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1. Introduction. The fact that the symmetric difference (i.e., ab' + a'b) is a 
group operation in a Boolean algebra is, of course, well known. Not so well known 
is the fact observed by Ellis [3] that it possesses some of the desirable proper­
ties of a metric distance function. Specifically, if * denotes this operation, it is 
easy to verify that 

M l : a *b = 0 if and only if a = b, 

where 0 is the first element of the Boolean algebra, 

M2: a*b = b*a, 

M3: (a*b) + (b*c) > (a*c), 

where > denotes inclusion in the wide sense. In this note a + b and ab denote 
respectively the join and meet of a and b. Any binary operation satisfying Ml , 
M2, and M3 might be referred to appropriately as an autometric operation, or 
simply as a metric operation. It might be observed that, in the language of Ellis 
[4], these properties make the Boolean algebra into a generalized metric ground 
space. The symmetric difference is at once a group and a metric operation. Our 
first objective in this note is to prove that the symmetric difference is the only 
such operation. We then examine other possible characterizations of the sym­
metric difference arising from weakening or changing these hypotheses. 

By way of historical summary we observe that Bernstein [1 ; 2] characterized 
the possible group operations in a Boolean algebra among the class of Boolean 
operations and Frink [5] characterized the symmetric difference, again among 
the class of Boolean operations, as the only group operation over which the set 
product distributes. More recently Helson [7] and Marczewski [8] have charac­
terized the symmetric difference as the only group operation satisfying certain 
other side conditions. 

2. Metric operations. In this section we designate by * a binary operation 
which is simultaneously a group operation and a metric operation in a Boolean 
algebra, and proceed to identify the operation with that of the symmetric 
difference. 

THEOREM 2.1. The only metric group operation in a Boolean algebra is the 
symmetric difference. 
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Proof. If x, y, and z are the sides of a triangle in the Boolean algebra, then 
x-\-y = x + z = y + z. For x + y > z and x + z > y by M3, and upon adding 
x to each side of each expression, we find x + y > x + z and x + z > x + y. 
This implies that x + y = oc + z. The proof is similar for the other cases. 

Suppose now that a = b*c. From M1 and the associativity of *,' it follows 
that 0 = a *(b *c) = (a *b) *c, and hence a*b = c. Thus if a *b = c, then a*c = b 
and b*c = a. It follows immediately that 0 *a — a, for if we assume that 0 *a = b, 
then a *b — 0 by the previous statement. Thus a — b by Ml . 

We now show that a*I = a', where a' denotes the complement of a. Let 
a *a' = by and consider the triangle 0, a, a'. Now a + b = a + af = I, and 
a' + b = a + a' = / , so / = (a + ft) (a' + b) = 6. Thus a *a' = / , and 
a*I = a' follows immediately. 

Let x*y = p. We will show that p = xy' + x';y. From the quadrilateral 
0, / , Xy y we see that xf + y1 — x' + £ and x' + y = y' + £. Hence xy' = xp 
and x'y = yp. We then have xy' + x'y = (x + y)p = py since x + y > £ by 
M3. This proves the theorem. 

Noting that no use was made of the identity and inverse postulates of a group, 
we immediately have 

THEOREM 2.2. The only metric semi-group operation in a Boolean algebra is 
the symmetric difference. 

DEFINITION. An operation * is said to be weakly associative if 

a*(a*b) = (a*a) *b. 

THEOREM 2.3. The only metric weakly associative operation in a Boolean 
algebra is the symmetric difference. 

Proof. In Theorem 2.1, we note that the full power of the associative law 
was used only to show that if a = b*c then b = a*c and c = a*b. These results 
follow from the weak associative law and the metricity of the operation, for let 
b*c = a, a*b = x and a *c = y. Then 

x = b*a = b*(b *c) = (b *b) *c = 0 *c = c> 

y = cm = c*(c*b) = (c*c) *b — 0*b = b. 

Associativity was used strongly in the preceding theorems, but is not used 
in the following theorem. 

