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Abstract
We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with
boundary. The input for the invariant is a contact manifold (𝑀, 𝜉,F ) whose convex boundary is equipped with a
signed singular foliation F closely related to the characteristic foliation. Such a manifold admits a family of foliated
open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of
foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes
𝑐𝐷 and 𝑐𝐴 in the corresponding bordered sutured modules.

Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by
gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds.
We also consider a natural map associated to forgetting the foliation F in favor of the dividing set and show that it
maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić.
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1. Introduction

A great deal of interesting and beautiful mathematics has been devoted to understanding the fundamental
dichotomy in three-dimensional contact geometry: the subdivision of contact structures into tight and
overtwisted. Overtwisted structures are determined by homotopical data and thus may be addressed by
tools from algebraic topology. In contrast, tight contact structures do not satisfy an h-principle, and
many existence and classification questions for tight contact structures are still open. Tight structures
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are nevertheless extremely natural objects of study, as they include the contact structures arising as the
boundary of a complex or symplectic manifold.

Many of the recent advances in classifying tight contact structures were made possible by the advent
of Heegaard Floer homology in the early 2000s and the subsequent development of Floer-theoretic
contact invariants. Using open books, Ozsváth and Szabó defined an invariant of closed contact three-
manifolds [OS05]. Given a closed, contact manifold (𝑀, 𝜉), this invariant is a class 𝑐(𝜉) in the Heegaard
Floer homology ĤF(−𝑀). In [HKM09b], Honda, Kazez and Matić gave an alternative description of
𝑐(𝜉), again using open books. This ‘contact class’ was used to show that knot Floer homology detects
both genus [OS04] and fiberedness [Ghi08, Ni07]. It gives information about overtwistedness: If 𝜉 is
overtwisted, then 𝑐(𝜉) = 0, whereas if 𝜉 is Stein fillable, then 𝑐(𝜉) ≠ 0 [OS05]. The contact class
was also used to distinguish notions of fillability: Ghiggini used it to construct examples of strongly
symplectically fillable contact three-manifolds which do not have Stein fillings [Ghi05].

Contact manifolds with convex boundary can be partitioned by the equivalence class of the dividing set
on their boundary. Given a contact manifold M with convex boundary and dividing set Γ, Honda, Kazez
and Matić used partial open books to define an invariant 𝑐(𝑀, Γ, 𝜉) of the equivalence class in the sutured
Floer homology SFH(−𝑀,−Γ) [HKM09a]. They also defined a gluing map for sutured Floer homology
that respects the contact invariants [HKM08]. This map requires the Heegaard diagrams to satisfy a
number of technical conditions, collectively referred to as ‘contact-compatibility.’ Establishing contact-
compatibility for specific examples is difficult, so in practice, computations with the gluing map are
rarely possible. As a result, most applications of this gluing map have relied only on its formal properties.

Gluing techniques – and Heegaard Floer theory more broadly – benefited soon after from the
introduction of bordered Floer homology, a new theory for manifolds with boundary defined by Lipshitz,
Ozsváth and Thurston in [LOT18]. Although bordered Floer theory has produced a wide variety of new
results, (e.g., [HRRW20, Han17, Lev12, Lev16, Hom13, Pet13, AL19]), applications to contact topology
remain mostly uncharted territory.

To a three-manifold with parametrized boundary, bordered Floer homology associates anA∞-module
(or type A structure) or, equivalently, a type D structure over a differential graded algebra associated
to the parametrization. When manifolds are glued along compatible parameterized boundaries, the
derived tensor product of their bordered invariants recovers the Heegaard Floer homology of the closed
three-manifold, up to homotopy equivalence. Zarev introduced a generalization, bordered sutured Floer
homology, which is an invariant of three-manifolds whose boundary is ‘part sutured, part parametrized’
[Zar09]. Bordered sutured Floer homology similarly associates to a bordered sutured manifold a type
A structure and a type D structure such that taking derived tensor products recovers the sutured Floer
homology of the manifold formed by gluing along the parameterized parts of the boundary.

1.1. Results

In this paper, we define a contact invariant in the bordered sutured Heegaard Floer homology of a contact
three-manifold with boundary. We consider contact manifolds whose convex boundary is equipped with
a certain type of singular foliation. As shown in [LV20], to any such contact manifold with foliated
boundary, one may associate a topological decomposition known as a foliated open book. Intuitively,
foliated open books are constructed by cutting ordinary open books along separating convex surfaces.
The pages and binding of the resulting pair of foliated open books are simply the restrictions of the pages
and binding of the original open book to the corresponding piece. The intersection of the cutting surface
with the pages determines an ordered signed singular foliation, here called the boundary foliation. This
induced ‘open book foliation’ is closely related to the characteristic foliation of a supported contact
structure and has been extensively studied in the work of Ito–Kawamuro, for example, [IK14a, IK14b].
Under mild technical hypotheses, the topological data of the resulting foliated open book uniquely
determine the restriction of the original contact structure to each piece, up to isotopy.

We associate to a foliated contact three-manifold (𝑀, 𝜉,F) a bordered sutured manifold (𝑀, Γ,Z).
We then show that the data of a sorted foliated open book for (𝑀, 𝜉,F) give rise to an admissible
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bordered sutured Heegaard diagram for the manifold (𝑀, Γ,Z), and so via dualizing, an admissible
bordered sutured Heegaard diagram for (−𝑀, Γ,Z), which we will callH. Moreover, we define preferred
generators x𝐷 and x𝐴 in B̂SD(H) and B̂SA(H), respectively. The structures B̂SD(H) and B̂SA(H) give
invariants of (−𝑀, Γ,Z) up to homotopy equivalence. (Some further algebraic properties of these
elements may be found in Proposition 3.5.) We further define an equivalence between elements of
two homotopy equivalent type A structures or between elements of two homotopy equivalent type D
structures in Section 2.2.2. Our main result is that these preferred generators are invariants of the contact
structure up to this equivalence.
Theorem 1. Let (𝑀, 𝜉,F) be a foliated contact three-manifold with associated bordered sutured man-
ifold (𝑀, Γ,Z). Given admissible bordered sutured Heegaard diagrams H and H′ for (−𝑀, Γ,Z) with
preferred generators x𝐴 ∈ B̂SA(H) and x′

𝐴 ∈ B̂SA(H′), there is a homotopy equivalence between
B̂SA(H) and B̂SA(H′) induced by Heegaard moves, under which x𝐴 and x′

𝐴 are equivalent; an analo-
gous statement holds for the preferred generators x𝐷 ∈ B̂SD(H) and x′

𝐷 ∈ B̂SD(H′). We refer to these
type A and type D equivalence classes as 𝑐𝐴(𝑀, 𝜉,F) and 𝑐𝐷 (𝑀, 𝜉,F), respectively.

More precisely, we show that varying the choices made in our construction induces homotopy
equivalences between the bordered sutured Floer homologies associated to the resulting Heegaard
diagrams; these maps carry the preferred generator of one module to the preferred generator of the other
module.

An ordered signed singular foliation on the convex boundary of a contact manifold determines a
dividing set, but such foliations also induce a finer partition on the set of contact manifolds with convex
boundary. These additional data improve the compatibility with cut-and-paste operations, as the ordered
signed singular foliation carries data about both the contact structure and the foliated open book near
the boundary. Given a pair of foliated contact three-manifolds (𝑀𝐿 , 𝜉𝐿 ,F𝐿) and (𝑀𝑅, 𝜉𝑅,F𝑅) whose
foliated boundaries agree in an appropriate sense, there is a canonical perturbation of the contact
structure near the boundary so that the pieces glue to a closed contact three-manifold (𝑀, 𝜉). In fact,
the foliated open books supporting these manifolds also glue to an open book for the resulting closed
contact manifold; see Section 2.3.6. Because our bordered sutured contact invariant is sensitive not only
to the dividing set of a convex boundary but also to the singular foliation, it behaves nicely with respect
to these cut-and-paste operations.

We prove that the contact invariants of the two foliated contact three-manifolds pair to recover the
contact invariant of (𝑀, 𝜉).
Theorem 2. The tensor product 𝑐𝐷 (𝑀𝐿 , 𝜉𝐿 ,F𝐿) � 𝑐𝐴(𝑀

𝑅, 𝜉𝑅,F𝑅) recovers the contact invariant
𝑐(𝑀, 𝜉).

A more precise version of this statement on the level of generators is given in Theorem 5.1.
One may also choose to forget the singular foliation and retain only the data of the dividing set on the

convex boundary; this is captured by a natural map from a foliated open book to a partial open book. On
the level of Heegaard diagrams, this corresponds to converting a bordered sutured Heegaard diagram to
a sutured Heegaard diagram; the procedure to do so was described by Zarev in [Zar10] and induces an
isomorphism

SFH(−𝑀,−Γ(F)) � 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
· 𝜄+,

where 𝜄+ is an idempotent naturally determined by the foliation data. We show that under Zarev’s
isomorphism the bordered sutured invariant associated to a foliated open book maps to the contact
invariant in the sutured Floer homology associated to the corresponding partial open book.
Theorem 3. Under the above isomorphism, 𝑐𝐴(𝑀, 𝜉,F) · 𝜄+ is identified with the contact invariant
EH(𝑀, Γ(F), 𝜉) from [HKM09a].

In particular, 𝐸𝐻 (𝑀, Γ(F), 𝜉) vanishes in SFH(−𝑀,−Γ(F)) if and only if 𝑐𝐴(𝑀, 𝜉,F) · 𝜄+ is zero
in 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
· 𝜄+. Since 𝑐𝐴(𝑀, 𝜉,F) = 𝑐𝐴(𝑀, 𝜉,F) · 𝜄+ and the differential of B̂SA(−𝑀, Γ,Z)
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respects the splitting by the idempotents, the class 𝑐𝐴(𝑀, 𝜉,F) · 𝜄+ being zero in 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
·

𝜄+ is equivalent to the class 𝑐𝐴(𝑀, 𝜉,F) being zero in 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
, which together with

[GHVHM07, Theorem 1] and [HKM09a, Corollary 4.3 and Theorem 4.9] implies the following two
corollaries.

Corollary 4. If (𝑀, 𝜉,F) is overtwisted or has positive 2𝜋-torsion, then the class 𝑐𝐴(𝑀, 𝜉,F) is zero
in 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
.

Corollary 5. If 𝑐𝐴(𝑀, 𝜉,F) is zero in 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
, then (𝑀, 𝜉,F) does not embed into any

closed contact manifold (𝑁, 𝜉 ′) with nonvanishing contact invariant.

1.2. Further directions

The results in this paper establish a framework for studying foliated open books via Heegaard Floer
homology in concert with other combinatorial representations of contact manifolds. This is an essential
first step towards developing cut-and-paste technology for the Heegaard Floer contact invariant, and we
briefly note further avenues for developing this theory.

The defining data of a contact manifold with foliated boundary includes a choice of a distinguished
leaf in the foliation, which plays an essential role in constructing the associated Heegaard diagram. It is
natural to ask how the invariant depends on this choice; accordingly, this dependence is the subject of
planned future work. We anticipate that the foliation on 𝜕𝑀 may be reparameterized by the addition of
a suitable foliated open book for 𝜕𝑀 × 𝐼. This is a special case of the more general process of gluing a
boundary-parallel layer onto 𝜕𝑀 . We hope to understand the maps induced by such gluings in general
and to compare our gluing operation to the sutured Floer homology gluing map from [HKM09a].

Theorems 1 and 2 are phrased terms of equivalences of elements, rather than elements. This subtlety
arises because as of this writing there is not a naturality result for the bordered variants of Heegaard Floer
homology; hence, the type D bordered sutured invariant associated to (𝑀, Γ,Z) is the type D homotopy
equivalence class of B̂SD(𝑀, Γ,Z), as defined in Section 2.2.2. An analogue of Juhász, Thurston and
Zemke’s proof of the naturality of the Heegaard Floer homology of closed three-manifolds [JTZ21] for
bordered sutured Floer homology would immediately upgrade our invariants.

Organization

Section 2 reviews some necessary background in contact geometry and Heegaard Floer homology.
Section 2.1 discusses assumed background in contact geometry while Section 2.2 contains a rapid
review of Heegaard Floer homology and bordered sutured Heegaard Floer homology; in particular,
Section 2.2.2 introduces a notion of equivalence between elements in bordered sutured Heegaard Floer
homology under homotopy equivalences of type A and type D structures. Finally, Section 2.3 summa-
rizes the relevant material from [LV20] concerning foliated open books. In Section 3, we associate a
bordered sutured manifold (𝑀, Γ,Z) to a foliated contact three-manifold. We then show how the data
of a sorted foliated open book give rise to an admissible bordered Heegaard diagram H for (−𝑀, Γ,Z)

and we identify preferred generators x𝐴 and x𝐷 in the associated bordered Floer homology modules
B̂SA(H) and B̂SD(H). Section 4 proves Theorem 1, namely invariance of x𝐴 and x𝐷 up to the choices
made in their definitions. Section 5 proves Theorem 2, showing that we recover the ordinary contact
invariants after gluing. Finally, Section 6 discusses the relationship of our invariants to the invariant in
sutured Floer homology, proving Theorem 3.

2. Preliminaries

This section provides the background required to read the rest of the paper. We provide references for
various classical objects in contact geometry in Section 2.1 and Heegaard Floer theory in Section 2.2,
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along with more in-depth summaries of partial open books and the contact invariants in various flavors
of Floer homology. Because we are concerned with the relationships between various theories, we pay
particular attention to the conventions for bordered, sutured, and bordered sutured versions. Finally,
Section 2.3 gives an efficient introduction to foliated open books.

2.1. Assumed background in contact geometry

Throughout this article, we assume familiarity with many standard definitions in three-dimensional
contact geometry, including contact structures; characteristic foliations; convex surfaces and dividing
sets; open book decompositions for closed three-manifolds, as in, for example, [Gei08] and other
standard references. Although we will introduce foliated open books carefully in Section 2.3 below, we
briefly first recall the definition of a partial open book supporting a contact structure on a manifold with
boundary.

Definition 2.1. A partial open book is a triple (𝑆, 𝑃, ℎ), where

1. S is a compact, oriented, connected surface with boundary;
2. 𝑃 = ∪𝑃𝑖 is a subsurface of S such that the surface S is obtained from 𝑆 \ 𝑃 by successively attaching

one-handles 𝑃𝑖; and
3. ℎ : 𝑃 → 𝑆 is an embedding which is the identity along 𝜕𝑃 ∩ 𝜕𝑆.

To a partial open book, we can associate a sutured manifold (𝑀, Γ), as follows. (See [HKM09a] or
[EO11] for more details.) Let 𝐻 = 𝑆 × [−1, 0] with the identification (𝑥, 𝑡) ∼ (𝑥, 𝑡 ′) for 𝑥 ∈ 𝜕𝑆 and
𝑡, 𝑡 ′ ∈ [−1, 0]. Similarly, let 𝑁 = 𝑃 × [0, 1] with the identification (𝑥, 𝑡) ∼ (𝑥, 𝑡 ′) for 𝑥 ∈ 𝜕𝑃 ∩ 𝜕𝑆
and 𝑡, 𝑡 ′ ∈ [0, 1]. Then 𝑀 = 𝐻 ∪ 𝑁 where we identify 𝑃 × {0} ⊂ 𝜕𝐻 with 𝑃 × {0} ⊂ 𝜕𝑁 and
ℎ(𝑃) × {−1} ⊂ 𝜕𝐻 with 𝑃 × {1} ⊂ 𝜕𝑁 . The suture Γ on 𝜕𝑀 can be given as the union of oriented
closed curves obtained by gluing the following arcs, modulo identifications:

Γ = 𝜕𝑆 \ 𝜕𝑃 × {0} ∪ −𝜕𝑃 \ 𝜕𝑆 × {1/2}.

Definition 2.2. A contact structure 𝜉 is compatible with the partial open book (𝑆, 𝑃, ℎ) if for the
corresponding sutured manifold (𝑀 = 𝐻 ∪ 𝑁, Γ), the following hold:

1. 𝜉 is tight on H and N;
2. 𝜕𝐻 is a convex surface in (𝑀, 𝜉) with dividing set 𝜕𝑆 × {0};
3. 𝜕𝑁 is a convex surface in (𝑀, 𝜉) with dividing set 𝜕𝑃 × {1/2}.

2.2. Heegaard Floer theories

We assume familiarity with the various Heegaard Floer theories and provide only a brief review to estab-
lish notation and review details related to the contact invariants defined in [OS05, HKM09a, HKM09b].

2.2.1. Earlier Heegaard Floer theoretic contact invariants
Using open books, Ozsváth and Szabó defined a Heegaard Floer invariant of a closed contact three-
manifold [OS05]. For a contact manifold (𝑀, 𝜉), this invariant is a class 𝑐(𝜉) in the Heegaard Floer
homology ĤF(−𝑀). In [HKM09b], Honda, Kazez and Matić gave an alternative description of 𝑐(𝜉).
Their construction again uses open books and goes roughly as follows. An open book (𝑆, ℎ) for (𝑀, 𝜉)
induces a Heegaard splitting of M into𝑈1 � 𝑆 × [0, 1/2] and𝑈2 � 𝑆 × [1/2, 1] with Heegaard surface
Σ = (𝑆 × {1/2}) ∪𝐵 −(𝑆 × {0}). Let {𝑎𝑖} be a collection of properly embedded arcs on S that cut
S into a disk. For all i, let 𝑏𝑖 be a small perturbation of 𝑎𝑖 that moves the endpoints in the positive
direction along 𝜕𝑆 so that 𝑏𝑖 intersects 𝑎𝑖 in one point. Fix a basepoint z on 𝜕𝑆 away from the thin strips
cobounded by the {𝑎𝑖} and {𝑏𝑖}. It is clear that Σ = 𝜕𝑈1 = −𝜕𝑈2 and that the 𝛼𝑖 := 𝜕 (𝑎𝑖 × [0, 1/2])
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bound compressing disks for 𝑈1 and the 𝛽𝑖 := 𝜕 (𝑏𝑖 × [1/2, 1]) bound compressing disks for 𝑈2. Thus,
(Σ,𝜶, 𝜷, 𝑧) is a Heegaard diagram for M. One can see the curves as

𝛼𝑖 = 𝑎𝑖 ∪ −𝑎𝑖 ⊂ (𝑆 × {1/2}) ∪𝐵 −(𝑆 × {0}),
𝛽𝑖 = 𝑏𝑖 ∪ −ℎ(𝑏𝑖) ⊂ (𝑆 × {1/2}) ∪𝐵 −(𝑆 × {0}).

Then 𝑐(𝜉) ∈ ĤF(−𝑀) is defined as the homotopy equivalence class of the unique generator of
ĈF(Σ, 𝜷,𝜶, 𝑧) fully supported on 𝑆 × {1/2}.

Using partial open books, Honda, Kazez and Matić then extended the above construction to define
an invariant 𝐸𝐻 (𝑀, Γ, 𝜉) of contact three-manifolds with convex boundary. In this construction, one
begins with a partial open book (𝑆, 𝑃, ℎ) for (𝑀, Γ, 𝜉), where S is built up from 𝑆 \ 𝑃 by the addition of
one-handles 𝑃𝑖 , as in Definition 2.1. The roles of 𝑈1 and 𝑈2 are now played by

(
𝑃 × [−1/2, 0]

)
∪

(
𝑆 ×

[0, 1/2]
)
/∼ and

(
𝑆× [1/2, 1]

)
∪

(
𝑃× [−1,−1/2]

)
/∼, respectively, and the curves {𝑎𝑖} are the cocores of

the one-handles 𝑃𝑖 . The rest of the construction is as above, except that the final generator supported on
𝑃 × {−1/2} defines an element in the sutured Floer homology SFH(−𝑀,−Γ). Under certain technical
conditions, the authors also defined a gluing map for sutured Floer homology that respects the contact
invariants [HKM08].

