

GK0
(χ̄τ/χ̄) = ρ̄, since

χ̄τ/χ̄ = χ̄). Using the global basis in which ρ̄ has the shape (4.1), the decompo-

sition (4.2) of W is given explicitly by

W =

{(

a 0

0 a

)}

⊕
{(

d 0

0 −d

)}

⊕
{(

0 b

c 0

)}

.

This yields the decomposition

H1(GS,W ) = H1(GS, F) ⊕ H1(GS, F(χ−p)) ⊕ H1(GS, ρ̄).

Thus a class σ ∈ H1(GS,W ) may be thought of as a tuple σ = (σ1, σ2, σ3) with

respect to the decomposition above.

Now, in the local basis f1, f2 we have W1 = {
(

a 0
0 0

)

}. Since τ flips e1 and e2, up to

a scalar we have f1 = e1 − e2 and f2 = e1 + e2. It follows that

W1 =

{(

a −a

−a a

)}
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in the global basis e1, e2. Comparing this with (4.2), we see W1 ⊂ 1 ⊕ ρ̄.

Let σ = (σ1, σ2, σ3) be a Selmer class. Since W1 does not meet the line F(χ−p) in

(4.2), we see that σ2 lies in the kernel of the map

H1(GS, χ−p) → H1(Ip, χ−p).

The inflation-restriction sequence allows one to work over K0, and one sees imme-

diately that this map is injective, since hK0
is prime to p. One concludes that σ is a

Selmer class if and only if (σ1, σ3) lies in the kernel of the map

(4.3) H1(GS, F) ⊕ H1(GS, ρ̄) −→ H1(Ip, (1 ⊕ ρ̄)/W1).

Since W1 is transverse to the global subspaces 1 and ρ̄ of W , computing the kernel of

this map is somewhat subtle. To simplify things, define the auxiliary maps induced

by restriction and projection:

r : H1(GS, F) → H1(Ip, F)

s : H1(GS, ρ̄) → H1(Ip, ρ̄) → H1(Ip, F)

t : H1(GS, ρ̄) → H1(Ip, ρ̄) → H1(Ip, F(χ−p)).

Then we have the following.

Lemma 4.1 (σ1, σ3) lies in the kernel of the map (4.3) if and only if

r(σ1) + s(σ3) = 0 and t(σ3) = 0.

Proof Note (σ1, σ3) is in the kernel if there is an element X̄ ∈ (1 ⊕ ρ̄)/W1 such that

σ1(i) + σ3(i) = i · X̄ − X̄ for all i ∈ Ip. (We are abusing notation slightly and letting

σ1 and σ3 also stand for cocycles in the classes they denote.) Say X =
(

a b
c a

)

∈ 1 ⊕ ρ̄.

We may write X as

a ·
(

1 0

0 1

)

+
b + c

2
·
(

0 1

1 0

)

+
b − c

2
·
(

0 1

−1 0

)

.

Now i ∈ Ip fixes the last three matrices, whereas τ ∈ Ip \ Ip preserves the first two

and acts as −1 on the last. Hence we see that i · X − X vanishes for i ∈ Ip, and equals
(

0 c−b
b−c 0

)

for i ∈ Ip \ Ip. Thus, thinking of the cocycles as taking values in W , we get

σ1(i) + σ3(i) =

(

ai −ai

−ai ai

)

∈ W1,

if i ∈ Ip, plus possibly
(

0 c−b
b−c 0

)

if i ∈ Ip \ Ip.

Now r(σ1)(i) = ai , for all i ∈ Ip, since it is given by the entry that occurs on the

diagonal of σ1(i). Also s(σ3)(i) = −ai , for all i ∈ Ip, since it is the average of the off

diagonal entries of σ3(i). Thus r(σ1) + s(σ3) = 0. Similarly t(σ3)(i) = 0, for i ∈ Ip,

and equals 2c − 2b for i ∈ Ip \ Ip, since it is given by half the difference of the off

diagonal entries of σ3(i). In particular t(σ3) is the coboundary i 7→ i ·(b−c)−(b−c),

and so vanishes in cohomology.
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In view of the lemma above we see that (σ1, σ3) does not lie in the kernel of (4.3)

if r(σ1) 6= −s(σ3). We show that the last condition always holds unless (σ1, σ3) is

trivial. First note the following fact.

Lemma 4.2 The maps r and s are injective.

