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Abstract

A direct construction for partially resolvable r-partitions is presented and then used to give a recursive
construction for BIBDs (v,4,2). In particular, we construct BIBD(v,4,2) with BIBD(«,4,2) em-
bedded in it whenever v = 3u + a, a € {1,4,7}. This result allows us to give simple proofs for the
existence of BIBD(v, 4,2) with various additioinal properties.

1980 Mathematics subject classification ( Amer. Math. Soc.): 05 B 05.

1. Introduction

A t — (v, K, N)-partition (or briefly, a t-partition) is a pair (V, B) where V is a
v-set and B is a collection of k-subsets of V (called blocks) with k, € K such
that every r-subset of ¥ is contained in exactly A blocks of B. (A t-partition is
sometimes called a r-wise balanced design.) The elements of K are the block sizes.

Given a t — (v, K, A)-partition (V, B), a g-fold parallel class (a ¢-PC) is a
subset P of B such that each element of V is contained in exactly g blocks of P.
A 1-fold parallel class is called simply a parallel class (PC); it is a subset of B
which partitions V.
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Generalizing slightly from [5], we have the following definition:

A partially resolvable t-partition PRP t — (v; P,S; A\; M) is a t — (v, K, A)-
partition such that

WDK=PUS,PNS=9,

(i) 1P| = M|,

@) if P={py,...,p,}, M={my,...,m,}, the blocks of size p, can be
partitioned into m; A-fold parallel classes.

Heret > 2,and p,s > t foreveryp € P, s € S.

In this paper, we will be concerned with the special cases 1 = 2, P = {3},
S={4),A=2,and M = {m} where m = (v — 4)/2 or (v — 7)/2. We denote
the corresponding PRPs by PRP 2 — (v; 3,4; 2, m). In Section 2, we determine
completely the spectrum for PRP 2 — (v;3,4;2, m)s with m = (v — 4)/2 or
m = (v — T)/2. In Section 3, we apply the obtained PRPs to obtain some
recursive constructions for twofold block designs with block-size k = 4 (that is,
for BIBD(v, 4, 2)s; the notation S,(2,4,v) is also used for these designs but the
latter notation is sometimes understood to indicate that no repeated blocks are
allowed). Finally, in Section 4 we indicate applications of these results to the
existence of twofold designs with k = 4 having some additional properties

2. The existence of PRP 2 —(v;3,4;2;m)s, m€ {(v—4)/2,(v — 7)/2}

In this section, we denote PRP 2 — (v; 3,4;2, m) briefly by P(v, m). Here
m=m =(w-—-4/2orm=m,=(-17/2

If a P(v, m;) exists then v = 0 (mod 2); also (i\f v>4),v=0(mod3)sov=0
(mod 6). It follows that the number of blocks of size 4 is v/2. Similarly, if a
P(v, m,) exists then v = 1 (mod 2), and (if v > 7), also v = 0 (mod 3), thus v = 3
(mod 6), and it follows that the number of blocks of size 4 is v.

We will show that these necessary conditions for existence are also sufficient.
When m = m,, we distinguish two cases.

LemMMA 2.1. 4 P(v, m,) exists for all v = 0 (mod 12).

PrROOF. Let v =0 (mod12), v =12s. Let V = Z,, X Z,, and let the base
blocks for B be as follows (the base blocks are to be developed modulo (45, 3)):

(1) {(0,0), (1,0), (25,0), (25 + 1,0)},

{(0,0),(r,1),(2s — r,1)}
@ {0,0), (r.2). (25 - r.2)} }

https://doi.org/10.1017/51446788700031372 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031372

66 K. T. Phelps and A. Rosa (3]

(3) ((0,0), (r,1), (25 = 1 - r,1)}
{(0,0), (r,2),(2s =1 -r,2)}

(4) (a) {(0,0),(25,1), (25 + 1,1)}, {(0,0), (= (s = 1),2), (5,2)},
(b) {(O’O)’ (S,l), (2s’2)}’ {(0’0)’ (—(S - 1)’1)’ (—(2S - 1)’2)}’
(c) {(0,0), (0,1),(0,2)} taken twice.