Before briefly reviewing bordered sutured Floer homology, we discuss a straightforward gener-
alization of the contact invariant to multipointed Heegaard diagrams. We begin by constructing a
Heegaard diagram analogous to the one above, except that we allow additional arcs {𝑎𝑖} that cut S
into n disks. We place a basepoint in each of the disks thus obtained. This results in a multipointed
Heegaard diagram (Σ,𝜶, 𝜷, z) for M. The unique generator x on 𝑆 × {1/2} defines an element in
H̃F(Σ, 𝜷,𝜶, z) � ĤF(−𝑀) ⊗ 𝐻∗(𝑇

𝑛−1). Here, H̃F is the homology with respect to the differential that
avoids all basepoints, and 𝐻∗(𝑇

𝑛−1) � 𝐻∗(𝑆
1)⊗(𝑛−1) is the ordinary singular homology of 𝑇𝑛−1.

An adaptation of the argument of part (5) of [BVVV13, Theorem 3.1] shows the following.

Proposition 2.3. Let (𝑆, ℎ) and (𝑆′, ℎ′) be two open book decompositions compatible with (𝑀, 𝜉).
Let {𝑎𝑖} and {𝑎′𝑖} be sets of cutting arcs that cut up S and 𝑆′ into n and 𝑛′ disks, respectively, with
𝑛 < 𝑛′. The graded isomorphism between the Heegaard Floer homologies induced by Heegaard moves,
including index 0 and 3 stabilizations,

H̃F(Σ′, 𝜷′,𝜶′, z′) ⊗ 𝐻∗(𝑇
𝑛′−𝑛) → H̃F(Σ, 𝜷,𝜶, z)

maps the homology class to [x′] ⊗ 𝜃⊗(𝑛
′−𝑛) to [x], where 𝜃 corresponds to the lower-degree generator

of 𝐻∗(𝑆
1).

This means that up to homotopy equivalence, the multipointed contact invariant is simply 𝑐(𝜉) ⊗
𝜃⊗(𝑛−1) , where n is the number of basepoints.

We will also make use of the fact that the multipointed Heegaard Floer homology for a closed
three-manifold M can be interpreted as the sutured Floer homology of M with balls removed, as
follows. Let (Σ,𝜶, 𝜷, z) be a multipointed Heegaard diagram for M with n basepoints, and for each
basepoint 𝑧 ∈ z, let 𝐷2

𝑧 be a disk neighborhood of z. Then (Σ \ ∪z𝐷
2
𝑧 ,𝜶, 𝜷) is a sutured Heegaard

diagram for 𝑀 (𝑛) = (𝑀 \ ∪𝑧∈z𝐵
3
𝑧 ,∪𝑧∈z𝜕𝐷

2
𝑧). As the two Heegaard diagrams are identical outside

the basepointed/sutured regions, the chain complex C̃F(Σ,𝜶, 𝜷, z) is isomorphic to the chain complex
SFC(Σ \∪z𝐷

2
𝑧 ,𝜶, 𝜷). Thus, we can compute the multipointed Heegaard Floer homology H̃F(Σ, 𝜷,𝜶, z)

as the sutured Floer homology SFH(Σ \ ∪z𝐷
2
𝑧 ,𝜶, 𝜷). See also [Juh06, Proposition 9.14].

2.2.2. Bordered sutured Floer homology
Lipshitz, Oszváth and Thurston refine Heegaard Floer homology to a bordered variant associated to a
three-manifold with parametrized boundary [LOT18, LOT11], and Zarev [Zar09, Zar10] further refines
the invariant to an invariant of sutured manifolds with partially parameterized boundary. We briefly
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discuss Zarev’s constructions [Zar10, Section 3]. Note that the following description is indicative, rather
than complete; for a review of the algebraic definitions involved, see [LOT18, Section 2].

Recall that an arc diagram Z = (𝑍, 𝑎, 𝑚) consists of a finite collection of oriented line segments Z,
commonly called arcs in the literature, a collection of points 𝑎 = (𝑎1, · · · , 𝑎2𝑘 ) on Z, a matching m of the
points in a into pairs and a ‘type,’ 𝛼 or 𝛽. To every arc diagram Z one associates an A∞-algebra A(Z)

generated by tuples of oriented arcs in [0, 1] ×𝑍 such that each arc connects some (0, 𝑎𝑖) to some (1, 𝑎 𝑗 )

with 𝑎 𝑗 ≥ 𝑎𝑖 , up to an equivalence relation imposed by the matching. The ground ring of idempotents
I (Z) of this algebra consists of elements 𝜄 corresponding to tuples of horizontal strands [0, 1] × {𝑎𝑘 } in
[0, 1] × 𝑍 . One further associates to Z a graph 𝐺 (Z) and a surface 𝐹 (Z). The graph is constructed by
beginning with Z and adding an edge between each pair of matched points, while 𝐹 (Z) is constructed
from 𝑍 × [0, 1] by attaching one-handles to neighborhoods of the matched points on 𝑍 × {0}.

A bordered sutured manifold (𝑀, Γ,Z) consists of the following:
◦ a three-manifold M whose boundary decomposes as a bordered part F and a sutured part T;
◦ an arc diagram Z = (𝑍, 𝑎, 𝑚) and an identification of F with 𝐹 (Z);
◦ a dividing set Γ which is a properly embedded, oriented one-manifold in T with boundary 𝜕Γ =
−𝜕 (𝑍 × { 1

2 }) so that Γ decomposes T into the union of 𝑅+(Γ) and 𝑅−(Γ) with 𝜕𝑅±(Γ) \ 𝜕𝐹 = ±Γ.
The components of the dividing set are also referred to as sutures.

A 𝛽-bordered Heegaard diagram H = (Σ,𝜶, 𝜷,Z) consists of a compact surface Σ with no closed
components; a collection of pairwise disjoint, properly embedded circles 𝜶; a collection of pairwise
disjoint, properly embedded circles 𝜷𝑐 and of properly embedded arcs 𝜷𝑎, with 𝜷 = 𝜷𝑎 ∪ 𝜷𝑐 and an
arc diagram Z of 𝛽-type, together with an embedding 𝐺 (Z) → Σ which maps Z to a subset of 𝜕Σ
and the edges of 𝐺 (Z) connecting matched points to the arcs 𝜷𝑐 . One also requires that the maps
𝜋0 (𝜕Σ \ 𝑍) → 𝜋0 (Σ \ 𝜶) and 𝜋0 (𝜕Σ \ 𝑍) → 𝜋0 (Σ \ 𝜷) be surjective. (An 𝛼-bordered diagram is
defined similarly, mutatis mutandis.) One constructs a bordered sutured manifold (𝑀, Γ,Z) from H as
follows. The three-manifold M is obtained by attaching two-handles to Σ × [0, 1] along 𝜶 × {1} and
𝜷𝑐 × {0} circles; the dividing set Γ appears as Γ = (𝜕Σ \ 𝑍) ×

{ 1
2
}
, and 𝐹 (Z) is a neighborhood of

(𝑍 × [0, 1]) ∪ (𝜷𝑎 × {0}). Another way to view (𝑀, Γ,Z) as coming from H, which fits better with
Morse theory, is to also attach ‘halves of two-handles’ along 𝜷𝑎 × {0} and see 𝐹 (Z) as 𝑍 × [0, 1]
together with the intersection of the thickened cores of the partial two-handles with 𝜕𝑀 .

Let x and y denote tuples of intersection points between the 𝜶 and 𝜷 such that each 𝛼-circle is used
exactly once, each 𝛽-circle is used exactly once, and each 𝛽-arc is used no more than once; these will
ultimately be the generators of the bordered sutured modules. We recall that the set of homology classes
𝜋2 (x, y) connecting x to y is defined as follows. We let 𝐼𝑠 = [0, 1] and 𝐼𝑡 = [−∞,∞] be intervals and
consider the relative homology group

𝐻2(Σ × 𝐼𝑠 × 𝐼𝑡 , ((𝜶 × {1}) ∪ (𝜷 × {0}) ∪ (𝑍 × 𝐼𝑠)) × 𝐼𝑡 ), (x × 𝐼𝑠 × {−∞}) ∪ (y × 𝐼𝑠 × {∞})).

The set 𝜋2 (x, y) denotes elements of this group which are sent to the fundamental class of (x×𝐼𝑠)∪(y×𝐼𝑠)
by the map which applies the boundary homomorphism and then collapses the remainder of the boundary.
Any homology class has a unique corresponding domain, that is, a linear combination of the components
of Σ \ (𝜶∪ 𝜷) obtained by projection. A domain is provincial if its boundary has no intersection with Z.

The set 𝜋2 (x, x) is the set of periodic domains. We recall that H is said to be provincially admissible
if every provincial periodic domain has both positive and negative coefficients and admissible if every
periodic domain has both positive and negative coefficients.

To a provincially admissible 𝛽-bordered Heegaard diagram H = (Σ,𝜶, 𝜷,Z) equipped with an
admissible almost complex structure, Zarev associates a left type D module B̂SD(H) over A(−Z) and
right type A module B̂SA(H) over A(Z). In both cases, the generators are tuples of intersection points
as described above.1 The type A chain homotopy equivalence class of B̂SA(H) is an invariant of the
associated bordered sutured manifold (𝑀, Γ,Z), written B̂SA(𝑀, Γ,Z). More precisely, given bordered

1We assume we are in the nondegenerate case of having a nonempty set of generators. In particular, |𝜶 | ≥ |𝜷𝑐 |.

https://doi.org/10.1017/fms.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.19


8 A. Alishahi et al.

sutured Heegaard diagrams H and H′ for (𝑀, Γ,Z), there is a sequence of Heegaard moves connecting
them as in [Zar09, Proposition 4.5], which induce a type A homotopy equivalence f from B̂SA(H) to
B̂SA(H′). This type A homotopy equivalence is a collection of maps

𝑓𝑖 : B̂SA(H) ⊗ A(Z)⊗(𝑖−1) → B̂SA(H′)

indexed by 𝑖 ≥ 1, satisfying certain conditions (see [LOT18, Section 2]). Consider x ∈ B̂SA(H) and
x′ ∈ B̂SA(H′) so that

𝑚𝑖+1(x, 𝑎1, · · · , 𝑎𝑖) = 0 and 𝑚𝑖+1(x′, 𝑎1, · · · , 𝑎𝑖) = 0

for all 𝑖 ≥ 0 and 𝑎𝑖 ∈ A(Z). We say x and x′ are equivalent if there exists a homotopy equivalence f
from B̂SA(H) to B̂SA(H′) so that 𝑓1 (x) = x′ and 𝑓𝑖+1(x, 𝑎1, . . . , 𝑎𝑖) = 0 for all 𝑖 > 0 and 𝑎𝑖 ∈ A(Z).
Similarly, there is a type D homotopy equivalence from B̂SD(H) to B̂SD(H′). If x ∈ B̂SD(H) and
x′ ∈ B̂SD(H′) are both closed elements (meaning that 𝛿1 (x) = 𝛿1(x′) = 0), we say x and x′ are
equivalent if there is a homotopy equivalence from B̂SD(H) to B̂SD(H′) that maps x to x′.

Given two bordered sutured manifolds (𝑀1, Γ1,Z) and (𝑀2, Γ2,−Z), we may glue along Z to
obtain a sutured manifold (𝑀, Γ). Given 𝛽-bordered sutured Heegaard diagrams H1 = (Σ1,𝜶1, 𝜷1,Z)

for (𝑀1, Γ1,Z) and H2 = (Σ2,𝜶2, 𝜷2,−Z) for (𝑀1, Γ1,−Z), there is a glued Heegaard diagram
H = (Σ,𝜶, 𝜷), where Σ = Σ1

⋃
𝑍 Σ2; the set 𝜶 is the union of 𝜶1 and 𝜶2 and the set 𝜷 is the union of

𝜷1 and 𝜷2, together with the circles formed by gluing the arcs in 𝜷𝑎
1 and 𝜷𝑎

2 along their endpoints on Z.
When at least one of the two diagrams is admissible, there is a gluing map

B̂SA(H1) �A(Z) B̂SD(H2) → SFC(H)

which induces a chain homotopy equivalence of vector spaces. Chain homotopy equivalences of type
A and type D modules induce chain homotopy equivalences of the box tensor product, so there is a
well-defined equivalence class of F2 vector spaces B̂SA(𝑀1, Γ1,Z) �A(Z) B̂SD(𝑀2, Γ2,−Z) and an
equivalence of chain homotopy equivalence classes of vector spaces

B̂SA(𝑀1, Γ1,Z) �A(Z) B̂SD(𝑀2, Γ2,−Z) → SFC(𝑀, Γ).

2.3. Abstract foliated open books

In this section, we provide an overview of the essential definitions and properties of foliated open books
that we will rely on in the remainder of this article. Readers are encouraged to see [LV20] for more detail.

Definition 2.4. [LV20, Definition 3.14] An abstract foliated open book is a tuple ({𝑆𝑖}
2𝑘
𝑖=0, ℎ), where 𝑆𝑖

is a surface with boundary 𝜕𝑆𝑖 = 𝐵 ∪ 𝐴𝑖 2and corners at 𝐸 = 𝐵 ∩ 𝐴𝑖 such that

1. for all i, 𝐴𝑖 is a union of intervals;
2. with the boundary orientation, each component I of 𝐴𝑖 is oriented from a corner labeled 𝑒+ = 𝑒+(𝐼) ∈

𝐸+ to a corner labeled 𝑒− = 𝑒−(𝐼) ∈ 𝐸−, and 𝐸 = 𝐸+ ∪ 𝐸−;
3. the surface 𝑆𝑖 is obtained from 𝑆𝑖−1 by either

- (add): attaching a one-handle along two points {𝑝𝑖−1, 𝑞𝑖−1} ∈ 𝐴𝑖−1, or
- (cut): cutting 𝑆𝑖−1 along a properly embedded arc 𝛾𝑖 with endpoints in 𝐴𝑖−1 and then smoothing.3

Furthermore, ℎ : 𝑆2𝑘 → 𝑆0 is a diffeomorphism between cornered surfaces that preserves B point-
wise.

We denote by 𝐻+ (resp. 𝐻−) the set of indices i for which 𝑆𝑖 is obtained from 𝑆𝑖−1 by cutting (resp.
adding) so that we have a partition [2𝑘] = 𝐻+ ∪ 𝐻−. (Here [𝑛] denotes the set {1, . . . , 𝑛}.)

2By a slight abuse of notation we denote the “constant” part of the boundary of 𝑆𝑖 by B for all i.
3The indices of 𝛾𝑖 in this paper are shifted compared to [LV20], where the cutting arcs were denoted by 𝛾𝑖−1.
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Figure 2.1. A foliated open book with 𝑘 = 2.

Figure 2.2. Left: a hyperbolic singularity. Center: a positive elliptic singularity. Right: a regular
foliation on an open set.

Note that the operations (add) and (cut) are inverses of each other. Let 𝛾 denote the cocore of a
handle attached along points p and q. Then cutting along 𝛾 cancels the handle attachment and vice versa.
We will use the following notation to describe this:

𝑆
add
−−−→
𝑝,𝑞

𝑆′ and 𝑆′ cut
−−→
𝛾

𝑆.

Example 2.5. Figure 2.1 shows a first example of a foliated open book. The complete set of labels is
shown for the indicative page 𝑆0, while the attaching spheres and cutting arcs are shown on all pages to
the right. The binding is shown in bold. The monodromy ℎ : 𝑆4 → 𝑆0 is the identity, and we have the
partition 𝐻− = {2, 4}, 𝐻+ = {1, 3}.

2.3.1. Supported contact structures
The construction of a compact manifold is natural from the data of a foliated open book: Pairs of
successive pages define cornered cobordisms. As described in more detail below, we concatenate these
to form a manifold with boundary and collapse the resulting components of 𝐵× 𝐼 to circles and intervals
again labeled B. The final page glues to the initial page via h. The resulting manifold M associated
to the foliated open book ({𝑆𝑖}

2𝑘
𝑖=0, ℎ) retains partial information about the sequence of cuts and adds

in the abstract data. This information is encoded in the form of boundary decorations on 𝜕𝑀 , and we
introduce the kind of foliation we will consider before explaining how it arises.

Definition 2.6. A signed singular foliation is an equivalence class of smooth vector fields (up to
multiplication by smooth positive functions) that vanish at only finitely many isolated points, called
singular points. The complement of the singular points has an open cover such that in each ball, the
integral curves of the vector field are a product of oriented intervals, while elliptic and four-pronged
hyperbolic singularities patch these charts together. Elliptic singularities may be classified as positive
(sources) or negative (sinks), and the hyperbolic singularities have signs determined by input external
to the defining vector field.

See Figure 2.2 for local models of the integral curves.
As is standard, leaves that enter (or exit) the hyperbolic singularities are called stable (or unstable)

separatrices.
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Figure 2.3. The elementary cobordism associated to cutting 𝑆𝑖−1 along 𝛾𝑖 , shown before collapsing
𝐵 × 𝐼.

Each elliptic point e induces a cyclic order on the subset of hyperbolic points with separatrices
terminating at e. If e is positive (respectively, negative), the order increases as the separatrices are
encountered in a counterclockwise (clockwise) path around e.

Definition 2.7. A signed singular foliation is ordered if there is a cyclic order on the set of all hyperbolic
points which is compatible with the cyclic orders associated to each of its elliptic points.

Beginning with an abstract foliated open book, we now build a manifold whose boundary is naturally
equipped with an ordered signed singular foliation. Each pair of successive pages defines an elementary
cobordism 𝑀𝑖 from 𝑆𝑖−1 to 𝑆𝑖 with vertical boundary (𝐵 × 𝐼) ∪ 𝑉𝑖 , where 𝑉𝑖 is the union of a single
saddle and of the collection of products 𝐴𝑖−1 × 𝐼 for any components 𝐴𝑖−1 that are left unchanged.
More specifically, the saddle connects either the components of 𝐴𝑖−1 containing the endpoints of 𝛾𝑖 or
the component(s) containing 𝑝𝑖−1 and 𝑞𝑖−1 with the obtained component(s) of 𝐴𝑖 that have the same
endpoints. See Figure 2.3.

Concatenating these 𝑀𝑖 and gluing the final 𝑆2𝑘 to the initial 𝑆0 via h yields a manifold with boundary
(𝐵×𝑆1) ∪𝑉 , where V is the (circular) union of the𝑉𝑖 . The singular foliation on V has 2𝑘 singular points
associated to the transitions between topological types of the pages, while the regular leaves may be
identified with curves of the form 𝐴𝑖 × {𝑡}. If 𝑆𝑖−1

add
−−−→ 𝑆𝑖 , then the corresponding hyperbolic point ℎ𝑖

is negative; otherwise, it is positive. We denote the set of hyperbolic points with respect to this partition
𝐻 = 𝐻+ ∪ 𝐻−. The signs match the partition of [2𝑘] introduced after Definition 2.4. Collapsing the
components 𝐵 × 𝑆1 to a single copy of B yields a manifold with foliated boundary (𝑀, 𝜕𝑀,F). (See
Definition 2.9, below, for a precise definition of this term.) Each endpoint of B labeled 𝑒+ becomes a
positive elliptic point of the foliation, which we again denote by 𝑒+; likewise, an endpoint 𝑒− becomes
a negative elliptic point 𝑒−.

Example 2.8. We return to the foliated open book introduced in the first example. The associated smooth
manifold is the solid torus shown in Figure 2.4. The images of 𝐴1 and 𝐴2 are shown in green and blue,
respectively, on both the manifold on the left and in the associated boundary foliation on the right.