Proof The injectivity of r is standard. The injectivity of s was proved by Greenberg

[Gre91] in the case f = ∆ and p = 23, which he studied in great detail in the context

of the Iwasawa theory of motives. We recall his argument briefly and explain how it

can be adapted to the case f = ∆16 and p = 31 as well. A short computation shows

that the Galois group of the maximal abelian extension of H unramified outside S

is Z4
p × T, where T = Z/11 in the first case and T = Z/15 × Z/3 in the second

case. So the maximal p-quotient of this field has Galois group (Z/p)4 in both cases.

One checks that under the natural action of Gal(H/Q) on this space each of the

irreducible representations 1, χ−p, and ρ̄ occur with multiplicity one. In particular,

dim H1(GS, ρ̄) = 1. So, in both cases, to show s is injective it suffices to show s is

non-zero. Let P be any prime of H lying over p. Let UP be the local units at P and

ŨP = UP/U
p

P
. Set

U =
∏

P|p

UP and Ũ =
∏

P|p

ŨP.

Let E denote the global units of H and let Ẽ denote the image of E in Ũ . The decom-

position subgroup G(P/p) = Z/2 acts on each ŨP, and the trivial and non-trivial

isotypic components each have dimension 1. Let Ũ0 be the product over P of the

trivial components and likewise let Ũ1 be the product of the non-trivial components.

Both of these are modules for Gal(H/Q). In [Gre91] it is shown that

(4.4) s = 0 ⇐⇒ Ũ
ρ̄
0 = Ẽ,

where the super-script ρ̄ denotes the ρ̄-isotypic component. The argument is general

and also applies to the case f = ∆16 and p = 31. An explicit computation with

the units of H shows that (4.4) does not happen in either case. Indeed assuming

the contrary we get for each P, the map Ẽ →֒ Ũ ։ ŨP followed by projection to

the non-trivial eigenspace of ŨP under the action of G(P/p), is the zero map. But

with notation as before, u := β/γ ∈ E satisfies τ (u) = u−1, so u gives rise to an

element in the non-trivial eigenspace of ŨP1
. Writing u as 1 + π1/γ with π1 := β−γ

a uniformizer of P1, we see u ∈ U 1
P1

, the principal units in UP1
. But clearly u 6∈

(U 1
P1

)p
= U 3

P1
. This lemma follows in both cases.

By the lemma we see that r(σ1) 6= −s(σ3) if exactly one of σ1 or σ3 is trivial. Since

H1(GS, F) and H1(GS, ρ̄) are both one-dimensional, we may as well assume that σ1

and σ3 are (non-zero) basis elements of these spaces.

Now any basis element of H1(GS, F) cuts out the cyclotomic Z/p-extension of Q ,

and the image of this element under r cuts out the cyclotomic Z/p-extension of Qp.

A basis element of H1(GS, ρ̄) cuts out a (p, p)-extension M of H. Let M1 and M2 de-

note the sub Z/p-extensions of M on which I(P1/p) acts non-trivially and trivially

respectively. Thus M2 descends to a Z/p-extension of the fixed field K of I(P1/p).
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On completion of M2 one gets another Z/p-extension of Qp = Kq1
, and this corre-

sponds to the image of the basis element under the map s.

Thus to show that the Selmer group vanishes it is enough to show that these two

Z/p-extensions of Qp coming from r and s are linearly disjoint. This is proved in

[Gre91] in the case f = ∆ and p = 23, where it is left to the reader as an interesting

exercise in class field theory. Since we found the hints there somewhat difficult to

reproduce, we provide an alternative argument here, which also works in the case of

f = ∆16 and p = 31.

Proposition 4.3 The two Z/p-extensions of Qp coming from r and s are disjoint.

Proof Let us rephrase the proposition. For simplicity, we sometimes write P for P1

and q for q1. Recall K is the fixed field of the inertia subgroup I(P/p). If L1 is the

cyclotomic Z/p-extension of K and L2 is the Z/p-extension of K obtained from M2

by descent, we must show that L1 and L2 have distinct completions. To this end let

L = L1L2 be the compositum. It is enough to show that [LP : Kq] = p2.

Write K
(p)
q for the maximal abelian extension of Kq = Qp of exponent p. By local

class field theory one has Gal(K
(p)
q /Kq) = K×

q /(K×
q )p ∼−→ (Z/p)2.