DEFINITION. A quasigroup is a system consisting of a set of elements, together 
with a binary operation which satisfies the law of unique solution. That is, if 
a = b*c and two of these symbols are known, then the third is uniquely deter­
mined. A loop is a quasigroup with a two-sided identity element. 

DEFINITION. The Ptolemaic inequality holds for a quadrilateral if the three 
products (meets) of opposite sides satisfy the triangle inequality (M3). 
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THEOREM 2.4. The only metric loop operation in a Boolean algebra is the 
symmetric difference. 

Proof. Let the loop identity be called e. Since e *e = e by the identity law, 
and e *e — 0 by Ml , it follows that e — 0. We now show that a *I = a'. By the 
law of unique solution there exists an element y such that a *y = a'. Consider 
the triangle 0, a, y. By the triangle inequality we have 

a + y > o! and a! + y > a. 
Thus 

aa' + y a' > a'a' and a'a + y a > aa, 

whence y > a' and y > a. Hence y — /, as the only element which is over both 
a and a! is i". 

We now show that the Ptolemaic inequality holds for any quadrilateral 
0, i", a, b. Letting a *b = x, we have 0 */z = a, 0 */ = / , I*a = a', and I*b = V. 
The triangle inequality for triangle 0, a, 6 yields a + b > x. Again, the triangle 
inequality for triangle / , a, b yields a' + V > x. Hence (a + b) (a' + b') > xx 
or ab' + a'b..> x. The other two cases are proved equally easily. 

Now let a *b = x. We wish to show that x ~ ab' + ci'b. We have just found 
that aV + a'b > x. Consider the quadrilateral 0, / , a, b'. By the Ptolemaic 
inequality» we have ah + Q>'V > (a*bf). Hence 

(abf + a'b){ab + a'V) > x(a*b') 

or 0 > x(a*V)1 so x{a*bf) — 0. By the triangle inequality, x + (a*bf) > I, 
thus 

x + (a *b') = J. 

Hence x* = a *bf by the definition of complement. In the same manner we show 
that xr = a' *b and x = a' *b'. From the triangle / , a', b we obtain a' + b > x', 
and from the triangle JT, a, V we obtain a/ + b > x'. Hence 

(a + 50 (a' + 5) - a& + a'V > x'. 

By DeMorgan's laws, we obtain ab' + a'b < x. This, together with the previous 
result ab' + a'b > x, implies x == a&' + a'6. This completes the proof.l 

By defining 0 *a = a', 0 HI' = a, 0*1 = I, I *a = a} I *a' = a', and a *a' = / 
in the Boolean algebra of four elements 0, i", a, ar, we obtain an example which 
shows that a metric quasigroup operation in a Boolean algebra need not be the 
symmetric difference. 

3. Boolean operations. Bernstein [1] has characterized Boolean group 
operations using a definition of a group which differs somewhat from the one 
now in use in that he did not require that the law of unique solution hold. I am 
indebted to Professor B. M. Stewart for pertinent observations which led to the 
following theorem. This theorem is similar to those in [1]. 

'The referee observes that we need only have assumed a one-sided loop. Indeed, it is also 
true that no use was made of the uniqueness of the solution. 
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THEOREM 3.1. Any Boolean group operation in a Boolean algebra is an 
ahelian group operation, and is of the form 

x*y = e(xy + x'y') + e'(xy' + x'y) 

where e is the group identity. 

Proof, Since the operation * is Boolean, we may write 

x *y — Axy + Bxy' + Cx'y + Dx'y' 

where A, B, C, and D are elements of the Boolean algebra (cf. [1]). We first 
note that 0 *D = CD, and that 0 *C = DC, hence D = C by the law of unique 
solution. Now D *0 = JBD and I?' *0 = DB implies D = Bf by the law of unique 
solution. Let us designate the identity element of the group by e. We then have 
e *e

f = e' by group properties, but from our original relation we find that e *e' = 
B, hence B — e'. Since 

e = e*e = Ae + De' = Ae + B'e' = .4e + gg' = Ae, 

we have that B' = .4J3'. Now 

4 ' *B = 5 ( i l '5 ' + 4 5 ) + £ 0 4 5 ' = 4 5 + AB' = 4 , 
and 

B *B = 4 5 5 + J5(B5' + B'B) + B' = AB + W = AB + AB'. 