In order to define the compatibility between contact structures and foliated open books, we examine
the boundary foliation F more closely. To any smooth manifold constructed as above, we may associate
an 𝑆1-valued Morse function 𝜋 : 𝑀 \ 𝐵 → 𝑆1 whose level sets are the pages of the open book and
which restricts to the boundary as an 𝑆1-valued Morse function �̃� := 𝜋 |𝜕𝑀 : 𝜕𝑀 \ 𝐸 → 𝑆1 with the
same critical points as 𝜋. The function 𝜋 has only index 1 and 2 critical points, and all of these are index 1
critical points for �̃�. The index with respect to 𝜋 is visible in the sign of these hyperbolic points: index 2
critical points of 𝜋 give positive hyperbolic points of the foliation, while index 1 critical points of 𝜋 give
negative hyperbolic points of the foliation. Heuristically, this means that the interesting features of 𝜋
may all be seen from the foliation on the boundary. One may build a signed singular foliation simply by
patching together the local models of Figure 2.2, but in the context of this paper we will only encounter
ordered signed singular foliations; equivalently, these are signed singular foliations that can be induced
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Figure 2.4. The smooth manifold (a solid torus) associated to the foliated open book from Figure 2.1
together with the foliation F on 𝜕𝑀 .

by an 𝑆1-valued Morse function. We therefore consider the map �̃� to be an essential part of the data and
we write F = (�̃�, 𝐻 = 𝐻− ∪ 𝐻+, 𝐸 = 𝐸− ∪ 𝐸+). We may also assume that 0 is a regular value of �̃�, and
we further require that �̃� = ±𝜙 on an (𝑟, 𝜙)-disk neighborhood of each elliptic point 𝑒 ∈ 𝐸 , where the
sign depends on the sign of the elliptic point. Here, (𝑟, 𝜙) is the standard polar coordinate system on 𝐷2.
By construction, the foliation on a manifold constructed from an abstract foliated open book has only
elliptic and four-pronged hyperbolic singularities, with signs inherited from the partitions of E and H.

Definition 2.9. A manifold with foliated boundary is a compact oriented three-manifold equipped with
an ordered signed singular foliation F = (�̃�, 𝐻 = 𝐻− ∪ 𝐻+, 𝐸 = 𝐸− ∪ 𝐸+) on its boundary. We denote
this collection of data by (𝑀, 𝜕𝑀,F).

We recall that these data include the 𝑆1-valued Morse function 𝜋, and we require that a diffeomorphism
𝑓 : (𝑀1, 𝜕𝑀1,F1) → (𝑀2, 𝜕𝑀2,F2) between manifolds with foliated boundary must satisfy �̃�2 ◦

𝑓 = �̃�1.
We have seen that an abstract foliated open book gives rise to a diffeomorphism class of manifolds

with foliated boundary; we say a manifold with foliated boundary is compatible with ({𝑆𝑖}, ℎ) if it is
diffeomorphic to an output of this construction. A fixed manifold with foliated boundary will admit
many different functions 𝜋 extending the Morse function �̃� on the boundary, but compatibility identifies
an equivalence class of such functions whose level sets are diffeomorphic to the pages {𝑆𝑖}.

Definition 2.10. Suppose that F = (�̃�, 𝐻 = 𝐻− ∪ 𝐻+, 𝐸 = 𝐸− ∪ 𝐸+) is a signed singular foliation with
no 𝑆1 leaves. We define 𝑅+(F) to be a closed neighborhood of the union of the stable separatrices of
hyperbolic points in 𝐻+, and let 𝑅−(F) = 𝑀 \ 𝑅+(F). The dividing curve Γ(F) of F is 𝜕𝑅+(F) =
−𝜕𝑅−(F).

Note that the serifed symbol Γ used here is distinct from the sans-serif symbol Γ introduced in Section
2.2.2 as part of the defining data of a bordered sutured manifold. The above construction of Γ(F) follows
the construction of Giroux [Gir00] for dividing curves of characteristic foliations of convex surfaces
and in our case too Γ(F) indeed divides F : Γ(F) is positively transverse to the leaves of F and it
separates 𝜕𝑀 \ Γ(F) into two parts, one of which contains all the positive singular points, while the
other part contains all the negative singular points.4 These properties in fact specify Γ(F) up to isotopy
transverse to F , and we will often work with its equivalence class, only specifying the representative

4Readers concerned that we have not addressed a third condition for dividing curves, regarding the divergence of the foliation,
are referred to Lemma 2.6 of [LV20].
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Figure 2.5. Left: A foliation on 𝑆2 with four elliptic points and two hyperbolic points. Right: A foliation
on 𝑆2 with two elliptic points. The dividing set for each foliation is a circle.

when needed. The choice of the representative then changes 𝑅+(F) and 𝑅−(F) accordingly, while still
preserving the condition that Γ(F) = 𝜕𝑅+(F) = −𝜕𝑅−(F). Note that distinct foliations on 𝜕𝑀 may
induce isotopic dividing sets; see Figure 2.5.

Definition 2.11. Two ordered signed singular foliations F1 and F2 on a surface Σ are strongly topolog-
ically conjugate if there is an isotopy taking F1 to F2 which respects the cyclic orders on the hyperbolic
points.

The term ‘topological’ refers to the fact that the above isotopy may not be smooth. In fact, in the next
definition, the isotopy cannot be chosen to be smooth.

Definition 2.12. [LV20, Definition 3.8, 3.10] A contact structure 𝜉0 on a manifold with foliated boundary
(𝑀, 𝜕𝑀,F) is strictly supported by the abstract foliated open book ({𝑆𝑖}, ℎ) if there is a diffeomorphism
𝑓 : (𝑀 ′, 𝜕𝑀 ′,F ′) → (𝑀, 𝜕𝑀,F), where (𝑀 ′, 𝜕𝑀 ′,F ′) is a manifold constructed from ({𝑆𝑖}, ℎ) as
above such that the pullback 𝑓 ∗𝜉 is the kernel of some contact one-form 𝛼 on 𝑀 ′ satisfying the following
conditions:

1. 𝛼(𝑇𝐵) > 0;
2. for all t, 𝑑𝛼 |𝜋−1 (𝑡) is an area form; and
3. for each pair of consecutive hyperbolic points at times 𝑡1 and 𝑡2, there is a time 𝑡∗ such that 𝑡1 < 𝑡∗ < 𝑡2

with the property that the regular leaf �̃�−1(𝑡∗) of F is Legendrian.

A contact structure 𝜉1 is supported by ({𝑆𝑖}, ℎ) if there exists a path of contact structures 𝜉𝑡 such that
𝜉0 is strictly supported by ({𝑆𝑖}, ℎ) and for all t, the characteristic foliation F𝜉𝑡 is strongly topologically
conjugate to the characteristic foliation F𝜉0 .

Definition 2.13. A foliated contact three-manifold (𝑀, 𝜉,F) is a manifold with foliated boundary
together with a contact structure 𝜉 on M such that F is strongly topologically conjugate to F𝜉 .

Theorem 2.14. [LV20, Theorems 3.12, 7.1, 7.2] Any foliated open book with circle-free boundary
foliation supports a unique isotopy class of contact structures, and any foliated contact three-manifold
(𝑀, 𝜉,F) admits a supporting foliated open book.

Remark 2.15. Because the signed singular foliation F data include a function �̃�, a foliated contact
three-manifold has a distinguished 𝑡 = 0 leaf, which we always assume to be regular.

Distinct foliations may induce isotopic dividing sets, as illustrated in the following example.
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Example 2.16. Let (𝐵3, 𝜉1,F1) and (𝐵3, 𝜉2,F2) be two foliated contact three-balls with 𝜉1 and 𝜉2 tight,
and with the foliations F1 and F2 on the boundaries as in Figure 2.5. The two three-balls are equivalent
in the sense that there is a contact embedding of one into the other with the property that the image
of the embedded boundary is convexly isotopic to the boundary of the target manifold. This notion is
an equivalence relation on contact manifolds with boundary, yet the given balls are distinct as foliated
contact manifolds.

2.3.2. Stabilization
Although each foliated open book supports a unique isotopy class of contact structures, there are many
foliated open books which support the same class. Next, we define an operation which changes a foliated
open book while preserving the contactomorphism class of the associated contact manifold.
Definition 2.17. Let 𝛾 ⊂ 𝑆0 be a properly embedded arc with 𝜕𝛾 ⊂ 𝐵. The stabilization of ({𝑆𝑖}, ℎ)
along𝛾 is the foliated open book ({𝑆′𝑖}, ℎ

′) defined as follows:
◦ 𝑆′𝑖 = 𝑆𝑖 ∪ 𝐻, where H is a one-handle attached along 𝜕𝛾; and
◦ ℎ′ = 𝜏 ◦ ℎ, where 𝜏 is a positive Dehn twist along the circle formed by 𝛾 and the core of H. (Here, ℎ

denotes the extension of h to H by the identity.)
In order to define stabilization along some arc in a page besides 𝑆0, we first describe an operation on

foliated open books which preserves the contactomorphism type of the associated manifold.
Definition 2.18. [LV20, Definition 3.16] The 1-shift of an abstract foliated open book ({𝑆𝑖}

2𝑘
𝑖=0, ℎ) is

the foliated open book

({𝑆𝑖 [1]}2𝑘
𝑖=0, ℎ[1]) = ({𝑆1, 𝑆2, . . . , 𝑆2𝑘 , 𝑆

′
1}, ℎ

′),

where

- if 𝑆0
cut
−−→
𝛾1

𝑆1, then 𝑆′1 is defined by the relation 𝑆2𝑘
cut

−−−−−−→
ℎ−1 (𝛾1)

𝑆′1 and ℎ′ is the restriction of h to 𝑆′1;

- if 𝑆0
add

−−−−→
𝑝0 ,𝑞0

𝑆1, then 𝑆′1 is defined by the relation 𝑆2𝑘
add

−−−−−−−−−−−−−→
ℎ−1 (𝑝0) ,ℎ−1 (𝑞0)

𝑆′1 and ℎ′ is h extended by the

identity on the added one-handle.
An r-fold iteration of the shift operation is called an r-shift and denoted by ({𝑆𝑖 [𝑟]}

2𝑘
𝑖=0, ℎ[𝑟]). One can

analogously define r-shifts for 𝑟 < 0.
Shifts correspond to postcomposing 𝜋 with a diffeomorphism of 𝑆1.

Definition 2.19. Let 𝛾 ⊂ 𝑆𝑟 be a properly embedded arc with 𝜕𝛾 ⊂ 𝐵. The stabilization of ({𝑆𝑖}, ℎ)
along 𝛾 ⊂ 𝑆𝑟 is the foliated open book ({𝑆′𝑖}, ℎ

′) defined as follows:
1. first perform an r-shift of ({𝑆𝑖}, ℎ) to ({𝑆𝑖 [𝑟]}, ℎ[𝑟]);
2. stabilize as in Definition 2.17 along the image of 𝛾 ⊂ 𝑆0 [𝑟];
3. perform a (−𝑟)-shift to obtain ({𝑆′𝑖}, ℎ

′), where 𝑆′𝑖 is still obtained from 𝑆𝑖 by a handle attachment
along p and q.
It is easy to see that stabilizing does not change the underlying manifold with foliated boundary.

Theorem 2.20. [LV20, Proposition 6.8, Theorem 6.9] Let ({𝑆𝑖}, ℎ) be a foliated open book and
({𝑆′𝑖}, ℎ

′) be a positive stabilization of ({𝑆𝑖}, ℎ). Then the corresponding contact three-manifolds are
contactomorphic. Furthermore, if two foliated open books support contactomorphic foliated contact
three-manifolds, then they admit a common positive stabilization.

2.3.3. Sorted foliated open books
Next, we introduce some additional bookkeeping to record the cutting arcs and cocore arcs on all possible
pages of the foliated open book. This additional information corresponds to a choice of a gradient-like
vector field for 𝜋 on the associated smooth manifold, as we will describe in Section 2.3.4.
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Figure 2.6. The first three pages of the foliated open book from Example 2.5.

If 𝑆𝑖−1
add
−−−→ 𝑆𝑖 , then for all 𝑗 ≥ 𝑖, decorate 𝑆 𝑗 with a cocore of the added handle and label this

cocore 𝛾−𝑖 . If 𝑆𝑖−1
cut
−−→ 𝑆𝑖 along 𝛾 ⊂ 𝑆𝑖−1, then for all 𝑗 ≤ 𝑖 − 1, decorate 𝑆 𝑗 with the cutting curve and

label it 𝛾+𝑖 .
We call the 𝛾±𝑖 sorting arcs. Note that by an abuse of notation we use a single label 𝛾±𝑖 to refer to

distinct copies of the sorting arcs on multiple 𝑆 𝑗 . In general, sorting arcs may intersect (and consequently
some sorting arcs may appear as a union of disconnected intervals on some pages). We will shortly
restrict to the subclass of sorted foliated open books [LV20, Section 5.3], which are characterized by
the requirement that the sorting arcs are disjoint on all pages, together with a prescribed ordering of the
intersections between sorting arcs and regular leaves. In the sorted case, we enhance the notation for
describing a foliated open book to reflect these additional choices.

Definition 2.21. An abstract foliated open book ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }) is sorted if the following properties

hold:

1. On each page 𝑆𝑖 and for each component I of 𝐴𝑖 with 𝜕𝐼 = {𝑒+, 𝑒−}, there exist disjoint subintervals
𝐼+ and 𝐼− such that 𝐼+ contains 𝑒+ ∪

⋃
𝑗

(
𝛾+𝑗 ∩ 𝐼

)
and 𝐼− contains 𝑒− ∪

⋃
𝑗

(
𝛾−𝑗 ∩ 𝐼

)
.

2. For 𝑖< 𝑗 < 𝑙, on each component of 𝐴𝑖 any endpoint of 𝛾+𝑙 is closer to 𝑒+ than any endpoint of 𝛾+𝑗 ;
3. For 𝑗 < 𝑙 ≤ 𝑖, on each component of 𝐴𝑖 any endpoint of 𝛾−𝑙 lies closer to 𝑒+ than any endpoint of 𝛾−𝑗 ;
4. On each page, the sorting arcs are connected, properly embedded, and disjoint.

See Figure 2.7 in Example 2.24 for an illustration of the ordering conventions given above. Sorted
foliated open books are useful because of their close relation to partial open books, which will be
described in Section 2.3.5. Below, we show that a foliated open book need not be sorted.

Example 2.22. The foliated open book from Example 2.5 is not sorted. To see this, we start on the
𝑆0 page and attempt to decorate each successive page with cutting arcs which realize the topological
transitions between pages and whose endpoints also satisfy the ordering conditions of Definition 2.21.

Cutting along 𝛾+1 on 𝑆0 yields 𝑆1, while attaching a handle to 𝑆1 gives rise to 𝑆2, which is decorated
with the new cocore 𝛾−2 . However, any cutting arc associated to ℎ3 necessarily intersects 𝛾−2 on 𝑆2, as
the endpoints of 𝛾+3 must lie closer to the positive ends of 𝐴2 than the endpoints of 𝛾−2 . Thus, the foliated
open book is not sorted. See Figure 2.6.

We may always stabilize a foliated open book to obtain a sorted one.

Theorem 2.23. Any foliated contact three-manifold (𝑀, 𝜉,F) admits a supporting sorted foliated open
book. If two sorted foliated open books support the same foliated contact three-manifold, then we
can stabilize each through sorted foliated open books to obtain a common sorted foliated open book.
Moreover, all of these stabilizations can be assumed to be performed on the 𝑆0 page as in Definition 2.17.

Proof. The first two statements are taken from [LV20, Theorem 3.12, Proposition 8.4, Theorem 8.14].
The final claim that the necessary stabilizations may be assumed to occur on the 𝑆0 page is implicit
in [LV20], as explained next; we include the brief argument here, although it relies on the connection
between foliated and partial open books described in Section 2.3.5. Specifically, the proof of [LV20,
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Figure 2.7. The stabilization arc 𝛾 ⊂ 𝑆0 is chosen to have one endpoint on each interval of the binding
B so that it crosses each of of the intersecting sorting arcs in Figure 2.6 exactly once. There is a right-
handed Dehn twist identifying the two copies of the 𝑆′2 page, while the monodromy ℎ′ : 𝑆′4 → 𝑆′0 is
translation in the plane of the page. The sorting arcs 𝛾+ are shown in light blue, and the sorting arcs
𝛾− are shown in dark blue. Subintervals 𝐼± ⊂ 𝐴0 are highlighted in green and orange on 𝑆0 and may
be chosen analogously on the other pages.

Proposition 8.6] explains why stabilizations on the 𝑆0 page suffice to turn an arbitrary sorted foliated
open book into a sufficiently stabilized5 foliated open book. The proof that two sufficiently stabilized
open books admit a common stabilization relies on Giroux correspondence for the associated partial
open books and, hence, leads again to stabilizations on 𝑆0. �

Example 2.24. Figure 2.7 shows that the foliated open book from Example 2.5 may be stabilized to
a sorted foliated open book. Starting from index 𝑆0, the first obstruction to being sorted occurred as
an intersection between 𝛾−2 and 𝛾+3 on 𝑆2. This intersection may be removed by stabilizing ‘at’ the 𝑆2
page; that is, by shifting twice and then stabilizing at the new 𝑆0. Each new page is obtained from
the corresponding old page by attaching a one-handle with one attaching interval on each binding
component. The new final maps to the new initial page by a positive Dehn twist; after shifting back, this
becomes a positive Dehn twist identifying the two copies of the 𝑆′2 page, as shown. Thus, 𝛾−2 changes
by a positive Dehn twist as it ascends to higher-index pages, while 𝛾+3 changes by a negative Dehn twist
as it descends to lower-index pages.

When depicting a sequence of pages, there is an implicit identification by translation in the page
unless otherwise noted. In this example, the one nontranslation occurs at 𝑆′2 while the map from 𝑆′4 to
𝑆′0 remains translation in the plane of the page, as seen on Figure 2.7. The result is a sorted foliated open
book for the original contact manifold with foliated boundary.

2.3.4. Gradient flows on foliated open books
As in Section 2.3.1, we consider the smooth manifold with foliated boundary (𝑀, 𝜕𝑀,F) constructed
from a foliated open book. The initial abstract data determines an equivalence class of circle-valued
Morse functions 𝜋 : 𝑀\𝐵 → 𝑆1 [LV20, Section 5.2]. The level sets of 𝜋 are the pages, and the restriction
�̃� : 𝜕𝑀 \ 𝐵 → 𝑆1 is again a circle-valued Morse function with the same set of critical points. In this
setting, one may consider the critical submanifolds of a gradient-like vector field for 𝜋 parallel to 𝜕𝑀 ,
which thus restricts to a gradient-like vector field for �̃�. The intersection of the critical submanifolds with
the regular level sets of 𝜋 determines sorting arcs on the pages of the corresponding abstract foliated
open book [LV20, Section 5.3]. Thus, a foliated open book is sorted when a gradient-like vector field
on 𝜕𝑀 that satisfies the ordering conditions for sorting arcs extends to a gradient-like vector field on M
whose critical submanifolds are disjoint.

5This subclass consists of the foliated open books which can most easily be related to partial open books, a relationship which
we discuss shortly.
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Figure 2.8. The tile of F shows purple flowlines of ∇�̃� which satisfy the sorted ordering conditions.

Any surface with an open book foliation decomposes along regular leaves into square tiles that each
contain precisely one hyperbolic singularity. Figure 2.8 shows the flowlines of a preferred ∇�̃� on such a
tile; these flowlines satisfy the ordering conditions in Definition 2.21, although ensuring their extension
to M yields a sorted foliated open book may require stabilization.

The Morse perspective is useful not only for building geometric intuition but also for relating the
boundary decorations to those in the interior of the manifold. For example, a sorting arc 𝛾+𝑖 is isotopic
through the associated stable critical submanifold of ∇𝜋 to the stable submanifold of ∇�̃� on 𝜕𝑀 which
passes through the corresponding positive hyperbolic point ℎ𝑖 . Likewise, a sorting arc 𝛾−𝑖 is isotopic
through the associated unstable critical submanifold of ∇𝜋 to the unstable submanifold of ∇�̃� on 𝜕𝑀
which passes through the corresponding negative hyperbolic point ℎ𝑖 . Conditions 1, 2 and 3 in Definition
2.21 are chosen so that the graphs formed by the (un)stable separatrices of positive (negative) hyperbolic
points with respect to F and with respect to ∇�̃� are isotopic. See [LV20, Lemma 8.8]. In the next section,
this will allow us to define certain subsurfaces as neighborhoods of either graph.