Now Gal(L/K) = (Z/p)2. We have the natural maps:

Gal(K
(p)
q /Kq) ։ Gal(LP/Kq) →֒ Gal(L/K).

Thus it suffices to show that the composite map is surjective.

To do this we need to make things explicit. On the local side, let π ∈ K be a

uniformizer for Kq = Qp. Then Gal(K
(p)
q /Kq) has basis given by (the Artin symbols

of) π, 1 + π. Since we are working modulo p-th powers, it is legitimate and more

convenient to work with the basis π1−p, 1 + π.

On the global side, one can check that L is the maximal p-quotient of the ray class

field of K of modulus p2. Write O for the ring of integers of K. Then by global class

field theory Gal(L/K) = (O/p2O)× modulo units and p-th powers. Since p = q1q2
2

in K, we have

(O/p2
O)× =

1 + q1

1 + q2
1

× 1 + q2

1 + q4
2

modulo p-th powers. Further, since (1 + q2)p
= 1 + q3

2, we may identify Gal(L/K)

with

X =
1 + q1

1 + q2
2

× 1 + q2

1 + q3
2

modulo units and p-th powers.

Working adèlically, π1−p is to be thought of as the element

(1, 1, . . . , 1, π1−p, 1, 1, . . . , 1) ∈ K×\A
×
K ,

which is equivalent to the element

(πp−1, πp−1, . . . , πp−1, 1, πp−1, πp−1, . . . , πp−1).

So under the above map π1−p maps to the class of (1, πp−1) in X. Similarly the second

basis element 1 + π maps to the class of (1 + π, 1) in X. We need to show that these
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two elements generate X. Clearly the second element generates the first factor, so we

are reduced to showing that πp−1 generates (1 + q2)/(1 + q3
2) modulo units and p-th

powers. We note that this is quite possible, since (1 + q2)/(1 + q3
2)

∼−→ (Z/p)2 and

the unit rank of K is 1. In fact the root α of x3 ∓ x + 1 is a fundamental unit of K. We

show (1 + q2)/(1 + q3
2) is generated by πp−1 and αp−1. Indeed we have the following

exact sequences:

0 // ker //

²²

〈πp−1, αp−1〉 //

²²

1+q2

1+q2
2

// 0

0 // 1+q2
2

1+q3
2

// 1+q2

1+q3
2

// 1+q2

1+q2
2

// 0,

where the vertical arrows are inclusions. By the snake lemma, the middle inclusion

is a surjection if the first inclusion is a surjection. This in turn follows if the kernel

in the first exact sequence is non-zero (because the dimension of (1 + q2
2)/(1 + q3

2)

is 1). But now a brief check using Pari-gp shows that there exist a, b such that

(πp−1)a(αp−1)b ≡ 1 mod q2
2, but 6≡ 1 mod q3

2. For the reader’s convenience, we

list these values explicitly, when π is taken to be −3α2 ± 4. They are a = 13, b = 1 in

the −23 case, and a = 19, b = 23 in the −31 case.

In view of the proposition, the kernel of (4.3) is trivial. Hence the Selmer group

in (3.3) vanishes, i.e., t(Rsplit) = 0. We can now prove the following.

Theorem 4.4 Let f = ∆ and p = 23, or f = ∆16 and p = 31. Then no arith-

metic member of the ℘ -ordinary Hida family passing through f has locally split Galois

representation.

Proof We claim that Rsplit ∼= Zp in both cases. Recall ρ = Ind
GQ

GK0
(χ), the represen-

tation arising from the form of weight 1 in the corresponding family, is locally split,

and so gives rise to a characteristic 0 point of Rsplit. Since χ is cubic in both cases,

ρ actually has a model over Zp (even over Z), since the traces of ρ take values in Z.

So there is a natural map Rsplit
։ Zp. We show that this map is injective. Since

t(Rsplit) = 0, by Nakayama’s lemma, the maximal ideal m of Rsplit must be the prin-

cipal ideal m = pRsplit. Now say x lies in the kernel. Then x ∈ m, and so x = px1

for some x1 ∈ Rsplit. If x1 were a unit, then p would be in the kernel, which is not

the case. So x1 ∈ m, and x1 = px2 for some x2 ∈ Rsplit. Continuing this way we see

that, for each n ≥ 1 we can write x = pnxn for some xn ∈ Rsplit, i.e., x ∈ ⋂∞
n=1 mn.