Let us first verify that (¥, B) is a pairwise balanced design with A = 2. For this
we have to show that each difference, pure or mixed, occurs precisely twice
among the differences in the base blocks. The pure difference 1 mod 3 occurs in
(4) (c). As for pure differences mod 4s, differences 1 and 25 — 1 occur once in (1)
and once in (4)(a) while difference 25 occurs twice in (1). Each of the even pure
differences 2,4,...,2s — 2 occurs twice in (2), and each of the pure odd dif-
ferences 3,5,...,2s — 3 occurs twice in (3). As for mixed differences, the blocks
of (2) contain each of them, except for 0, +s, —s and 2s, exactly once. Similarly,
the blocks of (3) contain each mixed difference, except for 0, +s, +(s ~ 1),
+(2s — 1) and 2s exactly once. The blocks of (4)(a) contain the mixed differences
—(2s — 1), 25, and s — 1, —s while the blocks of (4)(b) contain the mixed
differences s, 5,25 and —(s — 1), —s,25 — 1.

To verify that we have a PRP, note that the blocks of (1) yield the required v/2
blocks of size 4. The blocks of (2) and (3) yield 3(s — 1) and 3(s — 2) 2-PCs
respectively. Finally, (4) yields 7 2-PCs, as (a) and (b) yield three 2-PCs each, and
(c) yields one 2-PC. Note, however, that by combining the orbits of (c) with two
of the orbits of (b) we can ensure that no 2-PC will contain repeated triples.

}, r=12,...,5s — 2,

LEMMA 2.2. 4 P(v, m,) exists for allv = 6 (mod 12).

PROOF. Let v = 6 (mod12), v =125+ 6, s > 0. Let V' = Z,_, 4 X {1,2}. Let
P/, Pj,..., Pj ., be the parallel classes of a Kirkman triple system of order
6s +3on Z,,, ;X {i}, i =1,2 (such a system is known to exist for all integers
s > 0 [7]). Without loss of generality, let the PC P} be {0;,(2s + 1);,(4s + 2),)}
mod 6s + 3 (here and further we write for brevity x; for an element (x,i)). Let
the base blocks of B be as follows (the base blocks are to be developed modulo

6s + 3):

(1) {01,(25 + 1)1,32,(5‘ + 1)2},

(2) {05,i), (65 + 3 — i)}, i=1,2,...,3s+1,
(3) {01»02’(23 + 2)2},

{0,,(2s +2—i)y,(2s+2+i)}, i=1,2,...,5,
{0,,(s=i)y(Bs+2+1i),}, i=12,...,|(s-1)/2],
{0,,(55 + 2 —i)y (55 + 3 +i),}, i=1,2,...,13s/2].
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In addition to the blocks determined by base blocks above, let also B contain:

)} (a) all triples of the parallel classes P}, P,..., PL,,,
(b) all triples of the parallel classes P2, P2,..., P2, ,.

Clearly, each of the pairs of elements occurs in exactly two triples of B. The
2-PCs are obtained by taking unions of a PC of (4)(a) with an orbit of (3) (there
are 3s such orbits), and unions of a PC of (4)(b) with an orbit of (2). This yields a
total of 65 + 1 2-PCs.

Again, no 2-PC contains repeated triples.

LEMMA 2.3. A P(v, m,) exists for all v = 3 (mod 6).

PROOF. Let v = 3(mod6), v = 65 + 3,and assume s > 6. LetV = Z,_ ., X Z;,
and let the base blocks of B be as follows (the base blocks are to be developed
mod (2s + 1,3)):

(1) {(0,0), (2,0), (8,0), (12,0)},
(2) (a) {(0,0),(0,1), (0,2)} taken twice,

(b) {(0,0), (1,1), (4,2)}, {(0,0), (2,1), (6,2)}
{(5,0),(3,1), (8,2)}, {(6,0), (5.1). (0,2)},

(3) {(0,1)’(4’—2,1),(2’— 1,0)} forr =1,2,3 once and
{(0,2), (4r,2), (2r,0)} forr =4,5,...,s5/2 twice.

When s is odd, take also

(4) {(0,1), (25,1), (5,0)}, {(0,2), (25,2), (5,0)}.