2.3.5. Sufficiently stabilized foliated open books and the associated partial open book
Sorted foliated open books are closely related to partial open books, and [LV20] introduced the technical
designation of a ‘sufficiently stabilized’ foliated open book. In this section, we recall this definition and
show that a sufficiently stabilized foliated open book naturally has a companion partial open book.
Throughout this section, we will let ({𝑆𝑖}

2𝑘
𝑖=0, ℎ, {𝛾

±
𝑖 }) be a sorted foliated open book and (𝑀, 𝜉,F)

be the supported foliated contact three-manifold. We further assume that either 𝑘 > 0 or |𝜕𝑀 | > 1;
the only foliated open books this excludes are those formed from an honest open book by removing a
neighborhood of a single point on the binding.

Set

𝑅𝑖 = 𝑁�
(
𝐴𝑖 ∪

(⋃
𝑖< 𝑗

𝛾+𝑗
)
∪

(⋃
𝑖≥ 𝑗

𝛾−𝑗
) )

⊂ 𝑆𝑖 ,

where 𝑁� denotes a ‘cornered’ neighborhood of 𝐴𝑖 ∪ (
⋃

𝑖< 𝑗 𝛾
+
𝑗 ) ∪ (

⋃
𝑖≥ 𝑗 𝛾

−
𝑗 ), with corners at E so that

𝑅𝑖 meets B only at E. Furthermore, define

𝑃𝑖 = 𝑆𝑖 \ 𝑅𝑖 ,

as shown on the left in Figure 2.9. Since only the 𝑅𝑖 change with i, we can identify all the 𝑃𝑖 with each
other by the flow of the gradient-like vector field. We denote the composition of these identifications
from 𝑃0 ⊂ 𝑆0 onto 𝑃2𝑘 ⊂ 𝑆2𝑘 by 𝜄. Let 𝑆 = 𝑆0, 𝑃 = 𝑃0 and ℎ̃ = ℎ|𝑃2𝑘 ◦ 𝜄.

Definition 2.25. [LV20, Proof of Proposition 8.6] The sorted foliated open book ({𝑆𝑖}
2𝑘
𝑖=0, ℎ, {𝛾𝑖}) is

sufficiently stabilized if each component of 𝑃0 intersects the boundary of 𝑅0 in at least two intervals.

https://doi.org/10.1017/fms.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.19


Forum of Mathematics, Sigma 17

Figure 2.9. The shaded regions show the cornered neighborhoods 𝑅′′
𝑖 in each page of the sufficiently

stabilized open book. As in Example 2.24, successive pages are identified by translation except for the
right-handed Dehn twist 𝜏 at 𝑆′′2 .

This condition ensures that (𝑆, 𝑃, ℎ̃) is a partial open book whose pages embed into the pages of
({𝑆𝑖}

2𝑘
𝑖=0, ℎ, {𝛾𝑖}). As the term suggests, this condition may always be achieved by a sequence of positive

stabilizations, and in fact, these may be chosen to occur on the 𝑆0 page.

Theorem 2.26. [LV20, Proposition 8.10] With the notation above, the partial open book (𝑆, 𝑃, ℎ̃) is
compatible with a contact manifold (𝑀, 𝜉) which is contactomorphic to (𝑀, 𝜉). Furthermore, under this
contactomorphism, the image of the dividing set of the characteristic foliation of 𝜉 on 𝜕𝑀 divides F̃ .

Example 2.27. In this example, we return to the foliated open book of Example 2.24, which is not
sufficiently stabilized. Recall that 𝑅′

0 is constructed as a cornered neighborhood of the sorting arcs
together with 𝐴′

0. Observe that 𝑃′
0 := 𝑆′0 \ 𝑅′

0 consists of two bigons, each with an edge on B and an
edge on the annular 𝜕𝑅′

0. It follows that 𝑆′0 cannot be built up from 𝑅′
0 by adding one-handles, which is

the topological requirement for the surface/subsurface pair to define a partial open book.
Figure 2.9 shows a sufficiently stabilized foliated open book for the same manifold, built by stabilizing

along the dotted arc which connected the two components of the binding. The new monodromy is the
composition of the original monodromy with a positive Dehn twist along the circle formed by the core
of the added handle and the stabilizing arc.

The new 𝑃′′
0 := 𝑆′′0 \ 𝑅′′

0 is a single disk whose boundary intersects 𝜕𝑅′′
0 along two intervals; this

ensures that (𝑆′′, 𝑃′′, ℎ̃′′) is a partial open book. In order to understand ℎ̃′′, we first examine the flow
of 𝑃′′

0 through the manifold. Recall from Example 2.24 that the only nontrivial identification between
successive pages is a right-handed Dehn twist at the 𝑆′′2 page before the cut yielding 𝑆′′3 . The twist is
along the core of the annular 𝑅′′

2 , so 𝑃′′
4 is isotopic, relative to 𝐴′′

4 = 𝐴′′
0 , to 𝑃′′

0 . Thus, the partial open
book monodromy is simply the restriction of the foliated open book monodromy to 𝑃′′

4 .

As shown in [LV20, Lemma 8.12], the cornered diffeomorphism type of the subsurfaces 𝑅𝑖 ⊂ 𝑆𝑖

depends only on the foliation F , rather than on the pages 𝑆𝑖 . Construct the corresponding contact three-
manifold (𝑀, 𝜉,F) for a sorted abstract foliated open book ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }). Recall from Definition

2.10 that the subsurface 𝑅+(F) (respectively 𝑅−(F)) of 𝜕𝑀 is a closed neighborhood of the (un)stable
separatrices corresponding to positive (negative) hyperbolic points of F .

As noted in Section 2.3.4, the graph of positive separatrices of ∇�̃� from positive hyperbolic points
on 𝜕𝑀 is (nonsmoothly) isotopic to the graph of positive separatrices of F from positive hyperbolic
points on 𝜕𝑀 . On the other hand, the former is isotopic through the stable critical submanifolds to a
neighborhood of the sorting arcs ∪𝐻+

𝛾+𝑖 on 𝑆0. This yields an identification between 𝑅+(F) ⊂ 𝜕𝑀 and
𝑅0 ⊂ 𝑆0. Similarly, studying negative separatrices of negative hyperbolic points and unstable critical
submanifolds yields an identification between 𝑅−(F) ⊂ 𝜕𝑀 and 𝑅2𝑘 ⊂ 𝑆2𝑘 .
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Figure 2.10. The blue region on the left-hand picture is the cornered neighborhood 𝑅𝑖 ⊂ 𝑆𝑖 . On the
right-hand figure, 𝑅𝑖 has been isotoped through M in the direction of the indicated arrows to lie mostly
on 𝜕𝑀 . The small arrow indicates the half twist which extends into the interior of M. Note that B has
been blown up to 𝐵 × 𝐼 for clarity.

Similarly, all the 𝑅𝑖 can be identified with surfaces described only using the foliationF , independently
of the foliated open book, as follows. Recall that 𝑅𝑖 is the (cornered) neighborhood of the union of 𝐴𝑖

and the intersection of all stable and unstable submanifolds of ∇𝜋 with 𝑆𝑖 . Each of these intersections
can be pushed up (or down) onto 𝜕𝑀 along the corresponding stable (or unstable) submanifolds. While
performing these isotopies we push the half-neighborhood of 𝐴𝑖 up along 𝐼+ and down along 𝐼−; the
surface obtained after the isotopy is not a submanifold of 𝜕𝑀 , as it has a half twist in the middle of each
component I of 𝐴𝑖 which extends into the interior of M. See Figure 2.10.

2.3.6. Gluing foliated open books
In order to glue foliated open books, we describe the matching conditions imposed upon their boundary
foliations. Recall that a foliation F on a surface F always refers to the data of a signed foliation together
with the function �̃� : 𝐹 \ 𝐸 → 𝑆1 whose level sets are the leaves of F .

Definition 2.28. The reverse of a foliationF on F is the foliation on −𝐹 which is equal to F pointwise
but with the leaf orientations and signs of singular points reversed.

The main advantage of foliated open books is that they are well suited for gluing. Suppose
that (𝑀𝐿 , 𝜉𝐿 ,F𝐿) and (𝑀𝑅, 𝜉𝑅,F𝑅) are foliated contact three-manifolds such that there exists an
orientation-reversing diffeomorphism 𝜓 : 𝜕𝑀𝐿 → 𝜕𝑀𝑅 that maps the reverse of the foliation F𝐿

onto F𝑅.
Recall that by hypothesis, the boundary foliations are divided, so the boundaries 𝜕𝑀• are convex

with respect to 𝜉•. (Here, and throughout this section, • will be an element of the set {𝑅, 𝐿}.) Since the
contact structures are I-invariant near the boundaries, 𝜓 determines a closed contact three-manifold

(𝑀, 𝜉) = (𝑀𝐿 ∪𝜓 𝑀𝑅, 𝜉𝐿 ∪𝜓 𝜉
𝑅).

If the initial contact manifolds were supported by foliated open books ({𝑆𝐿
𝑖 }, ℎ

𝐿) and ({𝑆𝑅
𝑖 }, ℎ

𝑅),
respectively, then (𝑀, 𝜉) naturally inherits a supporting open book whose pages and binding are built
by gluing the pages and bindings of the constituent pieces. More precisely, recall that 𝜕𝑆•𝑖 = 𝐴•

𝑖 ∪ 𝐵•,
where all the 𝐵• are identified when forming the manifolds 𝑀•. The map 𝜓 identifies the intervals 𝐴𝐿

𝑖
and −𝐴𝑅

𝑖 for all i, forming the surfaces

𝑆𝑖 = 𝑆𝐿
𝑖

⋃
𝐴𝐿
𝑖

𝜓
−→−𝐴𝑅

𝑖

𝑆𝑅
𝑖
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with boundary 𝐵 = 𝐵𝐿 ∪ 𝐵𝑅. Observe that a cut to 𝑆𝑅
𝑖 pairs with a handle addition to 𝑆𝐿

𝑖 , and vice
versa, so the surfaces 𝑆𝑖 are diffeomorphic for all i. This allows us to identify 𝑆0 � 𝑆1 � · · · � 𝑆2𝑘 ,
and we denote the composition of these identifications by 𝜄 : 𝑆0 → 𝑆2𝑘 . Note that 𝜄 fixes B, and it
restricts to 𝑃•

0 as the identification 𝜄• : 𝑃•
0 → 𝑃•

2𝑘 defined in Section 2.3.5. Letting 𝑆 := 𝑆0, the
monodromy ℎ : 𝑆 → 𝑆 for the glued-up open book can be obtained as the composition of 𝜄 with
ℎ𝐿 ∪ ℎ𝑅 : 𝑆2𝑘 = 𝑆𝐿

2𝑘 ∪ 𝑆𝑅
2𝑘 → 𝑆𝐿

0 ∪ 𝑆𝑅
0 = 𝑆0. By construction, h fixes B, as required.

Theorem 2.29. [LV20, Theorem 6.2] Suppose that the foliated open books ({𝑆𝐿
𝑖 }, ℎ

𝐿) and ({𝑆𝑅
𝑖 }, ℎ

𝑅)

define the three-manifolds with foliated boundary (𝑀𝐿 ,F𝐿) and (𝑀𝑅,F𝑅), and assume that there is
an orientation-reversing diffeomorphism 𝜑 : 𝜕𝑀𝐿 → 𝜕𝑀𝑅 that takes the reverse of the foliation F𝐿

onto F𝑅.
Then there are contact structures 𝜉𝐿 and 𝜉𝑅 supported by ({𝑆𝐿

𝑖 }, ℎ
𝐿) and ({𝑆𝑅

𝑖 }, ℎ
𝑅), respectively,

so that 𝜉 = 𝜉𝐿 ∪𝜑 𝜉
𝑅 is a contact structure 𝜉 on the manifold 𝑀 = 𝑀𝐿 ∪𝜑 𝑀

𝑅 that is supported by the
honest open book (𝑆, ℎ) constructed by pagewise gluing, as defined above.

Since 𝜄 : 𝑆0 → 𝑆2𝑘 is given as a sequence of identifications, the monodromy h may be difficult to
reconstruct in a complicated case, and the above construction does not automatically give a factorization
in terms of Dehn twists. For sorted open books, however, there is a straightforward way to describe 𝜄
(and thus h) as follows. Suppose now, that ({𝑆𝐿

𝑖 }, ℎ
𝐿 , {𝛾±,𝐿

𝑖 }) and ({𝑆𝑅
𝑖 }, ℎ

𝑅, {𝛾∓,𝑅
𝑖 }) are sorted foliated

open books compatible with (𝑀𝐿 , 𝜉𝐿 ,F𝐿) and (𝑀𝑅, 𝜉𝑅,F𝑅), respectively. Recall that each page 𝑆•𝑖
decomposes as the union of a ‘constant’ part 𝑃•

𝑖 and an i-dependent part 𝑅•
𝑖 which is determined by

the foliation F•. By construction, 𝑃•
0 � 𝑃•

1 � · · · � 𝑃•
2𝑘 . These diffeomorphisms are explicit in the

construction of the pages 𝑆•𝑖 , and together they determine 𝜄|𝑃𝐿
0 ∪𝑃𝑅

0
= 𝜄𝐿 ∪ 𝜄𝑅 : 𝑃𝐿

0 ∪ 𝑃𝑅
0 → 𝑃𝐿

2𝑘 ∪ 𝑃𝑅
2𝑘 .

As described earlier, sorted foliated open books have the property that 𝑅𝐿
0 is isotopic in 𝑀𝐿 to

𝑅+(F𝐿). This surface is mapped by 𝜓 onto 𝑅−(F𝑅), which in turn is isotopic in 𝑀𝑅 to 𝑅𝑅
2𝑘 . The

composition of these three maps gives 𝜄|𝑅𝐿
0

: 𝑅𝐿
0 → 𝑅𝑅

2𝑘 , and we can similarly obtain 𝜄|𝑅𝑅
0

: 𝑅𝑅
0 → 𝑅𝐿

2𝑘 .
This yields a concrete description of the entire map 𝜄 on the remaining parts 𝑅𝐿

2𝑘 ∪ 𝑅𝐿
2𝑘 . Together, the

above maps determine h everywhere.

3. Construction of the contact invariant

3.1. Bordered manifold associated to a triple

Let (𝑀, 𝜉,F) be a foliated contact three-manifold with signed singular foliation F = (�̃�, 𝐻 = 𝐻− ∪

𝐻+, 𝐸 = 𝐸− ∪ 𝐸+). Set Γ := �̃�−1 (0) so that Γ is a disjoint union of oriented leaves connecting positive to
negative elliptic points. For each leaf I, let 𝑒+(𝐼) and 𝑒−(𝐼) be the corresponding positive and negative
elliptic points, respectively. Choose 𝜖 > 0 small enough so that �̃�−1 [−𝜖, 𝜖] contains no critical points
of �̃�. Note that then �̃�−1 [0, 𝜖] is a union of disks, one disk containing each leaf 𝐼 ⊂ Γ and denoted
by 𝑅+(𝐼). Similarly, denote the connected component of �̃�−1 [−𝜖, 0] containing I by 𝑅−(𝐼). Write
𝑅+(Γ) =

⋃
𝐼 ⊂Γ 𝑅+(𝐼) and 𝑅−(Γ) =

⋃
𝐼 ⊂Γ 𝑅−(𝐼). Set 𝐹 = 𝜕𝑀 \ (𝑅+(Γ) ∪ 𝑅−(Γ)).

Next, we use the foliation to define a natural parametrization of F via an arc diagram Z = (𝑍, 𝑎, 𝑚).
For each hyperbolic point ℎ𝑖 , let 𝛿𝑖 be the union of the two stable separatrices at ℎ𝑖 if ℎ𝑖 is positive or the
union of the two unstable separatrices at ℎ𝑖 if ℎ𝑖 is negative. Let 𝑍 (𝐼) be a pushoff of �̃�−1 (−𝜖) ∩𝑅−(𝐼) ⊂
𝜕𝐹 into F satisfying the following:

◦ 𝜕𝑍 (𝐼) = (−𝑒−(𝐼)) ∪ 𝑒+(𝐼).
◦ If 𝛿𝑖 has an endpoint at 𝑒±(𝐼), then 𝑍 (𝐼) intersects 𝛿𝑖 in a unique point; otherwise, 𝛿𝑖 and 𝑍 (𝐼) are

disjoint.

Let 𝑍 = �𝐼 ⊂Γ𝑍 (𝐼). Define a to be the set of all intersection points of Z with the union of the 𝛿𝑖 , and
let m be the pairing induced on the points in a by 𝛿𝑖 . See Figure 3.1. Observe that Z divides F into two
subsurfaces: a surface containing all hyperbolic points (shown in white on Figure 3.1) and a union of
disks (shown in dark red on Figure 3.1). Let 𝑒𝑖 be the curve that is the intersection of 𝛿𝑖 with the white
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Figure 3.1. In this picture, 𝑅+(Γ) and 𝑅−(Γ) are colored in light blue and light red, respectively. Thus,
F is the union of the dark red and white regions. The green curves are Γ, the blue curves are the 𝛿𝑖 so
that their intersections with the white surface are the 𝑒𝑖 . Furthermore, dark red may be identified with
𝑍 × [0, 1/2] under the identification of F with 𝐹 (Z), and the 𝑒𝑖 may be identified with the parametrizing
arcs for Z .

surface. Note that after removing the disks bounded by the circles 𝐼 ∪ 𝑍 (𝐼) from F, and decomposing
the resulting surface along the union of 𝑒𝑖 , we get a disjoint union of disks so that each one of them
contains exactly one of the leaves in 𝜋−1(𝜖) on its boundary. Thus, Z = (𝑍, 𝑎, 𝑚) parametrizes F as a
𝛽-type arc diagram as defined in [Zar10, Definition 3.2]; that is, F can be identified with 𝐹 (Z).

Definition 3.1. The triple (𝑀, Γ,Z) described above is the bordered sutured manifold associated to the
foliated contact three-manifold (𝑀, 𝜉,F).

3.2. Adapted bordered Heegaard diagram

Let ({𝑆𝑖}
2𝑘
𝑖=0, ℎ, {𝛾

±
𝑖 }) be an abstract sorted foliated open book compatible with the foliated contact

three-manifold (𝑀, 𝜉,F). In what follows, we will describe a generator in a bordered sutured Heegaard
diagram H = (Σ, 𝜷,𝜶,Z) constructed from the data of ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }). Let 𝑔𝑖 be the genus of 𝑆𝑖 , and

let 𝑛𝑖 be the number of boundary components of 𝑆𝑖 . Recall that the boundary of the cornered surface 𝑆𝑖

is 𝐵 ∪ 𝐴𝑖 , where B is a union of circles and arcs, and 𝐴𝑖 is a union of intervals only.
We let Σ = 𝑆0 ∪𝐵 −𝑆0. In order to distinguish the two copies, we will write

Σ = 𝑆𝜖 ∪𝐵 −𝑆0,

but we emphasize that 𝑆𝜖 can be identified with 𝑆0. The surface Σ has genus 2𝑔0 + 𝑛0 − 1 and |𝐴0 |
boundary components. For 𝑖 ∈ 𝐻+, let 𝛾+𝑖 be the 𝑆𝜖 copy of the associated sorting arc. The endpoints of
𝛾+𝑖 lie near the 𝐸+ end of intervals of 𝐴𝜖 . Isotope the arcs {𝛾+𝑖 } (simultaneously, to preserve disjointness)
near the endpoints by pushing them along 𝜕Σ in the direction opposite the orientation of the boundary
until the endpoints all lie in 𝐼+ ⊂ 𝐴0; the isotopy stops after crossing 𝐸+ and before encountering
∪ 𝑗∈𝐻−

ℎ(𝛾−𝑗 ) ⊂ 𝑆0. Call the resulting arcs 𝛽𝑎
𝑖 .
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For 𝑖 ∈ 𝐻−, consider the 𝑆2𝑘 copies of the sorting arcs 𝛾−𝑖 , and let 𝛽𝑎
𝑖 = ℎ(𝛾−𝑖 ) on 𝑆0. Write

𝜷𝑎 = {𝛽𝑎
1 , . . . , 𝛽

𝑎
2𝑘 }. For convenience, instead of 𝛽𝑎

𝑖 we will sometimes write 𝛽±𝑖 if 𝑖 ∈ 𝐻±.
For 𝑖 ∈ 𝐻+, let 𝑏+𝑖 = 𝛽𝑎

𝑖 ∩ 𝑆𝜖 . That is, 𝑏+𝑖 is the arc 𝛽𝑎
𝑖 with the two end segments that lie on

−𝑆0 removed so that 𝜕𝑏+𝑖 lies on B. We claim that after cutting 𝑆𝜖 along the arcs 𝑏+𝑖 , each connected
component contains at least one interval of 𝐴𝜖 .