But Rsplit is a noetherian local ring, so this intersection vanishes by the Krull intersec-

tion theorem, and x = 0. Thus the above map is injective, proving the claim. Since

Rsplit
= Zp, we see that in particular there are no additional characteristic 0 points of

Rsplit other than the weight one point mentioned above, and we are done.

Remark 4.5 After the above arguments were written down the authors realized

that there is an alternative and simpler method to show that the split Selmer group

vanishes. This uses the map t instead of the maps r and s. We have chosen to preserve
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the argument concerning the maps r and s since similar arguments are likely to be

necessary to treat the “full case”, which we turn to next.

This argument goes as follows. By (4.4) we have s = 0 ⇐⇒ Ũ
ρ̄
0 = Ẽ. Reasoning

identical to that used in [Gre91] to show that (4.4) holds can be similarly used to

show that

(4.5) t = 0 ⇐⇒ Ũ
ρ̄
1 = Ẽ.

Now Ẽ ⊂ Ũ ρ̄ and Ũ = Ũ0 ⊕Ũ1 = (Ũ
ρ̄
0 ⊕1)⊕ (Ũ

ρ̄
1 ⊕χ−p). It would therefore appear

that the equivalences (4.4) and (4.5) are mutually exclusive, so that s 6= 0 forces t = 0,

rendering any use of the map t towards the vanishing of split Selmer useless. However

this is not the case, since Ẽ can be transverse to the two spaces Ũ
ρ̄
0 and Ũ

ρ̄
1 . In fact we

claim t 6= 0. To see this, note that otherwise by (4.5) we would get for each prime P

of H, the map Ẽ →֒ Ũ ։ ŨP followed by projection to the trivial eigenspace of ŨP

under the action of the decomposition subgroup G(P/p), is the zero map. But this

is not true. Let u ′
= α22, where α is the root of x3 − x + 1 = 0 fixed by τ . Then

by definition α lies in the trivial eigenspace for the action of G(P1/p) = 〈τ〉 with

P1 = (β−γ). On the other hand a computation shows that u ′ ∈ (1+P2
1) \ (1+P3

1).

Indeed, using Pari-gp one checks that in the cubic field K the q1-adic valuation of

α22 − 1 is equal to 1, and so it has P1-adic valuation equal to 2 (since q1 = P2
1 in H).

Here q1 is the prime of the cubic field K lying under P1. Thus u ′ does not lie in

(1 + P1)p, which, via the logarithm map, is 1 + P3
1, and so is non-zero modulo p-th

powers. This u ′ is a global unit that projects non-trivially to the trivial eigenspace of

ŨP1
. Thus t 6= 0.

The non-vanishing of t implies that t is injective. This can be used to show that the

split Selmer group vanishes (without using Proposition 4.3). Indeed by Lemma 4.1

if (σ1, σ3) is in the kernel of (4.3), then t(σ3) = 0. By the injectivity of t we see that

σ3 = 0. But then the condition r(σ1) + s(σ3) = 0 forces σ1 = 0 by the injectivity of

r, and (σ1, σ3) is the trivial class. It is not clear that the analogues of the map t in the

“full case” continue to be injective, in which case one would be forced to study the

analogues of the maps r and s in this setting regardless.

5 Full Case

We now turn to the case where the image of ρ̄ : GS → GL2(Fp) contains SL2(Fp).

We choose notation in close analogy with the dihedral case above. Let Q(ζp)

denote the p-th cyclotomic field and let K0 ⊂ Q(ζp) be the field cut out by det ρ̄ =

ωk−1. Thus if r is the gcd of k − 1 and p − 1, then K0/Q has degree (p − 1)/r. Let

H be the field cut out by ρ̄. It turns out that H/K0 is an unramified extension with

Gal(H/K0)
∼−→ SL2(Fp). Thus H is a non-abelian replacement for the Hilbert class

field of K0 that appeared in the dihedral setting.