Let us verify that each difference, pure or mixed, occurs exactly twice among
the differences in the base blocks. The pure difference 1 mod 3 occurs in triples of
(2)(a). As for the pure differences mod2s + 1, the differences 2, 4, 6, 8, 10, 12
occur once in (1) and once in (3). The remaining pure differences occur in the
triples of (3) (and (4) if s is odd). The mixed differences +1, +2, +3, +4, +5,
+ 6 occur once in triples of (2)(b), and once in triples of (3). The remaining mixed
differences all occur in triples of (3) (and (4) if s is odd).

The blocks of (2) give 7 2-PCs, while the blocks of (3) and (4) together give
35 — 9 2-PCs, for a total of 3s — 2 2-PCs. Clearly, by combining the orbits
properly, we can avoid repeated triples in the 2-PCs.

Finally, we consider the cases whewre 1 <s < 6. For s=1, take a
BIBD(10, 4, 2) and delete a point; s = 2 take a S;(2, 4, 16), delete a point and add
the blocks of a Kirkman triple system of order 15, that is, KTS(15); s = 3, take a
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S1(2, 4, 25), delete four points (one block) and add a KTS(21). For the case s = 4,
take a KTS(27) plus develop the following base blocks in Z, X Z;: {0y, 3y, 1,5, },
{04,31,4:}, {0g,3,,1,} and {0,,0,,0,} (twice). For the last case s = 5, take these
as base blocks in Z;; X Z;: {0g,1,4¢,60}, {0, 51,61}, {09>41,7:}{09,25,9,},
{00,15,10,}, {0,31,0,}, {05,0,,0, ).

3. Recursions for twofold block designs with k& = 4

Consider a BIBD(v, k,A), say, (V, B); it is said to be embedded in a
BIBD(w, k, A), say (W,C)if V€ Wand BC C.

THEOREM 3.1. Let (V, B) bea BIBD(v,4,2). Then forw = 3v + a, a € {1,4,7},
there exists a BIBD(w, 4,2 (W, C) such that (V, B) is embedded in (W, C).

PROOF. This is well-known for a = 1 (see, for example [4]). Let u = w — v, and
let V = {a,,...,a,}; recall that v = 1 (mod 3), as this is a necessary condition
for the existence of a BIBD(v,4,2). If a = 4 then u = 2v + 4 = 0 (mod 6), and
by Lemmas 2.1, 2.2 there exists a PRP 2 — (u; 3,4;2; v). If a = 7, then u = 2v
+ 7 = 3 (mod6), and by Lemma 2.3 there exists a PRP 2 — (u;3,4;2,v). In
either case, let P, P,,..., P, be the 2-PCs of this PRP, and let Q be the set of
blocks of size 4. From the set of blocks D = {{a,,x,y,2z}, {Xx,y,z} € P,
i€{l,...,v}}, and put C=B U DU Q. Then (W,C) is a BIBD(w, 4,2) con-
taining (V, B).

One of the consequences of Theorem 3.1 is an easy proof by induction of the
existence of BIBD(v,4,2)s for all v =1 (mod3) (which, of course, has been
proved by Hanani in the early sixties and is well-known; see, for example [4]). In
the next section, we consider the existence of these designs with some additional
properties.

4. The existence of twofold block designs with
k = 4 having additional properties

It is possible for the set of blocks of a BIBD(V, B) with A = 2 to contain two
blocks b, b’ which are identical as subsets of V; in this case, b is said to be a

repeated block. We can prove easily the following (see [9]).

THEOREM 4.1. A BIBD(v, 4,2) with no repeated blocks exists if and only if v = 1
(mod 3), v > 4.
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PROOF. The necessity is obvious. Neither the unique BIBD(7, 4, 2) nor any of
the three nonisomorphic BIBD(10, 4, 2)s has a repeated block. An example of a
BIBD(13,4,2) and of a BIBD(16, 4, 2) without repeated blocks is given in [6] and
[2], respectively. If V' =Z, and B={{0,1,7,11}, {0,2,3,14}, {0,4,6,9}
mod 19} then (¥, B) is a BIBD(19, 4, 2) without repeated blocks. Let now v > 22,
v = 1 (mod 3) and assume a BIBD(u, 4,2) with no repeated blocks exists for all
u<v.Putu=(v—a)/3wherea=1if v = 4(mod9), a = 4if v = 7 (mod 9),
and « = 7 if v = 1 (mod9). In either case, u = 1 (mod 3), ¥ > 7, and there exists
a BIBD(u,4,2) with no repeated blocks. By Lemma 2.1-2.3, there exists a
BIBD(v, 4, 2) with no repeated blocks.