Lemma 3.2. Each component of 𝑆𝜖 \ ∪𝑖∈𝐻+
𝑏+𝑖 contains an interval component of 𝐴𝜖 , and hence at

least one point in 𝐸+, and, equivalently, at least one point in 𝐸−.

Proof. Recall that moving along any given interval of 𝐴𝜖 , we encounter curves 𝛾+𝑖 indexed in decreasing
order. Thus, after the isotopy, moving along any given interval of B, we encounter curves 𝑏+𝑖 indexed in
decreasing order as well. Now, suppose there is a component C of 𝑆𝜖 \ ∪𝑖∈𝐻+

𝑏+𝑖 that does not intersect
𝐴𝜖 . Then the boundary of C consists of possibly some complete binding circles and at least one circle
that alternates between intervals of B and entire arcs 𝑏+𝑖 . Since C is a subsurface of 𝑆𝜖 , the orientation
on B agrees with the orientation on 𝜕𝐶. When traversing this circle of 𝜕𝐶, it follows that each interval
of B starts at an intersection point with some 𝑏+𝑖 and ends at an intersection point with some 𝑏+𝑗 , where
𝑗 < 𝑖, thus inducing a circular < ordering on integral indices, which is a contradiction. �

Let 𝒃 = {𝑏1, . . . , 𝑏2𝑔0+𝑛0+|𝐴0 |−𝑘−2} be a set of cutting arcs for 𝑃𝜖 ⊂ 𝑆𝜖 disjoint from 𝜷𝑎 and with
endpoints on B so that each connected component of 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎) = 𝑆𝜖 \ (𝒃 ∪ {𝑏+𝑖 }𝑖∈𝐻+

) is a disk
with exactly one interval of 𝐴𝜖 on its boundary. Note that Lemma 3.2 guarantees this can be achieved.
In other words, 𝒃 is a basis for 𝐻1 (𝑃𝜖 , 𝐵). Recalling the identification 𝑆𝜖 = 𝑆0, we may push 𝑏𝑖 ⊂ 𝑆0
through M to lie on 𝑆0 again and define

𝛽𝑖 = 𝑏𝑖 ∪ −ℎ ◦ 𝜄(𝑏𝑖) ⊂ 𝑆𝜖 ∪𝐵 −𝑆0,

where 𝜄 is the identification of 𝑃0 with 𝑃2𝑘 from Section 2.3.5. Write 𝜷𝑐 = {𝛽1, . . . , 𝛽2𝑔0+𝑛0+|𝐴0 |−𝑘−2}.
Note that by modifying the isotopy that transforms {𝛾+𝑖 } into {𝛽+𝑖 }, possibly forcing it to happen in a

smaller neighborhood of 𝐸+, we may assume that all curves in 𝜷𝑎 ∪ 𝜷𝑐 are pairwise disjoint.
For each cutting arc 𝑏𝑖 ∈ 𝒃 on 𝑆𝜖 , let 𝑎𝑖 be an isotopic curve formed by pushing the endpoints

negatively along the boundary so that 𝑎𝑖 and 𝑏𝑖 intersect once transversely. Similarly, for each arc 𝑏+𝑗 ,
let �̃� 𝑗 be an isotopic curve formed by pushing the endpoints negatively along the boundary so that 𝑎 𝑗

and 𝑏+𝑗 intersect once transversely. We ‘double’ each of these arcs to form the 𝛼-circles which define
the handlebody 𝑆0 × [0, 𝜖]. Namely, define

𝛼𝑖 = 𝑎𝑖 ∪ −𝑎𝑖 ⊂ 𝑆𝜖 ∪𝐵 −𝑆0

�̃� 𝑗 = �̃� 𝑗 ∪ −�̃� 𝑗 ⊂ 𝑆𝜖 ∪𝐵 −𝑆0,

and write 𝜶 = {�̃�𝑖}𝑖∈𝐻+
∪ {𝛼1, . . . , 𝛼2𝑔0+𝑛0+|𝐴0 |−𝑘−2}. Finally, let

𝑍 =

( ⋃
𝐼 ⊂𝐴𝜖

(𝐼+ ∪ 𝐼−)

)
∪ −𝐴0 ⊂ 𝜕 (𝑆𝜖 ∪𝐵 −𝑆0) = 𝜕Σ.

We obtain Z = (𝑍, 𝜕𝜷, 𝑚), where m matches a pair of points if they belong to the same 𝛽-arc, and we
get an identification of 𝐺 (Z) with 𝑍 ∪ 𝜷𝑎 ⊂ Σ.

We say that a bordered sutured Heegaard diagram constructed as above is adapted to the sorted
abstract foliated open book ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }).

Let H = (Σ,𝜶, 𝜷,Z) be a bordered sutured Heegaard diagram adapted to ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }). Using the

notation introduced above, define the set

x = {𝑥1, . . . , 𝑥2𝑔0+𝑛0+|𝐴0 |−𝑘−2} ∪ {𝑥+𝑖 | 𝑖 ∈ 𝐻+}
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Figure 3.2. The sorting arcs 𝛾+𝑖 (on the left) and their images 𝛽+𝑖 (on the right) after the isotopy taking
their endpoints to the highlighted subintervals 𝐼+ ⊂ 𝐴0. The parts of 𝛽+𝑖 lying on 𝑆𝜖 are 𝑏+𝑖 .

Figure 3.3. The sorting arcs 𝛾−𝑖 and their images 𝛽−𝑖 = −ℎ(𝛾−𝑖 ) on −𝑆0.

Figure 3.4. Cutting 𝑆𝜖 along 𝑏+𝑖 yields two disks, each with exactly one interval of 𝐴𝜖 on its boundary.
Therefore, we do not need any more cutting arcs.

as the unique intersection points

𝑥𝑖 = 𝑎𝑖 ∩ 𝑏𝑖 ∈ 𝑆𝜖 ⊂ Σ

𝑥+𝑖 = �̃�𝑖 ∩ 𝑏+𝑖 ∈ 𝑆𝜖 if 𝑖 ∈ 𝐻+.

Example 3.3. We show the step-by-step construction of the bordered sutured Heegaard diagram adapted
to the sorted foliated open book from Example 2.24. To simplify notation, we write 𝑆𝑖 and h instead of
the 𝑆′𝑖 and ℎ′ labels used in Example 2.24.

In Figure 3.2, we see the sorting arcs 𝛾+𝑖 and their images 𝛽+𝑖 after the isotopy taking their endpoints
to 𝐼+ ⊂ 𝐴0. The arcs 𝑏+𝑖 are the intersections 𝛽+𝑖 ∩ 𝑆𝜖 .

Figure 3.3 shows the sorting arcs 𝛾−𝑖 on 𝑆0 and, after mirroring, their images 𝛽−𝑖 = −ℎ(𝛾−𝑖 ) on −𝑆0;
recall that in this example h is the identity. Recall that 𝜷𝑎 = {𝛽+𝑖 | 𝑖 ∈ 𝐻+} ∪ {𝛽−𝑖 | 𝑖 ∈ 𝐻−}.

Observe that in this example we do not need any cutting arcs 𝒃 because 𝑆𝜖 \ {𝑏+𝑖 }𝑖=1,3 consists of
two disks, each with exactly one interval of 𝐴𝜖 on its boundary; see Figure 3.4. Therefore, 𝜷𝑐 is empty,
and we have no 𝑎𝑖 arcs, either.

https://doi.org/10.1017/fms.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.19


Forum of Mathematics, Sigma 23

Figure 3.5. The �̃�𝑖 curves obtained from the 𝑏+𝑖 arcs.

Figure 3.6. The bordered sutured Heegaard diagram adapted to the sorted foliated open book of
Example 2.24. The intersection points 𝑥+𝑖 = �̃�𝑖 ∩ 𝑏

+
𝑖 ∈ 𝑆𝜖 for 𝑖 ∈ 𝐻+ are marked as black dots. The black

portion of the resulting boundary is Z, while the green is 𝜕Σ \ 𝑍 .

We next define �̃�𝑖 by pushing the endpoints of 𝑏+𝑖 negatively along the boundary so that �̃�𝑖 and 𝑏+𝑖
intersect once transversely. Figure 3.5 shows the arcs �̃�𝑖 on 𝑆𝜖 and their mirror images on −𝑆0. Glued
together, they form �̃�𝑖 . Since this example has no 𝛼𝑖 curves, we have 𝜶 = {�̃�𝑖}𝑖∈𝐻+

.
Finally, Figure 3.6 illustrates the bordered sutured Heegaard diagram adapted to the sorted foliated

open book of Example 2.24. In this example, the set of intersection points x consists only of 𝑥+𝑖 =
�̃�𝑖 ∩ 𝑏+𝑖 ∈ 𝑆𝜖 for 𝑖 ∈ 𝐻+.

We will use x to define two contact invariants in bordered sutured Floer homology. In order to do that,
we first show that H is an admissible diagram for the bordered sutured manifold associated to (𝑀, 𝜉,F).

Proposition 3.4. Let ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }) be a sorted abstract foliated open book supporting a foliated

contact three-manifold (𝑀, 𝜉,F). Suppose H = (Σ,𝜶, 𝜷,Z) is a bordered sutured Heegaard diagram
adapted to ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }). Then H gives an admissible bordered Heegaard diagram for the bordered

sutured manifold (𝑀, Γ,Z) associated to (𝑀, 𝜉,F).

Proof. Starting from a sorted foliated open book ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }), we may either first construct a foliated

contact manifold (𝑀, 𝜉,F) as in Section 2.3.1 and an associated bordered sutured manifold (𝑀, Γ,Z) as
in Section 3.1, or we may start by constructing a bordered sutured Heegaard diagram H = (Σ,𝜶, 𝜷,Z)

as above. To temporarily distinguish between the two constructions of the set of matched arcs, we will
in fact temporarily replace this notation with H = (Σ,𝜶, 𝜷,Z ′), with 𝑍 ′ the set of arcs in Z ′. We may
then use the construction of Section 2.2.2 to produce a bordered sutured manifold. We wish to verify
that the bordered sutured manifold arising this way is (𝑀, Γ,Z).

Recall that the foliated contact manifold (𝑀, 𝜉,F) is built via saddle cobordisms specified by the
sorting arcs. We intend for the 𝛼 curves to specify the handlebody from 𝑆0 to 𝑆𝜖 and for the 𝛽 curves
to specify the handlebody from 𝑆𝜖 to 𝑆0. We will start by modifying the graph 𝐺 (Z ′) ⊂ Σ and the
bordered sutured structure on 𝜕𝑀 via isotopy, allowing us to identify the Heegaard surface Σ with the
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surface 𝑆𝜖 ∪𝐵 −𝑆0 in M in such a way that 𝜕Σ \ 𝑍 ′ is identified with Γ. (This is equivalent to recovering
Γ as (𝜕Σ \ 𝑍 ′) × { 1

2 } in a thickened copy of the surface Σ × [0, 1].) Recall that we chose 𝑍 ′ to be the
union of 𝐴0 with the arcs

⋃
𝐼 ⊂𝐴𝜖

(𝐼+ ∪ 𝐼−); the purpose of this choice is to enable a simple discussion
of gluing in Section 5. However, we may isotope 𝑍 ′ inward along the arcs 𝐼± to 𝐴0. On 𝜕𝑀 , we may
isotope Z (resp. Γ) through the disks bounded between Z and 𝐴0 (resp. 𝐴0 and 𝐴𝜖 ) and identify it with
𝐴0 (resp. 𝐴𝜖 ). This isotopy can be chosen so that it carries the matched points on Z to the matched
points on 𝑍 ′ (as identified with 𝐴0). Note that under this isotopy the edges 𝑒𝑖 of the graph 𝐺 (Z) will
twist near their endpoints around the elliptic points.

Next, {�̃�𝑖}𝑖∈𝐻+
∪ {𝑎1, · · · , 𝑎2𝑔0+𝑛0+|𝐴0 |−𝑘−2} is a cut system for 𝑆𝜖 . At each time 0 ≤ 𝑡 ≤ 𝜖 , we may

consider the image of each of these arcs on 𝜋−1(𝑡) coming from applying the flow of 𝜋; for each arc, the
union of these images is a disk with boundary the corresponding 𝛼-circle. (We say that these arcs trace
out disks in time [0, 𝜖] whose boundaries are the 𝛼-circles.) So, 𝜶 specifies the handlebody from 𝑆0
to 𝑆𝜖 . Similarly, the cutting arcs {𝑏1, · · · , 𝑏2𝑔0+𝑛0+|𝐴0 |−𝑘−2} for 𝑃𝜖 will trace out disks in time [𝜖, 2𝜋],
whose boundaries under the identification of 𝑆2𝜋 with 𝑆0 using monodromy h are the 𝛽-circles on Σ.

Finally, for each 𝑖 ∈ 𝐻−, flowing backward from time 𝑡 = 𝑖𝜋/𝑘 to 𝑡 = 𝜖 , the sorting arc 𝛾−𝑖 traces
out a disk corresponding to the cocore of the handle addition. The boundary of this disk is the arc 𝛽−𝑖
together with the twisted and truncated copy of the separatrix 𝛿𝑖 , that is, with the twisted arc 𝑒𝑖 . These
are the disks attached along the arcs 𝛽−𝑖 . Likewise, for 𝑖 ∈ 𝐻+, flowing forward from 𝑡 = 𝑖𝜋/𝑘 to 𝑡 = 2𝜋,
the sorting arc 𝛾+𝑖 traces out a disk corresponding to the cutting arc for the handle subtraction, whose
boundary under the identification of 𝑆2𝜋 with 𝑆0 via the monodromy h is the arc 𝛽+𝑖 together with the
twisted and truncated copy of the separatrix 𝛿𝑖 . These are the disks attached along the arcs 𝛽+𝑖 .

As for admissibility, we notice that just as in the closed or sutured cases, admissibility is automatic:
Every periodic domain with an 𝛼-circle on its boundary crosses the only intersection of that circle with
𝜷 curves or circles on 𝑆𝜖 , at which point the sign of the connected component of Σ \ (𝜶 ∪ 𝜷) must
change. �

If H is a bordered sutured Heegaard diagram adapted to a sorted abstract foliated open book
({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }) and ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }) is compatible with the foliated contact three-manifold (𝑀, 𝜉,F), we

say that H is adapted to (𝑀, 𝜉,F).
By Proposition 3.4 and [Zar10, Section 3.4], the diagram H = (Σ, 𝜷,𝜶,Z) obtained by exchanging

the roles of the two sets of curves and formally replacing the arc diagram Z of 𝛽-type (which is to say,
parametrized by arcs which are part of the second set of curves) with the identical arc diagram Z of
𝛼-type (parametrized by arcs which are part of the first set of curves) is a bordered sutured diagram for
(−𝑀, Γ,Z). Write Z = (𝑍, 𝑎, 𝑚). We have the following proposition.

Proposition 3.5. The above x gives a well-defined generator

x𝐷 := x ∈ B̂SD(H)

with 𝐼𝐷 (x) = 𝐼 (𝐻−) and 𝛿1(x𝐷) = 0, and a well-defined generator

x𝐴 := x ∈ B̂SA(H)

with 𝐼𝐴(x𝐴) = 𝐼 (𝐻+) and 𝑚𝑖+1(x𝐴, 𝑎(𝝆1), . . . , 𝑎(𝝆𝑖)) = 0 for all 𝑖 ≥ 0 and all sets of Reeb chords 𝝆 𝑗

in (𝑍, 𝑎).

Proof. Since each of the intersections in the definition of x is unique, the two generators are well
defined. The idempotents are as stated since the 𝛽-arcs occupied by x are indexed by 𝐻+, whereas the
unoccupied 𝛽-arcs are indexed by 𝐻−. Last, consider regions of Σ \ (𝜶 ∪ 𝜷) that have a point 𝑥 ∈ x as a
corner vertex. Each such region either has an interval of 𝜕Σ \ 𝑍 on its boundary or it has some corner
near which it agrees with one of the thin strips obtained by perturbing the 𝑏𝑖 and 𝑏+𝑗 arcs to 𝑎𝑖 and �̃� 𝑗

arcs. The positively oriented boundary of such a thin strip near x has a segment of a 𝛽 curve ending at x,
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and a segment of an 𝛼 curve starting at x. Such a region cannot be in the projection 𝜋Σ ◦ 𝑢 of an index
1 holomorphic map

𝑢 : (𝑆, 𝜕𝑆) → (Int(Σ) × D × R, (𝜷 × {1} × R) ∪ (𝜶 × {0} × R))

satisfying [Zar10, Section 5.2, Conditions (1)-(11)] and asymptotic to x×[0, 1] at−∞. Thus, 𝛿1 (x𝐷) = 0,
and 𝑚𝑖+1(x𝐴, 𝑎1, . . . , 𝑎𝑖) = 0 for all 𝑖 ≥ 0 and all 𝑎 𝑗 ∈ A(𝜕H). �

4. Invariance

In this section, we complete the proof of Theorem 1. Specifically, we show that given two different sets
of choices made in constructing a bordered sutured Heegaard diagram for the bordered sutured three-
manifold (−𝑀, Γ,Z) associated to a foliated contact three-manifold (𝑀, 𝜉,F) resulting in Heegaard
diagrams H and H′ with associated type A bordered sutured Floer homologies B̂SA(H) and B̂SA(H′),
the contact elements x𝐴 and x′

𝐴 are equivalent in the sense of Section 2.2.2 and likewise for x𝐷 and x′
𝐷 .

We prove equivalence of these classes under

1. isotopy of the monodromy h of the foliated open book ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }) for (𝑀, 𝜉,F);

2. the choice of complex structure;
3. stabilizations of the foliated open book ({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }) on the 𝑆0 page; and

4. the choice of the cutting arcs made when constructing the bordered Heegaard diagram in Section 3.2.

Note that we do not have to prove invariance under time shift since the definition of a triple (𝑀, 𝜉,F)

has an implicit choice of initial time 𝑡 = 0; see Remark 2.15. Invariance under the choice of complex
structure follows from [Zar09, Theorem 7.8] and the observation that since there are no nontrivial
topological domains beginning at the generator x on the bordered sutured Heegaard diagram H, the type
A and type D chain homotopy equivalences between bordered sutured complexes associated to pairs
(H, 𝐽1) and (H, 𝐽2) count a single pseudoholomorphic strip constant in the Σ coordinate beginning at
x𝐷 or x𝐴, and thus in each case carry the special generator to itself. It is a consequence of Theorem
2.23 that stabilizations on the 𝑆0 page are sufficient.

We thus focus on the remaining three choices made in the construction of the contact invariants. For
invariance under the isotopy class of h and choice of the cutting arcs, our proofs heavily parallel those
of [HKM09b, Section 3] and [HKM09a, Section 3]; our proof of stabilization invariance has a slightly
different structure.