Assume that ρ̄ is locally split. The explicit description of the characters δ and ǫ in

Section 2.1 shows that

ρ̄|Gp
∼

(

λ(āp)−1ωk−1 0

0 λ(āp)

)

and ρ̄|Ip
∼

(

ωk−1 0

0 1

)

,
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where āp ∈ Fp is the mod p reduction of the p-th Fourier coefficient ap of f . Let K

denote the fixed field of the inertia subgroup I(P1/p), where P1 is the prime of H

induced by the prime ℘ of Q̄ . Note H/K also has degree (p − 1)/r. The information

above is summarized in the following diagram:

H

SL2(Fp)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0p−1

r

~~
~~

~~
~

K

p(p−1)(p+1)

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

K0

p−1
r

~~
~~

~~
~

Q

The way in which p decomposes in the fields above is more involved. We have

p = p(p−1)/r in K0. If P is any prime of H lying over p, then the ramification index

e(P/p) = (p− 1)/r and the residue degree f (P/p) is equal to the order of āp in F
×
p ,

given by the following table.

f p āp f (P/p)

∆16 397 367 33

∆18 271 168 270

∆20 139 132 138

∆20 379 42 378

∆26 107 106 2

Thus p decomposes as p = P
(p−1)/r
1 · · ·P

(p−1)/r
g in H, where g = p(p − 1)(p +

1)/ f (P/p). Of key importance is the prime decomposition of p in K. The

number of primes of K lying over p is in bijection with the double coset space

I(P1/p)\G/G(P1/p), where G = Gal(H/Q), and G(P1/p) and I(P1/p) are the de-

composition and inertia subgroup of the prime P1 of H lying over p. A lengthy but

elementary computation of this double coset space in the “smallest” case f = ∆26,

and p = 107 shows that

p = q1q2 · · · q(p−1)/2 · q
p−1

(p+1)/2
q

p−1

(p+3)/2
· · · q

p−1

(p2+2p−3)/2
· q

p−1

(p2+2p−1)/2

in K, with f (qi/p) = 2 for each qi |p except for the last prime, which has

f (q(p2+2p−1)/2/p) = 1.

We wish to compute the Selmer group in (3.3). While we have not been able to carry

out the computation for any example, we now sketch how the computation might
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proceed under some assumptions. Recall that W = Ad(ρ̄) = 1 ⊕ W0, where W0

denotes the trace zero matrices. Thus, we wish to compute the kernel of the map

H1(GS, F) ⊕ H1(GS,W0) −→ H1(Ip,W/W1).

As an Ip-module W0 = F ⊕ F(ωk−1) ⊕ F(ω1−k). In analogy with the dihedral case,

consider the maps, induced by restriction and projection:

r : H1(GS, F) → H1(Ip, F),

s : H1(GS,W0) → H1(Ip,W0) → H1(Ip, F),

t : H1(GS,W0) → H1(Ip,W0) → H1(Ip, F(ωk−1)),

u : H1(GS,W0) → H1(Ip,W0) → H1(Ip, F(ω1−k)).

Again an explicit computation shows that the class σ = (σ1, σ3) is Selmer if and

only if r(σ1) = −s(σ3) and t(σ3) = 0 = u(σ3).

The map r is the same as before and is injective. Thus if either t or u is injective (cf.

Remark 4.5), or more generally if ker(t) ∩ ker(u) = 0, then the split tangent space

vanishes. So we may assume that ker(t) ∩ ker(u) 6= 0. If s is not injective on this

space, the corresponding elements (0, σ3) would be in the split tangent space, and

our method would fail. So we might hope that the following holds:

(i) The map s is injective on ker(t) ∩ ker(u).

Assuming this we proceed to compute the locally split tangent space.

Lemma 5.1 dim H1(GS,W0) = 2 and H2(GS,W0) = 0 for all p ≥ k + 1.

Proof By Weston [Wes04], the (full) deformation problem for ρ̄ is unobstructed,

that is, H2(GS,W ) = 0 for all primes p ≥ k+1, for the six cusp forms above (if ρ̄ is ab-

solutely irreducible). In particular the summand H2(GS,W0) also vanishes for these

primes. The global Euler characteristic formula then shows dim H1(GS,W0) = 2.

Let d = dim(ker(t) ∩ ker(u)). As mentioned above we may assume d > 0. It

follows from the lemma that d = 1 or 2. Assuming (i) the image of s gives rise to a

d-dimensional space of Z/p-extensions of Kq, the completion of the inertia field K

at q = q1, the prime of K lying under P1. Note that Kq is the unique unramified

extension of Qp of degree f (q/p). We hope that:

(ii) The cyclotomic Z/p-extension of Kq (coming from r) does not lie in the

d-dimensional span of Z/p-extensions of Kq coming from s.

This seems out of reach, but here are some further comments.

Lemma 5.2 H1(GL2(Fp),W0) = 0 if p ≥ 5.