Thus B*B — A, and 4 = 5 ' by the law of unique solution. Since A = B' — 
D — e, and B = D' = C = ef, we may write 

x *y = e (xy + x'y') + e' (xy' + x'y). 

The fact that x *y — y *x is obvious, since the right-hand side of the above 
expression is symmetric in x and y. 

COROLLARY. The only Boolean group operation in a Boolean algebra with 0 
as the identity is the symmetric difference. 

This result may be weakened slightly to yield 

THEOREM 3.2. The only Boolean group operation in a Boolean algebra such 
that 0 *0 = 0 is the symmetric difference. 

Proof.. From x*y — e(xy + x'y') + e'(xy' + x'y) we obtain 

0 = 0 *0 = ell = e. 

Noticing that no use was made of the associative law in the proof of Theorem 
3.1, we obtain another theorem. 

THEOREM 3.3. Any Boolean loop operation in a Boolean algebra is an ahelian 
group operation and is of the form 

x*y = e(xy + .vV) + e'(xy' + x'y), 

where e is the loop identity. 
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Proof. The fact that the operation is of this form and is abelian is proved 
exactly as in Theorem 3.1. We first show that the associative law holds» Using 
the definition of *, it can be shown in a straightforward manner that 

z * (x *y) = xyz + x'y'z + xy'z' + x'yz' 

and that 

(z *x) *y = xyz + x'y'z + xy'z' + x'yz'. 

Now, since an associative loop is a group, the theorem follows. 

COROLLARY. The only Boolean loop operation in a Boolean algebra, with 0 as 
the loop identity is the symmetric difference. 

THEOREM 3.5. The only Boolean loop operation in a Boolean algebra such that 
0 *0 = 0 is the symmetric difference. 

Proof. As is Theorem 3.2, it is easy to show that 6 = 0. 

DEFINITION. A binary operation is called semi-metric if it satisfies M1 and 
M2. 

THEOREM 3.6. The only Boolean semi-metric operation in a Boolean algebra 
is the symmetric difference. 

Proof. Since the operation is Boolean, according to Bernstein [1] it is of the 
form 

x*y = (I*I)xy + (l*0)xyf + (0*I)x'y + (0*0)*'/ . 

But since the operation is also semi-metric, we have that 

1*1 = 0 *0 = 0, and 0*7 = 7*0. 

Let 0 *7 = X. We can determine X by noting that 

i*x = x(ixf + rx) = xx' = o. 
Therefore / = X by Ml , and the theorem is proved. 

4. Other characterizations. Frink [5] has characterized the symmetric 
difference as the only Boolean group operation over which the meet distributes. 
In this section we will not restrict ourselves to Boolean operations. 

THEOREM 4.1. The only semi-metric group operation in a Boolean algebra over 
which the meet distributes is the symmetric difference. 

Proof. It can be shown that 0 is the group identity. If a, b, and c are sides 
of the triangle /, m, n, then a*b = r, b*c = a, and a *c = b. This follows from 
the associative law and Ml , for 

a *b = (l*m) *(m*n) — l*(0*n) — l*n — c 
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and similarly for the other two cases. We now show that the sum of any two 
sides of our triangle is over the third. 

(a + b) (a *b) = (a + b)a * (a + b)b = a *b. 

Hence (a + b)c = c, so a + b > c, which shows that the triangle inequality 
holds. Thus * is a metric group operation, and is the symmetric difference by 
Theorem 2.1. 

The following example shows that there are semi-metric group operations 
over which the meet does not distribute. In the Boolean algebra of eight ele­
ments, we define an operation * by the following operation table: 

* 0 a b c a' b' c' I 

0 0 a b c a' V c' I 
a a 0 V cf I b c a' 
b b V 0 a' c a I c' 
c c c' a' 0 b I a V 
a' a' I c b 0 c' V a 
V V b a I c' 0 a' c 
c' c' c I a b' a' 0 b 
I I a' c' b' a. c b 0 

Here * is a semi-metric group operation, but 

a' (c *a) = a'c' = b 

while 

a'c * a1 a = c*0 = c. 