Proposition 4.1. Suppose we choose two representatives for the isotopy class of h, resulting in bordered
sutured Heegaard diagramsH andH′. The resulting contact elements x𝐴 ∈ B̂SA(H) and x′

𝐴 ∈ B̂SA(H′)

are equivalent in the sense of Section 2.2.2 and likewise for x𝐷 and x′
𝐷 .

Proof. The proof given in [HKM09b, Lemma 3.3] carries over to the bordered sutured case essentially
verbatim. As previously, the point is that there are no holomorphic curves beginning at the generators
x𝐴 and x𝐷 . �

We now turn our attention to equivalence under choice of the cutting arcs in the case that we start with
a sufficiently stabilized foliated open book. (Subsequently, in Proposition 4.5, we will prove stabilization
invariance, thus showing invariance of the choice of cutting arcs for all sorted foliated open books.)

First, we show that two different choices of cutting arcs 𝒃 and �̃� for 𝑃𝜖 ⊂ 𝑆𝜖 are related by arcslides
on 𝑃𝜖 .

Proposition 4.2. Suppose that ({𝑆𝑖}, ℎ, {𝛾𝑖}) is a sufficiently stabilized foliated open book. Then any
two sets of cutting arcs 𝒃 = {𝑏1, . . . , 𝑏2𝑔0+𝑛0+|𝐴0 |−𝑘−2} and �̃� = {�̃�1, . . . , �̃�2𝑔0+𝑛0+|𝐴0 |−𝑘−2} for 𝑃𝜖 are
related by a sequence of arcslides.

Proof. The proof is modeled on [HKM09a, Lemma 3.3] and [HKM09b, Lemma 3.6]. Let 𝑟 = 2𝑔0 +

𝑛0 + |𝐴0 | − 𝑘 − 2.
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First, we will show that ∪𝑟
𝑖=1𝑏𝑖 and ∪𝑟

𝑖=1�̃�𝑖 can be made disjoint from each other by performing a
sequence of arcslides. Then we verify the statement of the proposition for the case of two disjoint sets
of cutting arcs. Suppose that

(
∪𝑟

𝑖=1𝑏𝑖
)
∩

(
∪𝑟

𝑖=1�̃�𝑖

)
≠ ∅. We may assume the curves intersect efficiently.

We can decrease the number of intersections as follows.
Cut 𝑃𝜖 along the arcs in 𝒃 to obtain a set of polygons. For each cutting arc 𝑏𝑖 , label the two resulting

boundary segments on 𝜕 (𝑃𝜖 \ 𝒃) by 𝑏𝑖 and 𝑏−1
𝑖 and call these two segments partners.

First, we show that every connected component of 𝑃𝜖 \ 𝒃 intersects 𝑅𝜖 in exactly one interval. To
see that each connected component of 𝑃𝜖 \ 𝒃 intersects 𝑅𝜖 , observe that otherwise the boundary of
the component would only contain arcs in B and in 𝒃. But the connected components of 𝑃𝜖 \ 𝒃 are
naturally identified with the connected components of 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎) and by the definition of cutting
arcs, each connected component of 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎) is a disk with exactly one interval of 𝐴𝜖 on its
boundary. Moreover, 𝑃𝜖 \ 𝒃 cannot intersect 𝑅𝜖 in more intervals. Assume it intersects 𝑅𝜖 in at least
two intervals. There are two types of such a segment of 𝑅𝜖 : Either it corresponds only to an arc in 𝐴𝜖 or
also to an arc of type 𝛾±𝑖 whose both endpoints connect to arcs in 𝐴𝜖 . In this latter case, the isotopy of
𝛾±𝑖 resulting in 𝜷±

𝑖 leaves at least one of these arcs in 𝐴𝜖 on the boundary of the connected component
of 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎). In the former case, the only arc in 𝐴𝜖 is also on the boundary of the corresponding
connected component of 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎). In both cases, the segment of 𝑅𝜖 corresponds to an arc in 𝐴𝜖

on 𝜕𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎). Therefore, our assumption contradicts the fact that 𝑆𝜖 \ (𝒃 ∪ 𝜷𝑎) contains exactly
one interval of 𝐴𝜖 on its boundary.

Consider a connected component C of 𝑃𝜖 \ 𝒃 containing an intersection point of ∪𝑟
𝑖=1𝑏𝑖 and ∪𝑟

𝑖=1�̃�𝑖 .
Then C is a polygon with some number of edges in 𝒃 (of types 𝑏 𝑗 and 𝑏−1

𝑗 ), some number of edges in B
and exactly one edge in 𝑅𝜖 .

After possibly reordering the elements of 𝒃, we may assume that 𝑏1 ∩ �̃�1 ≠ ∅ and that we can find a
subarc �̃�0

1 ⊂ �̃�1 in C such that �̃�0
1 starts from a segment 𝐵1 of the binding B, ends on 𝑏1 and has interior

disjoint from ∪𝑟
𝑖=1𝑏𝑖 , as in Figure 4.1. We may also assume that 𝑏1 and 𝐵1 are not adjacent, as we could

otherwise isotope �̃�0
1 to decrease the number of intersection points between �̃�0

1 and 𝑏1.
Now, �̃�0

1 cuts C into two polygons 𝐶1 and 𝐶2, at least one of which does not contain 𝑏−1
1 . Suppose

first that 𝐶1 does not contain 𝑏−1
1 and also that 𝜕𝐶1 ∩ 𝜕𝑅𝜖 = ∅. In this case, we may slide 𝑏1 over the

remaining arcs in 𝜕𝐶1 until we obtain 𝑏′1. Note that 𝑏′1 has a subarc which lies on 𝑏1, while the rest of
𝑏′1 lies in a small neighborhood of �̃�1. This means that no new intersection points are created, while we
cancel the one we started with. Therefore, 𝑏′1 ∪ 𝑏2 ∪ ... ∪ 𝑏𝑟 has fewer intersection points with ∪𝑟

𝑖=1�̃�𝑖 .
We proceed similarly in the case when 𝜕𝐶1 ∩ 𝜕𝑅𝜖 ≠ ∅ but 𝑏−1

1 is not contained in 𝜕𝐶2 because then we
may slide 𝑏1 over the remaining arcs in 𝜕𝐶2 to get 𝑏′1. The case when 𝜕𝐶1 intersects 𝜕𝑅𝜖 in an arc 𝛾
and 𝐶2 contains 𝑏−1

1 on its boundary is handled as follows. Since the foliated open book is sufficiently
stabilized, any connected component of 𝑃𝜖 intersects 𝜕𝑅𝜖 in at least two intervals. Therefore, there is
an arc 𝑐 ⊂ 𝜕𝐶 which is of type 𝑏𝑖 or 𝑏−1

𝑖 such that 𝑐−1 is not in 𝜕𝐶; otherwise, C would glue up to a

Figure 4.1. The polygon C, with the subarc �̃�0
1 crossing between the nonadjacent arcs 𝑏1 and 𝐵1.
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connected component of 𝑃𝜖 intersecting 𝜕𝑅𝜖 in only one interval. Sliding c over all other arcs in 𝜕𝐶
except 𝛾 gives us 𝑐′ parallel to 𝛾. After this, we may slide 𝑏1 over the arcs in 𝜕𝐶1 since now we only
need to slide it over 𝑐′ instead of 𝛾. Finally, we get 𝑏′1 which has a subarc lying on 𝑏1, while the rest lie
in a small neighborhood of �̃�1 as before. This means that no new intersection points are created, while
we cancel the one we started with. Therefore, {𝑏′1, 𝑏2, ..., 𝑏𝑟 } has fewer intersection points with ∪𝑟

𝑖=1�̃�𝑖

than ∪𝑟
𝑖=1𝑏𝑖 did. Iterating this procedure a finite number of times, we obtain a new set of cutting arcs

which are disjoint from the arcs �̃�.
Next, we show that for ∪𝑟

𝑖=1𝑏𝑖 and ∪𝑟
𝑖=1�̃�𝑖 disjoint, 𝒃 can be turned into �̃� via a finite sequence of

arcslides. Let C denote a connected component of 𝑃𝜖 \ 𝒃 as before. If each arc �̃�𝑖 in C is parallel to
some 𝑏 𝑗 or 𝑏−1

𝑗 , we are done with C. Suppose that there is an arc, say �̃�1, which is not parallel to any
𝑏 𝑗 or 𝑏−1

𝑗 . Then �̃�1 cuts C into two pieces 𝐶1 and 𝐶2, with the property that each 𝜕𝐶𝑖 contains more
than one arc of type 𝑏 𝑗 or 𝑏−1

𝑗 . Choose the labeling such that 𝐶 ∩ 𝑅𝜖 is in 𝐶1. Moreover, we can find a
pair of arcs 𝑏 𝑗 and 𝑏−1

𝑗 such that 𝑏 𝑗 ⊂ 𝜕𝐶2 and 𝑏−1
𝑗 ⊄ 𝜕𝐶2 (or vice versa); otherwise, every segment of

𝜕𝐶2 has its partner in 𝜕𝐶2, implying that some part of 𝐶2 glues up to a connected component of 𝑃𝜖 \ 𝒃
which does not intersect 𝑅𝜖 . If each such 𝑏 𝑗 were parallel to an arc �̃� 𝑗 , then ∪𝑟

𝑖=1�̃�𝑖 would again cut off
a subsurface which does not intersect 𝑅𝜖 . Therefore, we may assume that there exists a 𝑏 𝑗 which is not
parallel to any �̃�𝑙 . Now, we can slide 𝑏 𝑗 over all the arcs 𝑏𝑙 and 𝑏−1

𝑙 in 𝐶1 until it becomes parallel to
�̃�1. This way we associated an arc which was not parallel to any �̃�𝑙 before to �̃�1 not parallel to any 𝑏 𝑗

or 𝑏−1
𝑗 before. Repeating this, we can find a parallel pair for each �̃�𝑖 in C. �

Proposition 4.3. Let 𝒃 = {𝑏1, 𝑏2, . . . , 𝑏𝑟 } → {𝑏1 + 𝑏2, 𝑏2 . . . , 𝑏𝑟 } = 𝒃′ be an arcslide among the
cutting arcs on 𝑃𝜖 . If H and H′ are the resulting bordered sutured Heegaard diagams, then the resulting
contact elements x𝐴 ∈ B̂SA(H) and x′

𝐴 ∈ B̂SA(H′) are equivalent in the sense of Section 2.2.2, and
likewise for x𝐷 and x′

𝐷 .

Proof. An arcslide induces a pair of handleslides, one among the 𝛼-circles followed by one among their
pushoffs, that is, the 𝛽-circles. The induced maps on B̂SD and on B̂SA count holomorphic triangles
that do not interact with the boundary of the Heegaard diagram. Thus, the proof is a straightforward
adaptation of [HKM09b, Lemma 3.5]. �

We conclude the following.

Proposition 4.4. Let 𝒃 = {𝑏1, . . . , 𝑏𝑟 } and �̃� = {�̃�1, . . . , �̃�𝑟 } be two possible choices of cutting arcs
made in the construction of the bordered Heegaard diagram associated to the sufficiently stabilized
open book ({𝑆𝑖}, ℎ, {𝛾𝑖}), and let H and H̃ be the resulting bordered sutured Heegaard diagrams. Then
the resulting contact elements x𝐴 ∈ B̂SA(H) and x′

𝐴 ∈ B̂SA(H′) are equivalent in the sense of Section
2.2.2 and likewise for x𝐷 and x′

𝐷 .

Proof. This follows immediately from Propositions 4.2 and 4.3. �

Proposition 4.5. Let ({𝑆′𝑖}, ℎ
′, {𝛾′𝑖

±}) be the open book resulting from stabilization of the open book
({𝑆𝑖}, ℎ, {𝛾

±
𝑖 }) on the 𝑆0 page, and let H and H′ be the resulting bordered sutured Heegaard diagrams.

The resulting contact elements x𝐴 ∈ B̂SA(H) and x′
𝐴 ∈ B̂SA(H′) are equivalent in the sense of Section

2.2.2 and likewise for type D.

Proof. Let H = (Σ,𝜶, 𝜷,Z) be a bordered sutured Heegaard diagram adapted to ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }). We

take ({𝑆′𝑖}, ℎ
′, {𝛾′𝑖

±}) to be the result of stabilizing ({𝑆𝑖}, ℎ, {𝛾
±
𝑖 }) along a curve 𝛾 ⊂ 𝑆0. Recall that if

we denote by ℎ the extension of h to the added one-handle by the identity, then ℎ′ = 𝜏 ◦ ℎ, where 𝜏 is a
positive Dehn twist along the circle c formed by 𝛾 and the core of the attached one-handle. This means
that we can obtain from H a diagram H′ = (Σ′,𝜶′, 𝜷′,Z) adapted to ({𝑆′𝑖}, ℎ

′, {𝛾′𝑖
±}) as follows. Add a

one-handle to the two pages 𝑆𝜖 and −𝑆0 that form the Heegaard surface in order to obtain Σ′ = 𝑆′𝜖 ∪−𝑆
′
0.
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Figure 4.2. (a) The two neighborhoods on 𝑆𝜖 and 𝑆0 of the stabilization arc, viewed on the Heegaard
diagram H. The stabilization arc is drawn as a grey dashed arc on 𝑆0. The red and blue vertical lines on
each neighborhood represent a (possibly) more general sequence of 𝛼 and 𝛽 curves. (b) The Heegaard
diagram H′ corresponding to the stabilized open book, where the same choice of cutting arcs is used
away from the stabilization region and the cocore of the stabilizing one-handle is used as the final cutting
arc; the diagram H′ has one new 𝛼 circle denoted 𝛼′ and one new 𝛽 circle, denoted 𝛽′. In this and all
subsequent figure in this section, black lines are identified via translation in the plane, being part of the
binding. Green stars mark regions that intersect 𝜕Σ \ 𝑍; to see why the marked regions indeed intersect
the 𝜕Σ \ 𝑍 part of 𝜕Σ nontrivially, simply note that the stabilization arc has endpoints on 𝜕Σ \ 𝑍 .

Let 𝑏′ be the cocore of the one-handle on 𝑆′𝜖 , and let 𝑎′ be a perturbation of the new cutting arc 𝑏′ to
the left. Let

𝛽′ = 𝑏′ ∪ −ℎ′ ◦ 𝜄(𝑏′) ⊂ 𝑆′𝜖 ∪𝐵 −𝑆′0,

and let

𝛼′ = 𝑎′ ∪ −𝑎′ ⊂ 𝑆′𝜖 ∪𝐵 −𝑆′0.

Last, modify all 𝛽 curves that intersect 𝛾 by applying to them a positive Dehn twist along c; see Figure
4.2(b). Clearly H′ is adapted to the stabilized open book ({𝑆′𝑖}, ℎ

′, {𝛾′𝑖
±}).

Figures 4.2–4.4 demonstrate a sequence of Heegaard moves that transforms H′ into a diagram H′′

adapted to a foliated open book ({𝑆𝑖}, ℎ
′′, {𝛾±𝑖 }) whose monodromy ℎ′′ is isotopic to h.

In particular, in Figure 4.2(a) we see the original neighborhood of H′ where we intend to stabilize,
with the stabilization arc drawn in (dashed) grey, and in Figure 4.2(b) we see the result of the stabilization,
with new curves 𝛼′ and 𝛽′. Observe that each of 𝛼′ and 𝛽′ may intersect some number of 𝛼 and 𝛽 curves
on 𝑆0. We handleslide every 𝛽 curve other than 𝛽′ that intersects 𝛼′ over 𝛽′ to obtain Figure 4.3(a), in
which we have eliminated all intersection points between 𝛼′ and any 𝛽 curve other than 𝛽′. After a small
isotopy of the diagram to Figure 4.3(b), we then handleslide all 𝛼 circles other than 𝛼′ which intersect
𝛽′ over the curve 𝛼′. The result of these handleslides, shown in Figure 4.3(c), is a diagram in which 𝛼′

and 𝛽′ intersect once and there is a punctured torus neighborhood of 𝛼′ ∪ 𝛽′ which intersects no other
𝛼 or 𝛽 curves. We excise this punctured torus, obtaining Figure 4.4(a), after which we may isotope the
surface to obtain Figure 4.4(b); trading two bigons between 𝑆0 and 𝑆𝜖 produces the diagram H′′ shown
in Figure 4.4(c), whose monodromy ℎ′′ is isotopic to ℎ′.
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Figure 4.3. (a) The diagram after sliding all 𝛽 curves that intersect 𝛼′ over 𝛽′ to eliminate the
intersection points. (b) An isotopy of the previous figure. (c) The result of sliding all 𝛼 circles that
intersect 𝛽′ over 𝛼′, so that the new neighborhood of 𝛼′ ∪ 𝛽′ is a punctured torus with a single
intersection point of 𝜶′ ∩ 𝜷′.

Figure 4.4. (a) The result of excising the punctured torus, along with an isotopy of the curve that
represents the binding ‘trading’ two bigons from 𝑆𝜖 to 𝑆0; the grey lines are the boundary of the
punctured torus; the new binding is marked in purple. (b) An isotopy of the previous figure, again with
the grey lines as the boundary of a puncture. (c) An isotopy of the previous figure, divided by page
according to the new binding.

We will show that there is a type D (resp. type A) homotopy equivalence induced by the sequence of
moves which carries the contact class from H′ to the contact class from H′′.

Let x𝐷 ∈ B̂SD(H) be the generator corresponding to the set of intersection points x, as defined in
Section 3.2. Let 𝑥 ′ be the unique intersection point in 𝛼′ ∩ 𝛽′ on H′. Observe that the diagram H′ was
obtained by modifying H away from x, and that x′ � x ∪ {𝑥 ′} is the special generator for H′ coming
from the construction in Section 3.2. Let x′

𝐷 be the generator in B̂SD(H′) corresponding to x′. Last, let
x′′ be the special generator on H′′ and x′′

𝐷 be the corresponding generator in B̂SD(H′′).
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Figure 4.5. Top: The case of sliding a curve that does not contain an intersection point in x, that is,
some 𝛽−𝑗 . Bottom: The case of sliding a curve that contains an intersection point in x.

Let x0 = x′
𝐷 , and let 𝜷0 = 𝜷′. Consider the bordered Heegaard triple H𝑖 = (Σ, 𝜷𝑖−1, 𝜷𝑖 ,𝜶

′,Z)

corresponding to the ith handleslide in the sequence of handleslides making 𝛼′ disjoint from every 𝛽
curve except 𝛽′. Figure 4.5 illustrates the diagram in a neighborhood of the union of 𝛼′, 𝛽′ and the
𝛽-circles that intersect 𝛼′. Let 𝐹𝑖 be the map associated to the ith handleslide defined by counting
holomorphic triangles with Maslov index zero. Then, the chain map associated with the handleslides is

𝑓𝑖 := 𝐹𝑖 (·,Θ) : B̂SD(Σ, 𝜷𝑖−1,𝜶
′,Z) → B̂SD(Σ, 𝜷𝑖 ,𝜶

′,Z)

where Θ represents the top generator in (Σ, 𝜷𝑖−1, 𝜷𝑖 ,Z). We will argue that 𝑓1 carries x0 to a single
generator x1 in B̂SD(Σ, 𝜷1,𝜶

′,Z) and inductively, that each map 𝑓𝑖 carries the generator x𝑖−1 to a
generator x𝑖 .

Assume Δ ∈ 𝜋2 (x𝑖−1,Θ, y) is a Whitney triangle that contributes nontrivially to 𝑓𝑖 (x𝑖−1). Let 𝑛 𝑗

denote the coefficient of Δ in the region labelled with j, and recall that 𝑛 𝑗 ≥ 0 for all j.
First, consider a neighborhood of an intersection point in x𝑖−1 on one of the 𝛽 curves other than 𝛽′.