Proof This is well known (see for instance [Fla92, Lemma 1.2] or [Böc99, Lemma

2.10]), but for completeness we sketch the proof here. Let B denote the upper tri-

angular matrices, U the upper triangular unipotent matrices, and T the diagonal

matrices in GL2(Fp). We have

Hi(GL2(Fp),W0) →֒ Hi(B,W0)
∼−→ Hi(U ,W0)T .
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The injectivity of the first restriction map follows, since the index of B in GL2(Fp) is

prime to p. The fact that the second restriction map is an isomorphism follows from

the Hochschild–Serre spectral sequence, since the index of U in B is prime to p. One

checks directly that if i = 1, the last group vanishes if p ≥ 5.

By the lemma, the restriction map

H1(GS,W0) →֒ H1(GH,S,W0)G
= HomG(GH,S,W0)

is injective if p ≥ 5, at least if G = Gal(H/Q) = GL2(Fp). This was automatic in the

tame dihedral case, but continues to hold in the present non-tame setting.

Assume now that d = 2 (the worst case scenario). Write M and N for the

(p, p, p)-extensions of H cut out by a basis of H1(GS,W0). Write M1, M2, and M3 for

the Z/p-extensions of H in M on which I(P1/p) acts by ωk−1, 1, and ω1−k respec-

tively. Define N1, N2, and N3 similarly. Let L2 and L3 be the corresponding extensions

of K obtained from M2 and N2 by descent. Write L1 for the cyclotomic Z/p-extension

of K. Finally, let L be the compositum of L1, L2, and L3. We need to show that after

completion, the index [LP : Kq] = p3.

The proof of this seems out of reach presently. Even in the “smallest” case of

f = ∆26 and p = 107, we would need to carry out a class field theoretic computation

in the field K that has degree roughly 106 over Q . Remarkably, there is room for the

above index to be p3, since in this case Kq = Qp2 has exactly three independent

Z/p-extensions!

6 Reducible Case

We now turn to the case where the residual representation ρ̄ is reducible. In this case

it is possible to deduce that the characteristic zero local representation is indecom-

posable if a certain Bernoulli number is indivisble by p, using a result of Ribet. We

thank F. Calegari for pointing this out to us; this direct argument allows us to avoid

the tangent space computations that were contained in an earlier version of this pa-

per. For a study of R = T theorems for reducible residual representations we refer

the reader to [Cal06].

We first recall some well-known facts from the theory of cyclotomic fields (see

[Was96]). Let p be an odd prime and let ζp be a primitive p-th root of 1. Let ω be

the mod p cyclotomic character. Let A be the p-part of the class group of Q(ζp). Let

i be an integer with 0 ≤ i ≤ p − 2. Then

dim
(

ker
(

H1(GS, F(ωi)) → H1(Ip, F(ωi))
))

= p-rank of Ai ,

where Ai is the ωi-th eigenspace of A under the action of Gal(Q(ζp)/Q), and the

p-rank of Ai = dim(Ai/A
p
i ). It is known that A0 = A1 = 0. The Herbrand–Ribet

theorem says that if i is odd and 3 ≤ i ≤ p − 2, then

Ai 6= 0 ⇐⇒ p | Bp−i ,
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where B j is the j-th Bernoulli number. To get a better feel for the p-rank of Ai we

recall a conjecture of Iwasawa that says that for an odd integer i with 3 ≤ i ≤ p − 2,

Ai is isomorphic to the group Zp/B1,ω−i Zp, where

B1,ω−i =
1

p

p−2
∑

α=1

a ω−1(a) ∈ Zp

is a twisted Bernoulli number. In particular for such i, the group Ai is conjecturally

cyclic, so the p-rank of Ai is 0 or 1 depending on whether Ai is trivial or not. If p is

an odd prime for which Vandiver’s conjecture holds, i.e., Ai = 0 for all even i, then

Iwasawa’s conjecture is known to hold. A weaker unconditional result due to Mazur

and Wiles is that both Ai and Zp/B1,ω−i Zp have the same cardinality.

Let now f be a normalized cuspidal eigenform of level 1 and weight k ≥ 2 (in this

section we do not restrict to the six weights considered in the introduction). Let ℘ |p
be a prime that is ordinary for f , and let ρ f : GQ → GL2(K℘ ) be the Galois repre-

sentation attached to f . Assume that the residual representations ρ̄ : GS → GL2(F)

attached to f are reducible. It is known that this happens exactly when p|Bk. We note

that the reductions ρ̄ depend on a choice of lattice (only their semi-simplifications

are independent of the choice of lattice). We then have the following.