If (V, B) is a BIBD(v, k, A) such that B = B, U B, where (V, B,), (V, B,) is a
BIBD(v, k, X'), and a BIBD(v, k, X”’), respectively, with 1 < X, X’ <A then
(V, B) is said to be decomposable (sometimes also called reducible). Otherwise, it
is indecomposable.

The existence of indecomposable BIBD(v, 4,2)s for all v =1 (mod3), v > 7,
was proved in [1, 2]; see also [8]. The constructions of Section 2 enable us to give a
simple proof of this, even if we require, in addition, that the designs have no
repeated blocks (see [9]).

THEOREM 4.2. An indecomposable BIBD(v, 4,2) with no repeated blocks exists if
andonly ifv = 1 (mod 3), v > 4.

Proor. A BIBD(v,4,2) with v = 7, 10, or 19 is necessarily indecomposable.
Example of an indecomposable BIBD(v, 4, 2) with v = 13, 16 having no repeated
blocks can be ofund in [6] and [2], respectively. The rest of the proof follows that
of Theorem 4.1.

In a similar manner, one could prove the existence of BIBD(v, 4,2)s with any
property that is preserved by embedding, provided the existence of designs with
this property can be proved for sufficiently many small orders by direct means.

On the other hand, the methods of this paper are quite incapable of settling the
following problem which is—to the best of our knowledge—still open:

Does there exist for every order v = 1 (mod 3), v > 7, a BIBD(v, 4, 2) with no
nontrivial sub-BIBD(u,4,2)? Designs with this property are sometimes called
simple; by a trivial subsystem here is meant a subsystem of order 1 or v.

This last question may be asked also for BIBD(v, 4, 1)s, that is, when A = 1. In
fact, the reader may well ask whether constructions similar to those of Sections 2,
3 cannot be obtained for A = 1?7 As a matter of fact, recently A. E. Brouwer and
L. D. Andersen [3] have shown that a PRP 2 — (v;3,4;1, m), where v =3
(mod6), and m € {(v — 13)/2,(v — 25)/2} exists provided v is sufficiently
large. But the spectrum for these PRPs remains undetermined.

https://doi.org/10.1017/51446788700031372 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031372

70

(1]
(2]
(3]
(4]
(5]
(6]
(7
(8]
[9

K. T. Phelps and A. Rosa (7]

References

E. J. Billington, ‘Construction of some irreducible designs’, Combinat. Math. IX, pp. 182-196
(Lecture Notes in Math. 952, Springer, 1981).

E. J. Billington, ‘Further constructions of irreducible designs’, Congr. Numer. 35 (1982), 77-89.

A. E. Brouwer and L. D. Andersen, personal communication.

H. Hanani, ‘Balanced incomplete block designs and related designs’, Discrete Math. 11 (1975),
255-369.

C. Huang, E. Mendelsohn and A. Rosa, ‘On partially resolvable r-partitions’, Ann. Discrete
Math. 12 (1982), 169-183.

R. Mathon and A. Rosa, ‘Some results on the existence and enumeration of BIBDs’, Dept. of
Math. and Stat., McMaster University, Mathematics Report 125-Dec-85.

D. K. Ray-Chaudhuri and R. M. Wilson, ‘Solution of Kirkman’s schoolgirl problem’, Combina-
torics, pp. 187-203 (Proc. Sympos. Pure Math., 19, Amer. Math. Soc. 1971).

A. P. Street, ‘A survey of irreducible balanced incomplete block designs’, Ars Combin. 19A
(1985), 43-60.

C. C. Lindner and A. P. Street, ‘Disjoint designs and irreducible designs without repeated
blocks’, Ars Combin. 21A (1986), 229-236.

School of Mathematics Department of Mathematics and Statistics
Georgia Institute of Technology McMaster University
Atlanta, Georgia 30332 Hamilton, Ontario
US.A. Canada L8S 4K1

https://doi.org/10.1017/51446788700031372 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031372