This situation is illustrated in the top left rectangle in the bottom image of Figure 4.5. Because the black
and pink intersection points must both appear as corners in the projection of Δ to H𝑖 , we have

𝑛1 + 𝑛3 + 1 = 𝑛4 𝑛4 + 𝑛5 = 𝑛3 + 1,
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so taking the sum of the two equations and cancelling terms, we see that 𝑛1 + 𝑛5 = 0, implying that
𝑛1 = 𝑛5 = 0. Thus, we see 𝑛4 = 𝑛3 + 1, so in particular 𝑛4 ≥ 1. But the multiplicity of the intersection
point marked in turquoise in y is 𝑛4 + 𝑛2 − 𝑛1 = 𝑛4 + 𝑛2 ≤ 1, so 𝑛4 = 1 and 𝑛2 = 0.

For the central rectangle, we first observe that 𝑛7 = 𝑛11 and 𝑛6 = 𝑛17; otherwise, some corner of the
projection of Δ to H𝑖 lies on the intersection of 𝛽′ with an 𝛼 curve other than 𝛼′, which cannot occur
since x𝑖−1 contains an intersection point between 𝛽′ and 𝛼′. Next, 𝑛𝑑0 = 0 since the region marked with
𝑑0 intersects 𝜕Σ \ 𝑍 nontrivially. We claim that if 𝑛𝑑 𝑗−1 = 0, then 𝑛𝑑 𝑗 = 0. Consider the green or blue
curve separating 𝑑 𝑗−1 or 𝑑 𝑗 . If it is part of a pair of green and blue curves containing an intersection point
of a generator that moves under the cobordism map, then either 𝑛5 = 0 or 𝑛18 = 0 (because the region
labelled 18 intersects 𝜕Σ \ 𝑍 nontrivially) can be used to deduce that if 𝑛𝑑 𝑗−1 = 0, then so is 𝑛𝑑 𝑗 . If,
however, the curve separating 𝑑 𝑗−1 or 𝑑 𝑗 is part of a pair of green and blue curves without an intersection
point of a generator that moves under the cobordism map, then the fact that 𝑛13 = 𝑛14 = 𝑛15 = 𝑛16 shows
that if 𝑛𝑑 𝑗−1 = 0, then 𝑛𝑑 𝑗 = 0. So all 𝑛𝑑 𝑗 = 0, and by the same logic 𝑛7 = 𝑛11 = 0.

Now, we see that

𝑛10 = 𝑛9 + 1 𝑛10 + 𝑛6 = 1 𝑛9 + 𝑛6 = 0,

implying that 𝑛6 = 𝑛9 = 0 and 𝑛10 = 1. Hence, the domain of Δ is the disjoint union of the small
yellow triangles, and y is the intersection point x𝑖 shown in turquoise in Figure 4.5. Consequently, for
an appropriate choice of the complex structure 𝑓𝑖 (x𝑖−1) = x𝑖 . So the map induced by the ith handleslide
among the 𝛽 curves takes each intersection point between 𝜷𝑖−1 and 𝜶 in x𝑖−1 to the nearest intersection
point between 𝜷𝑖 and 𝜶′.

The argument for handleslides among the 𝛼 curves is analogous. Let z be the generator that x′ is
carried to by the sequence of 𝛽 and 𝛼 handleslides. Next, destabilizing along a neighborhood of 𝛼′ ∪ 𝛽′

results in a Heegaard diagram H′′ adapted to a foliated open book ({𝑆𝑖}, ℎ
′′, {𝛾±𝑖 }) whose monodromy

ℎ′′ is isotopic to h, as in Figure 4.4(c). It is clear that the destabilization map sends z to x′′
𝐷 . By

Proposition 4.1, x′′
𝐷 is equivalent to x𝐷 , the generator for the original Heegaard diagram.

The argument for type A is similar. The ith handleslide induces maps

( 𝑓𝑖) 𝑗 : B̂SA(Σ, 𝜷𝑖−1,𝜶
′,Z) ⊗ A(Z)⊗( 𝑗−1) → B̂SA(Σ, 𝜷𝑖 ,𝜶

′,Z)

indexed by j; each map ( 𝑓𝑖)1 carries the generator x𝑖−1 to the generator x𝑖 , and whenever 𝑗 > 1, we have
( 𝑓𝑖) 𝑗 (x𝑖−1, 𝑎1, . . . , 𝑎 𝑗−1) = 0 for any 𝑎1, . . . , 𝑎 𝑗 ∈ 𝐴(Z). �

Proof of Theorem 1. Proposition 4.1 shows that isotopy of the monodromy h induces maps of bordered
sutured Floer modules carrying the distinguished generator to the distinguished generator, and therefore
that isotopy of the monodromy preserves the homotopy equivalence class of x𝐷 in B̂SD(−𝑀, Γ,Z).
Similarly, the discussion at the start of this section shows that changing the choice of almost complex
structure induces maps of bordered sutured Floer modules which are identity on the special generators,
hence preserve the distinguished generator x𝐷 . Proposition 4.5 shows that stabilization on the 𝑆0 page of
the open book ({𝑆𝑖}, ℎ, {𝛾𝑖}) induces maps of bordered sutured Floer modules carrying the distinguished
generator to the distinguished generator. By Theorem 2.23, these stabilizations suffice. Proposition 4.4
shows that for a sufficiently stabilized open book, varying the choice of cutting arcs also induces maps
of bordered sutured Floer modules carrying the distinguished generator to the distinguished generator.

The argument for type A proceeds similarly. �

Thus, we may finally define our contact invariants.

Definition 4.6. Let 𝑐𝐷 (𝑀, 𝜉,F) be the type D homotopy equivalence class (in the sense of Section
2.2.2) of x𝐷 in B̂SD(−𝑀, Γ,Z). Similarly, let 𝑐𝐴(𝑀, 𝜉,F) be the type A homotopy equivalence class
of x𝐴 in B̂SA(−𝑀, Γ,Z).
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5. Gluing

In this section, we show that after gluing, the tensor product of the classes from Definition 4.6 recovers
the Ozsváth–Szabó contact class.

Suppose that (𝑀𝐿 , 𝜉𝐿 ,F𝐿) and (𝑀𝑅, 𝜉𝑅,F𝑅) are two foliated contact three-manifolds and that
𝜓 : 𝜕𝑀𝐿 → 𝜕𝑀𝑅 is an orientation-reversing diffeomorphism that takes the reverse of F𝐿 to F𝑅. Let
(𝑀, 𝜉) = (𝑀𝐿 ∪𝜓 𝑀𝑅, 𝜉𝐿 ∪𝜓 𝜉𝑅). If we glue the corresponding bordered sutured three-manifolds
(𝑀𝐿 , Γ𝐿 ,F𝐿) and (𝑀𝑅, Γ𝑅,F𝑅), then we obtain a sutured three-manifold (𝑀 (|Γ|), Γ) = (𝑀𝐿 ∪𝐹 (Z)

𝑀𝑅, Γ𝐿∪Γ𝑅), where 𝑀 (|Γ|) denotes M with |Γ| balls removed. The associated chain complex computes
multipointed Heegaard Floer homology. It follows that SFH(−𝑀 (|Γ|), Γ) � ĤF(−𝑀) ⊗ 𝐻∗(𝑇

|Γ |−1).
The gluing statement is approximately the following: Under the map

B̂SA(−𝑀𝐿 , Γ𝐿 ,Z) �A(Z) B̂SD(−𝑀𝑅, Γ𝑅,−Z) → SFC(−𝑀 (|Γ|), Γ),

the box tensor product of the bordered contact invariants (𝑀𝐿 , 𝜉𝐿) and (𝑀𝑅, 𝜉𝑅) maps to the generator
corresponding to the multipointed contact invariant of (𝑀, 𝜉). In order to state the theorem precisely,
we must fix the respective Heegaard diagrams, as we describe next.

We begin with sorted abstract foliated open books for the two foliated contact three-manifolds. We
will show that gluing two bordered sutured Heegaard diagrams adapted to these open books yields a
multipointed Heegaard diagram adapted to an open book that supports (𝑀, 𝜉).

In fact, we can do two different constructions. In the first construction, we glue the two foliated
open books as described in Section 2.3.6 to obtain an open book (𝑆, ℎ) for (𝑀, 𝜉). We then construct
an adapted (multipointed) Heegaard diagram H with a distinguished generator x for 𝑐(𝜉) ⊗ 𝜃 |Γ |−1. In
the second construction, we begin with bordered sutured Heegaard diagrams adapted to the foliated
contact three-manifolds constructed as in Section 3.2; these have distinguished generators x𝐿 and x𝑅

which give 𝑐𝐷 (𝜉𝐿) and 𝑐𝐴(𝜉
𝑅), respectively. We then glue the diagrams together to obtain a sutured

Heegaard diagram H′ for (−𝑀 (|Γ|), Γ) with the distinguished generator x′ � x𝐿 � x𝑅 representing
𝑐𝐷 (𝜉𝐿) � 𝑐𝐴(𝜉

𝑅). Each of these constructions involves some choice of cutting arcs. We will start
with the latter construction and show that the obtained sutured Heegaard diagram for (−𝑀 (|Γ|), Γ) –
interpreted as a multipointed Heegaard diagram for M, as in the end of Section 2.2.1 – is the Heegaard
diagram coming from the former construction.

Let ({𝑆𝐿
𝑖 }

2𝑘
𝑖=0, ℎ

𝐿 , {𝛾±,𝐿
𝑖 }) and ({𝑆𝑅

𝑖 }
2𝑘
𝑖=0, ℎ

𝑅, {𝛾±,𝑅
𝑖 }) be sorted abstract foliated open books for

the triples (𝑀𝐿 , 𝜉𝐿 ,F𝐿) and (𝑀𝑅, 𝜉𝑅,F𝑅), respectively. Let H𝐿 = (Σ𝐿 , 𝜷𝐿 ,𝜶𝐿 ,Z𝐿) and H𝑅 =
(Σ𝑅, 𝜷𝑅,𝜶𝑅,Z𝑅) be Heegaard diagrams adapted to these foliated open books. Since F𝐿 is the reverse
of F𝑅, we can identify Z𝐿 with −Z𝑅.6 We can therefore glue the two diagrams along Z𝐿 = −Z𝑅 to
obtain a sutured diagram H′ = H𝐿 ∪H𝑅. More precisely, since 𝐸𝐿

± = 𝐸𝑅
∓ and 𝐻𝐿

± = 𝐻𝑅
∓ , the endpoints

of the two arcs 𝛽𝑎,𝐿
𝑖 and 𝛽𝑎,𝑅

𝑖 may be isotoped to match up on 𝐴𝐿
𝜖 = −𝐴𝑅

𝜖 for each 𝑖 ∈ 𝐻𝐿
± = 𝐻𝑅

∓ . This
yields the curves 𝛽𝑎

𝑖 = 𝛽𝑎,𝐿
𝑖 ∪ 𝛽𝑎,𝑅

𝑖 on the surface Σ′ = Σ𝐿 ∪Z𝐿=−Z𝑅 Σ𝑅. See Figure 5.1.
As a next step, we cap all boundary components of Σ′ with disks and place a basepoint in the middle

of each disk. We thus obtain a multipointed Heegaard diagram H for M. We could equivalently have
obtained H from H𝐿 and H𝑅 by gluing Σ𝐿 to Σ𝑅 along the entire 𝐴𝐿

𝜖 and 𝐴𝑅
𝜖 and placing a basepoint

in the middle of each component of 𝐴𝐿
𝜖 = −𝐴𝑅

𝜖 . Now, we are ready to state the precise gluing statement.

Theorem 5.1 (Gluing). As above, let (𝑀, 𝜉) denote the manifold constructed by gluing foliated open
books along their compatible boundaries, and let H be the multipointed Heegaard diagram formed by
capping the discs on the resulting sutured Heegaard diagram H′. Then H is adapted to an open book
(𝑆, ℎ) for (𝑀, 𝜉) and the box tensor product x𝐴 � x𝐷 agrees with the generator x representing the
multipointed contact invariant for (𝑀, 𝜉).

6For ease of exposition, we assume that the intervals 𝐼 𝐿± on 𝐴𝐿
𝜖 and 𝐼𝑅∓ on 𝐴𝑅

𝜖 are chosen so that they match up after gluing,
which can always be obtained up to isotopy.
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Figure 5.1. Top: Two bordered sutured Heegaard diagrams with compatible boundary, glued together.
We have 𝑖1 < · · · < 𝑖𝑠 and {𝑖1, . . . , 𝑖𝑠} ∈ 𝐻𝐿

+ = 𝐻𝑅
− ; similarly, 𝑗1 < · · · < 𝑗𝑡 and { 𝑗1, . . . , 𝑗𝑡 } ∈ 𝐻𝐿

− =
𝐻𝑅

+ . Recall that a 𝛽-arc 𝛽𝑎,•
𝑖 corresponding to a hyperbolic point in 𝐻•

± is also denoted by 𝛽±,•
𝑖 , to help

read the diagram. Cutting arcs 𝑏𝐿
𝑗 and 𝑏𝑅

𝑗 , as well as their perturbations 𝑎𝐿
𝑗 and 𝑎𝑅

𝑗 , are labelled without
subscripts, again for ease for reading. Bottom: The corresponding foliation on the left boundary. Only
an interval of 𝐴0 and the relevant nearby separatrices are shown.

Since our goal is to show that H is a multipointed Heegaard diagram compatible with an open book
for (𝑀, 𝜉), we will continue to keep track of the union 𝐵 = 𝐵𝐿 ∪ 𝐵𝑅 ⊂ Σ = Σ𝐿 ∪𝐴𝐿=−𝐴𝑅 Σ𝑅 of the
two original bindings. Observe that B splits Σ into two ‘pages’, namely 𝑆′ � 𝑆𝐿

𝜖 ∪𝐴𝐿
𝜖 =−𝐴𝜖

𝑅
𝑆𝑅

𝜖 , and
𝑆′′ � 𝑆𝐿

0 ∪𝐴𝐿
0 =−𝐴0

0
𝑆𝑅

0 .
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We will break the argument relating H to an open book for (𝑀, 𝜉) into three propositions. Consider
the collections of arcs obtained by restricting the 𝛽 and 𝛼 curves to 𝑆′, and denote these by 𝒃′ = {𝑏′𝑖} and
𝒂′ = {𝑎′𝑖}, respectively. Denote the remaining parts of the 𝛽 and 𝛼 curves by 𝒃′′ = {𝑏′′𝑖 } and 𝒂′′ = {𝑎′′𝑖 }.

Proposition 5.2. The set of arcs 𝒃′ cuts 𝑆′ into |𝐸𝐿 |
2 = |𝐸𝑅 |

2 disks, each of which contains exactly one
basepoint.

Proof. Following the notation in Section 3.2, we will write 𝑏+,•𝑖 for 𝛽𝑎,•
𝑖 ∩𝑆•𝜖 whenever 𝑖 ∈ 𝐻•

+. Thus, the
collection 𝒃′ is exactly the union of the collections 𝒃+,𝐿 = {𝑏𝑖

+,𝐿}𝑖∈𝐻 𝐿
+

, 𝒃𝐿 = {𝑏𝐿
𝑖 }, 𝒃

+,𝑅 = {𝑏𝑖
+,𝑅}𝑖∈𝐻𝑅

+

and 𝒃𝑅 = {𝑏𝑅
𝑖 }.

Observe that

𝑆′ \ 𝒃′ = (𝑆𝐿
𝜖 \

(
𝒃𝐿 ∪ 𝒃+,𝐿)

)
∪𝐴𝐿

𝜖 =−𝐴𝑅
𝜖
(𝑆𝑅

𝜖 \
(
𝒃𝑅 ∪ 𝒃+,𝑅)

)
,

so to prove the proposition, we need to understand how the pieces in the right- and left-hand sides glue
together.

Recall from Section 3.2 that each connected component of 𝑆•𝜖 \ (𝒃• ∪ 𝒃+,•) is a disk with exactly one
interval of 𝐴•

𝜖 on its boundary; the rest of the disk’s boundary consists of copies of arcs in 𝒃• ∪ 𝒃+,•

and intervals on the binding 𝐵•. The intersection with 𝐴•
𝜖 must contain a basepoint, and thus we have

exactly one basepoint in each component of 𝑆•𝜖 \ (𝒃• ∪ 𝒃+,•). Thus, restricting the gluing of H𝐿 and H𝑅

to these disks results in a pairing – each disk in 𝑆𝐿
𝜖 \ (𝒃𝐿 ∪ 𝒃+,𝐿) is glued to a disk in 𝑆𝑅

𝜖 \ (𝒃𝑅 ∪ 𝒃+,𝑅)

along an interval of 𝐴𝐿
𝜖 = −𝐴𝑅

𝜀 . Thus, 𝑆′ \ 𝒃′ consists of |𝐸𝐿
+ | =

|𝐸𝐿 |
2 disks, each containing exactly one

basepoint. �

Next, we observe the following.

Proposition 5.3. The arcs in 𝒃′ are the standard perturbations (i.e., perturbations ‘to the right’, as in
[HKM09a]) of the arcs in 𝒂′.

Proof. This follows immediately from the construction in Section 3.2, as each arc �̃�•𝑖 is a perturbation
to the left of the arc 𝑏+,•𝑖 , and each arc 𝑎•𝑖 is a perturbation to the left of 𝑏•𝑖 . �

Note that this implies that we can replace 𝒃′ with 𝒂′ in the statement of Proposition 5.2.
Recall from Section 2.3.6 the definition of the monodromy associated to the open book (𝑆, ℎ) built

by gluing a pair of compatible foliated open books: The abstract map ℎ : 𝑆 → 𝑆 is defined by flowing
𝑆0 through the manifold in the positive t-direction to 𝑆2𝑘 , a map denoted by 𝜄 and then applying the left
and right monodromies to the appropriate subsurfaces.

Proposition 5.4. With the above definitions, 𝑎′′𝑖 = 𝑎′𝑖 (via the trivial identification of the 𝜖 and 0 pages).
Furthermore, up to isotopy fixing the boundary, ℎ : 𝑆′ → 𝑆′′ maps the arcs 𝑏′𝑖 onto 𝑏′′𝑖 .

Proof. The first statement follows immediately from the above discussion. To prove the second assertion,
consider the identifications

𝑅𝐿
𝜖 � 𝑅+(𝑀

𝐿) � 𝑅−(𝑀
𝑅) � 𝑅𝑅

2𝑘 and 𝑅𝑅
𝜖 � 𝑅+(𝑀

𝑅) � 𝑅−(𝑀
𝐿) � 𝑅𝐿

2𝑘

in the definition of 𝜄.
Each of the surfaces is defined as a neighborhood of a graph, and we note that away from a collar

neighborhood of 𝐴𝐿
𝜖 = −𝐴𝑅

𝜖 and 𝐴𝑅
2𝑘 = −𝐴𝐿

2𝑘 the identifications may be chosen to induce isotopies

𝛾+,𝐿𝑖 � 𝛿𝐿
𝑖 � 𝛿

𝑅
𝑖 � 𝛾

−,𝑅
𝑖 and 𝛾+,𝑅𝑖 � 𝛿𝑅

𝑖 � 𝛿
𝐿
𝑖 � 𝛾

−,𝐿
𝑖 .