Theorem 6.1 Say p ≥ k + 3 and p|Bk, so that the residual representations attached to

f are reducible. If p 6
∣

∣ Bp−k+1, then the local representation attached to ρ f is indecom-

posable. More generally, every arithmetic member of the Hida family passing through f

has a locally indecomposable Galois representation.

Proof Choose a lattice and a representation ρ : GQ → GL2(O) such that the reduc-

tion ρ̄ has the following shape (cf. [Rib76, Theorem 1.3]):

(6.1) ρ̄ =

(

1 u

0 ωk−1

)

where u : GS → F is a map satisfying the following property: if [cunr] is the coho-

mology class in H1(GS, F(ω1−k)) defined by cunr = ω1−k · u, then [cunr] is a non-zero

element in the kernel of the restriction map

H1(GS, F(ω1−k)) −→ H1(Gp, F(ω1−k)).

That such a non-zero class exists is consistent with the aforementioned facts about

cyclotomic fields. Indeed ω1−k
= ωp−k, so letting i = p − k, we see that i is odd and

3 ≤ i ≤ p− 2, since p ≥ k + 3. Now ker
(

H1(GS, F(ωp−k)) → H1(Ip, F(ωp−k))
)

6= 0

if and only if Ap−k 6= 0, which holds by the Herbrand–Ribet theorem, since p|Bk.

By an important but simple result of Ribet [Rib76, Proposition 2.1] we may also

choose a lattice such that the reduction of ρ f has the “opposite shape”, i.e., ρ̄ looks

like:

ρ̄ =

(

ωk−1 u ′

0 1

)
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with u ′ 6= 0 (more precisely, ρ̄ is not semi-simple). The map H1(Gp,O(ωk−1)) →
H1(Gp, K℘ (ωk−1)) is injective, since its kernel is H0(Gp, K℘ /O(ωk−1)) = 0, so ρ f is

locally split if and only if the O-valued representation corresponding to this lattice is

locally split. Hence, if ρ f is locally split, then so is the above residual representation.

Thus ρ̄ cuts out an unramified ωk−1-extension of Q(ζp), so Ak−1 6= 0 and p
∣

∣ Bp−k+1,

a contradiction.

A similar argument applies to any arithmetic member of the Hida family passing

through f .

7 Explicit Examples

7.1 The ∆ Function

We now apply the various results proved in this paper to the Ramanujan Delta func-

tion f = ∆. We obtain the following.

Corollary 7.1 The p-adic Galois representation ρ∆ attached to ∆ has locally non-split

Galois representation for all ordinary primes p < 10, 000.

Proof The only interesting primes are p = 23 and p = 691, since for all other

ordinary primes p less than 10, 000 one knows that the residual representation is

absolutely irreducible, p-distinguished, and not locally split, so the characteristic zero

representation cannot be locally split [Gha05, Proposition 6]. For p = 23, we have

seen that the mod p representation is locally split (∆ is its own mod 23 companion

form). However, by Theorem 4.4 the 23-adic representation attached to ∆ is not

locally split. For p = 691, we have 691|B12 and the residual representations ρ̄ are

reducible. Since the conditions of Theorem 6.1 are well known to be satisfied, the

691-adic representation is also not locally split.

The same proof shows the stronger result.

Corollary 7.2 No arithmetic member of the ℘ -ordinary family passing through ∆

has locally split Galois representation for all ordinary primes p < 10, 000.

7.2 The Next Few Cusp Forms

As for the other five cusp forms of level 1, we have the following result.

Corollary 7.3 Let f = ∆16, ∆18, ∆20, ∆22, or ∆26 and let p < 10, 000 be an ordi-

nary prime for f . Then every arithmetic member of the ℘ -adic family passing through

f has an indecomposable local Galois representation, except possibly for p = 397, 271,

139 or 379, · , and 107, respectively.

Proof For ∆16 the only interesting primes are the dihedral prime 31 for which we

again conclude by Theorem 4.4 and the full prime 397 that we cannot yet treat. The

reducible prime p = 3617 can also be treated by checking the conditions of The-

orem 6.1. A similar analysis applies to the other four cusp forms (note that some

of the reducible primes are larger than 10,000, but of course can still be treated by

Theorem 6.1).
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