THEOREM 4.2. The only semi-metric semi-group operation in a Boolean algebra 
over which the meet distributes is the symmetric difference. 

Proof. If a = b *c, then a*b = c. For 

0 = a*(b*c) = (a*b) *c 

by the associative law, whence a *b = c by Ml . Thus 0*a = a, for if 0 *a = b, 
then 0 = a *b implies a — b. Now we show that the operation is metric exactly 
as in Theorem 4.1, and Theorem 2.2 tells us that * is the symmetric difference. 

THEOREM 4.3. The only semi-metric weakly associative operation in a Boolean 
algebra over which the meet distributes is the symmetric difference. 

Proof. Since a *a = 0, it follows that 

0 = 0 *(a *a) = (0 *a) *a. 

Thus a = 0 *a by Ml . We prove that * is metric as in Theorem 4.1, and apply 
Theorem 2.3 to complete the proof. 
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D E F I N I T I O N . Let ° denote the symmetric difference. A binary operation * 
is said to be quasi-analytical [8] when (a *b) ° (c*d) < a°c + l>°d for all quad­
ruples a, bt c, d of a Boolean algebra. 

T H E O R E M 4.4 (Marczewski). The only quasi-analytical group operation in a 
Boolean algebra with 0 as the group identity is the symmetric difference. 

Proof. We will show first, tha t a = a~\ 

a = a°Q — (a *0) ° (a *a~l) < a°a + Ooa"1 = a~\ 

a-1 = a"1 *() = (a"1 *0)o(a~J *a) < « " V / - 1 + (W = a. 

Hence a > a~~l and a < a~l, which implies that a = a~l. 
Now a *b = 0 if and only if a = />. For, let a = J. Then a *a = a *a~y = 0. 

Let a *b = 0. Then a *a~1 = 0 implies /? = a~] = r? by the law of unique solution. 
This proves M L T o prove M2, we write 

(a *b) *(b *a) = a*(b*(b m)) = a*((b*b) *a) 

= a *(0 *a) = <7 *a == 0. 

Hence a *b = & *a by M 1. 
To prove M 3 , let a, &, and r be sides of the triangle /, m, n with a = l-m, 

b = m *nf and r = / nt. Then 

a *Z; == (l*m) *(m*n) = /*w = r. 

Similarly a = /> *r and b = a *c. Now 

^ = a *& - (0 *0) o (a *b) < (ha + Qoh = a + b. 

Thus M3 is proved, and * is a metric group operation in a Boolean algebra. 
Hence * is the symmetric difference by Theorem 2.1. 

In Marczewski's proof, he shows first t ha t the operation * is Boolean. I t then 
follows from Theorem 3.1 or Bernstein's results fl] t ha t the operation is the 
symmetric difference. 

5. Concluding r e m a r k s . M a n y of the foregoing results concerning Boolean 
algebras with metric operations are valid, with obvious modifications, in a 
generalized Boolean algebra, i.e., in a relatively complemented distributive 
lattice with 0. Thus Theorem 2.1 could read: 

T H E O R E M . The only metric group operation in a generalized Boolean algebra 
is the "relative symmetric difference." 

I t would be interesting to know which lattices admi t metric group operations. 
It is easy to construct examples of non-distributive modular lattices and non-
modular lattices which admit such operations. However, it has been shown 
that the only distributive lattices satisfying the descending chain condition 
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which admit metric group operations are the Boolean algebras.2 Thus, for 
example, the only finite distributive lattices admitting such operations are the 
finite Boolean algebras. Efforts are in progress to extend this result to all 
distributive lattices. Detailed proofs of the above remarks will be found in the 
author's thesis. 

Finally, it has recently come to our attention that our Theorem 2.1 has been 
in essence established by Gleason [6] in a note extending the work of Helson [7]. 

2This result is due to L. M. Kelly. 
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