(Recall that 𝛿𝑖 are the (un)stable separatrices of the foliation connecting ℎ𝑖 to the elliptic points.)
Away from 𝐴𝐿

𝜖 = −𝐴𝑅
𝜖 , the 𝒃′ agree with 𝛾+,• curves, which are carried by 𝜄 to 𝛾−,• curves before

being sent by ℎ𝑅 and ℎ𝐿 to the 𝒃
′′

curves on 𝑆′′. As the collar neighborhood of −𝐴𝐿
0 ∪ 𝐴𝐿

𝜖 = 𝐴𝑅
0 ∪−𝐴𝑅

𝜖

is a union of disks, the statement follows. �
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Proof of Theorem 5.1. The above propositions demonstrate that the multipointed Heegaard diagram H
constructed above corresponds to the open book (𝑆, ℎ) obtained by gluing the sorted foliated open books
({𝑆𝐿

𝑖 }, ℎ
𝐿) and ({𝑆𝑅

𝑖 }, ℎ
𝑅). Indeed, first, S is diffeomorphic to 𝑆′ and 𝑆′′, and by Proposition 5.2 the

page 𝑆′ is cut by 𝒂′ into |Γ| disks, each containing a basepoint. Furthermore, by Proposition 5.3, the
arcs in 𝒃′ are obtained by the usual perturbation of the 𝒂′ arcs. Lastly, by Proposition 5.4, the arcs of 𝒂′′
are the image of the arcs of 𝒂′ under the identification of 𝑆′ with 𝑆′′, while the arcs in 𝒃′′ are the image
of the arcs of 𝒃′ under a diffeomorphism in the mapping class of h. There is only one generator in the
page 𝑆′, which by definition represents the multipointed contact invariant of 𝜉, while by construction it
is also the box tensor of the bordered contact invariants for 𝜉𝐿 and 𝜉𝑅. This completes the proof. �

6. Relationship to the HKM contact element

In this section, we relate the invariants defined in this paper to the HKM contact invariant, that is, the
contact invariant for sutured manifolds from [HKM09a]. Let Z = (𝑍, 𝑎, 𝑚) be an arc diagram and
𝐹 = 𝐹 (Z) be the corresponding surface. The union of Z and the parametrizing arcs �2𝑘

𝑖=1𝑒𝑖 on F is
an embedded graph, denoted by 𝐺 (Z) ⊂ 𝐹. For any subset r of parametrizing arcs, Zarev defines a
bordered sutured manifold W𝑟 , called a cap, in [Zar10, Definitions 2.5 and 6.1]. We recall the definition
for a 𝛽-type arc diagram Z .

First, W𝑟 consists of the three-manifold 𝑊 = 𝐹 × [0, 1]/∼, where (𝑥, 𝑡) ∼ (𝑥, 𝑡 ′) whenever 𝑥 ∈ 𝜕𝐹.
Thus, 𝜕𝑊 = (−𝐹 × {0}) ∪ (𝐹 × {1}), and the bordered and sutured parts of 𝜕𝑊 are −𝐹 × {0} and
𝐹 × {1}, respectively. Second, each component of Z is a pushoff of an arc in 𝜕𝐹 into the interior of
F; denote the union of these arcs in 𝜕𝐹 by 𝑆−. Let R be the union of the disk regions enclosed by Z
and 𝑆−. Then, the sutures Γ𝑟 ⊂ 𝐹 × {1} are defined as 𝜕 (𝑅 ∪ 𝑁 (𝑟)) \ 𝑆−, where 𝑁 (𝑟) = �𝑒𝑖 ∈𝑟𝑁 (𝑒𝑖).
Furthermore, 𝑅−(Γ𝑟 ) = 𝑅 ∪ 𝑁 (𝑟). Finally, −𝐹 × {0} is parametrized by −Z .

Zarev constructs a bordered sutured Heegaard diagram H𝑟 = (Σ𝑟 ,𝜶𝑟 , 𝜷𝑟 ,−Z) for any cap W𝑟 as
follows. Let 𝐷 = (−𝑍) × [0, 1]. The endpoints of any parametrizing arc 𝑒𝑖 is a pair of matched points
in 𝑎 ⊂ −𝑍 . To construct Σ𝑟 , first for every 𝑒𝑖 ∉ 𝑟 , do 0-surgery on D along the surface framed 0-sphere
obtained by slightly pushing (𝜕𝑒𝑖) × {0} into Int(𝐷). Then, for any 𝑒𝑖 ∈ 𝑟 attach a band to D along a
small neighborhood in −𝑍 × {1} of the 0-sphere (𝜕𝑒𝑖) × {1} so the resulting surface remains oriented.
This diagram has no 𝛽-circles. However, associated to each 𝑒𝑖 there is a 𝛽 arc 𝛽𝑟

𝑖 ⊂ Σ𝑟 which connects
the points (𝜕𝑒𝑖) × {0}. If 𝑒𝑖 ∈ 𝑟 , 𝛽𝑟

𝑖 is the union of (𝜕𝑒𝑖) × [0, 1] and the core of the corresponding
band. If 𝑒𝑖 ∉ 𝑟 , 𝛽𝑟

𝑖 goes over the tube on the boundary of the corresponding one-handle once. Write
𝜷𝑟 = {𝛽𝑟

1 , . . . , 𝛽
𝑟
2𝑘 }. Next, for any 𝑒𝑖 ∉ 𝑟 let 𝛼𝑟

𝑖 ⊂ Σ𝑟 be the dual circle to 𝛽𝑟
𝑖 , that is, the belt sphere

of the associated one-handle. This circle intersects 𝛽𝑟
𝑖 in a single point denoted by 𝑥𝑟𝑖 and is disjoint

from 𝛽𝑟
𝑗 for any 𝑗 ≠ 𝑖. Then, let 𝜶𝑟 = {𝛼𝑟

𝑖 | 𝑒𝑖 ∉ 𝑟}. Finally, 𝐺 (−Z) is embedded in Σ𝑟 such that −𝑍
is identified with (−𝑍) × {0} and any edge 𝑒𝑖 is identified with 𝛽𝑟

𝑖 . Clearly, this diagram has a unique
generator x𝑟 = {𝑥𝑟𝑖 | 𝑒𝑖 ∉ 𝑟}. See Figure 6.1.

We now consider a particular cap that arises naturally in the context of the bordered sutured manifold
(𝑀, Γ,Z) associated to a foliated contact three-manifold (𝑀, 𝜉,F). As in Section 3.1, let Z = (𝑍, 𝑎, 𝑚)

Figure 6.1. Left: The arc diagram for the torus example in Figure 3.1; note that the arc 𝑒𝑖 corresponding
to 𝛿𝑖 is labelled with i. Right: The bordered sutured diagram H𝑟 for 𝑟 = {𝑒2, 𝑒4}.
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be the arc diagram which parametrizes the bordered part 𝐹 = 𝐹 (Z) in 𝜕𝑀 and let Γ(F) denote the
dividing set associated to the foliation F . Let k be the number of elements in 𝐻±, so |𝑎 | = 4𝑘 . Each
matched pair of points in a corresponds to a hyperbolic point and to a parameterizing arc 𝑒𝑖 ⊂ 𝛿𝑖 , where
𝑖 ∈ [2𝑘] is the index of the point. From now on, fix 𝑟 = �𝑖∈𝐻+

𝑒𝑖 and define the associated cap W := W𝑟

with suture Γ𝑟 .
Correspondingly, we define the sutured manifold (𝑀, Γ̃) := (𝑀, Γ,Z) ∪𝐹 W . We will show here that

the sutures Γ̃ may in fact be identified with −Γ(F). Recall that Γ̃ separates 𝜕𝑀 into regions 𝑅±(Γ̃). It
is straightforward from the definition that

𝑅−(Γ̃) = 𝑅−(Γ) ∪ 𝑅−(Γ𝑟 ) = 𝑅−(Γ)
⋃

(𝑅 ∪ 𝑁 (𝑟)).

Observe that 𝑅−(Γ)
⋃
(𝑅 ∪ 𝑁 (𝑟)) is a neighborhood of the stable separatrices of points in 𝐻+. Thus, we

can identify it with 𝑅+(F), and as a consequence, Γ̃ = −𝜕𝑅+(F) and is isotopic to −Γ(F). To avoid a
proliferation of notation, we will henceforth denote the sutured manifold obtained by gluing the cap as
(𝑀, Γ) := (𝑀,−Γ(F)).

Consequently, if we define W = (−𝑊, Γ,−Z), then

(−𝑀,−Γ(F)) = (−𝑀, Γ,Z) ∪𝐹 W .

The gluing formula gives the following:

SFC(−𝑀,−Γ(F)) � B̂SA(−𝑀, Γ,Z) �A(Z) B̂SD(W).

Let 𝜄𝑟 ∈ A(Z) be the idempotent corresponding to the horizontal arcs for the points in a that lie on
the boundary of r. It follows from the special structure of the Heegaard diagram for W that B̂SD(W) is
an elementary type D module generated by 𝜄𝑟 ; see [Zar10, Proposition 6.2]. Thus,

SFH(−𝑀,−Γ(F)) � 𝐻∗

(
B̂SA(−𝑀, Γ,Z)

)
· 𝜄𝑟 .

See [Zar10, Theorem 6.5].
We now prove Theorem 3 for 𝜄+ given by 𝜄𝑟 .

Proof of Theorem 3. Suppose ({𝑆𝑖}
2𝑘
𝑖=0, ℎ, {𝛾

±
𝑖 }) is a sorted foliated open book compatible with the triple

(𝑀, 𝜉,F). Let H = (Σ,𝜶, 𝜷 = 𝜷𝑎 ∪ 𝜷𝑐 ,Z) be the bordered sutured Heegaard diagram constructed in
Section 3.2 for (𝑀, Γ,Z). We begin with a brief sketch of the argument before presenting it in detail. First,
we will construct a sutured Heegaard diagram for (𝑀,−Γ(F)) by gluing H to the diagram H𝑟 , where
H𝑟 denotes the diagram for the cap W described above. Then, we show that after possibly performing
some handleslides and 2𝑘-times destabilizing this diagram, one recovers the sutured Heegaard diagram
corresponding to the partial open book (𝑆′ = 𝑆0, 𝑃

′ = 𝑃0, ℎ
′ = ℎ|𝑃2𝑘 ◦ 𝜄) compatible with the contact

sutured manifold (𝑀, Γ(F), 𝜉), following the conventions in [HKM09a, Section 2]. Note that this is
a diagram for (𝑀,−Γ(F)). Letting x𝑟 = {𝑥𝑟𝑖 | 𝑖 ∈ 𝐻−} denote the generator of H𝑟 , we additionally
prove that the map induced by the Heegaard moves sends the generator x ⊗ x𝑟 in SFC(H ∪H𝑟 ) to the
generator which represents the contact invariant EH(𝑀, Γ(F), 𝜉) ∈ SFH(−𝑀,−Γ(F)).

After gluing H and H𝑟 along Z, for every 𝑖 ∈ [2𝑘], the arc 𝛽𝑟
𝑖 in Σ𝑟 will be paired with the arc 𝛽𝑎

𝑖

in Σ, producing a circle 𝛽𝑖 . For any 𝑖 ∈ 𝐻+, there exists a circle �̃�𝑖 in 𝜶, and for any 𝑖 ∈ 𝐻−, we define
�̃�𝑖 = 𝛼𝑟

𝑖 . We write 𝜶𝑟 = {�̃�𝑖 | 𝑖 ∈ 𝐻−}. Then

H′ = H ∪H𝑟 =
(
Σ′ = Σ ∪𝑍 Σ𝑟 ,𝜶′ = 𝜶 ∪ 𝜶𝑟 , 𝜷′ = 𝜷𝑐 ∪ {𝛽𝑖}𝑖∈[2𝑘 ]

)
is a Heegaard diagram for (𝑀,−Γ(F)). In this diagram, we see that �̃�𝑖 ∩ 𝛽𝑖 = {𝑥+𝑖 } for 𝑖 ∈ 𝐻+, while
�̃�𝑖 ∩ 𝛽𝑖 = {𝑥𝑟𝑖 } for 𝑖 ∈ 𝐻−. Furthermore, for 𝑖 ∈ 𝐻−, the 𝛼-circle �̃�𝑖 is disjoint from all circles in
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𝜷′ aside from 𝛽𝑖 . On the other hand, since H is defined using an abstract sorted foliated open book
decomposition, Condition (2) of Definition 2.21 implies that, for any 𝑖, 𝑗 ∈ 𝐻+, the arc 𝛽𝑎

𝑖 ⊂ Σ is disjoint
from the circle �̃� 𝑗 ⊂ Σ if and only if 𝑗 > 𝑖. Thus, for 𝑖 ∈ 𝐻+, the 𝛽-circle 𝛽𝑖 is disjoint from the subset

{𝛼1, . . . , 𝛼2𝑔0+𝑛0+|𝐴0 |−𝑘−2} ∪ {�̃� 𝑗 | 𝑗 ∈ 𝐻+ and 𝑗 > 𝑖} ∪ 𝜶𝑟 ⊂ 𝜶′.

Suppose 𝑖 ∈ 𝐻−. Since �̃�𝑖 intersects 𝛽𝑖 once, the curves in 𝜶 can be made disjoint from 𝛽𝑖 by sliding
each curve in 𝜶 that intersects 𝛽𝑖 over �̃�𝑖 . Then we may destabilizeH′ using the pair �̃�𝑖 and 𝛽𝑖 . Repeating
this procedure for each 𝑖 ∈ 𝐻− yields a Heegaard diagram H′′ = (Σ′′,𝜶′′, 𝜷′′) for (𝑀,−Γ(F)), where
𝜶′′ = 𝜶, 𝜷′′ = 𝜷𝑐 ∪ {𝛽𝑖}𝑖∈𝐻+

, and Σ′′ is obtained from Σ by attaching bands along 𝜕𝛽𝑎
𝑖 for each 𝑖 ∈ 𝐻+.

Write 𝐻− = { 𝑗1 < 𝑗2 < · · · < 𝑗𝑘 }. Let H′
𝑙 = (Σ′

𝑙 ,𝜶
′
𝑙 , 𝜷

′
𝑙) be the Heegaard diagram obtained from H′

by applying the aforementioned Heegaard moves for 𝑗1, . . . , 𝑗𝑙−1. Denote by

𝑓 −𝑙 : SFC(H′
𝑙) = SFC(Σ′

𝑙 , 𝜷
′
𝑙 ,𝜶

′
𝑙) → SFC(H′

𝑙+1) = SFC(Σ′
𝑙+1, 𝜷

′
𝑙+1,𝜶

′
𝑙+1)

the composition of chain maps corresponding to the lth sequence of moves.
Let 𝑓 − = 𝑓 −𝑘 ◦ · · · ◦ 𝑓 −1 . Note that the intersection points for H and H′′ are in one-to-one correspon-

dence, and x ∈ SFC(H′′) denotes the generator corresponding to the intersection point x for H. Let 𝑓 ℎ𝑙
be the composition of chain maps associated with the sequence handleslides, and let 𝑓 𝑑𝑠

𝑙 be the chain map
associated with the subsequent destabilization. By an argument analogous to that in the proof of Proposi-
tion 4.5, we have that for an appropriate choice of the complex structure 𝑓 −𝑙 = 𝑓 𝑑𝑠

𝑙 ◦ 𝑓 ℎ𝑙 (x⊗x𝑟
𝑙 ) = x⊗x𝑟

𝑙+1,
and so 𝑓 −(x ⊗ x𝑟 ) = x. Here, x𝑟

𝑙 = {𝑥𝑟𝑗𝑖 | 𝑙 ≤ 𝑖 ≤ 𝑘}.
Next, we simplify the diagram H′′ using the pairs �̃�𝑖 and 𝛽𝑖 for all 𝑖 ∈ 𝐻+. Suppose 𝐻+ = {𝑖1 < 𝑖2

< · · · < 𝑖𝑘 }. Note that 𝛽𝑖1 ∩ �̃�𝑖1 = 𝑥
+
𝑖1

while 𝛽𝑖1 is disjoint from the rest of the 𝛼-circles. As before, first
slide every 𝛽-circle that intersects �̃�𝑖1 over 𝛽𝑖1 to remove the intersection points and then destabilize
the diagram using �̃�𝑖1 and 𝛽𝑖1 . In the new diagram, 𝛽𝑖2 is disjoint from all 𝛼-circles except �̃�𝑖2 and
𝛽𝑖1 ∩ �̃�𝑖1 = 𝑥+𝑖2 . So we can repeat this simplification for 𝑖2 and in fact continue until 𝑖 = 𝑖𝑘 . At the end,
we get a surface homeomorphic to Σ \ �𝑖∈𝐻+

𝑁 (𝛽𝑎
𝑖 ). By definition, Σ = 𝑆𝜖 ∪𝐵 (−𝑆0), where 𝑆𝜖 is a

copy of 𝑆0. Therefore,

Σ \ �𝑖∈𝐻+
𝑁 (𝛽𝑎

𝑖 ) � (𝑆0 \ �𝑖∈𝐻+
𝑁 (𝛾+𝑖 )) ∪𝐵 (−𝑆0) = 𝑃0 ∪𝐵 (−𝑆0)

and this surface is equipped with

{𝛼1, . . . , 𝛼2𝑔0+𝑛0+|𝐴0 |−𝑘−2} and {𝛽1, . . . , 𝛽2𝑔0+𝑛0+|𝐴0 |−𝑘−2}.

This is exactly the sutured Heegaard diagram defined in [HKM09a] associated to the partial open book
(𝑆′, 𝑃′, ℎ′).

Let H′′
𝑙 be the Heegaard diagram obtained from H′′ after applying the above Heegaard moves for

𝑖1, . . . , 𝑖𝑙−1, and denote the chain map induced by the lth sequence of moves by

𝑓 +𝑙 : SFC(H′′
𝑙 ) → SFC(H′′

𝑙+1).

Let 𝑓 + = 𝑓 +𝑘 ◦ · · · ◦ 𝑓 +1 . Once again, by an argument analogous to that in the proof of Proposition
4.5 we have that for an appropriate choice of complex structure, 𝑓 +(x) is the generator representing the
contact invariant EH(𝑀, Γ(F), 𝜉), that is, {𝑥1, . . . , 𝑥2𝑔0+𝑛0+|𝐴0 |−𝑘−2}.

Hence, 𝑓 +∗ ◦ 𝑓 −∗ (𝑐𝐴(𝜉) · 𝜄𝑟 ) = 𝑓 +∗ ◦ 𝑓 −∗ ([x ⊗ x𝑟 ]) = EH(𝑀, Γ(F), 𝜉). �

7. Examples

Example 7.1. For our first example, consider the foliated open books obtained as follows. Begin with
the open book for (𝑆3, 𝜉std) whose pages are disks. Embedding a sphere in this open book so that it
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Figure 7.1. The sphere shown on the left separates 𝑆3 into two tight balls and induces a foliated open
book for each. The elliptic points are labelled with the signs associated to the ball whose first page is
connected, as shown on the right.

Figure 7.2. The bordered sutured Heegaard diagram adapted to the sorted foliated open book of
Example 7.1.

intersects the binding in four points, as in Figure 7.1, produces two tight balls. See Figure 7.3. We first
consider the ball whose initial page is a rectangle.

Observe that this ball can also be obtained by cutting the solid torus of Example 2.5 along a meridional
disk disjoint from the binding, which has the effect of removing a pair of hyperbolic points from the
induced foliated open book. In this example, the first hyperbolic point is positive and the second negative,
so the foliated open book is automatically sorted. The associated Heegaard diagram H1 is shown in
Figure 7.2.

Let x be the unique intersection point on the 𝑆𝜖 part of the diagram, and let y be the other intersection
point. Let 𝜌1 and 𝜌2 be the algebra elements corresponding to the Reeb chords on the inside and outside
components of 𝜕H1, as seen on Figure 7.2. The type A structure B̂SA(H1) is generated by x and y, and
has structure maps

𝑚2 (𝑦, 𝜌1) = 𝑥

𝑚2 (𝑦, 𝜌2) = 𝑥.

The contact class 𝑐𝐴(𝐵
3, 𝜉1,F1) is the homotopy equivalence class of x.

Example 7.2. As a second example we consider the ball in (𝑆3, 𝜉std) which is the complement of the
previous example. See Figure 7.3.
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Figure 7.3. The shaded regions represent the pages of the solid ball from Example 7.1, while their
unshaded complements are the pages of a foliated open book for the ball of Example 7.2.

Figure 7.4. A sorted foliated open book for the ball of Example 7.2.

Observe that 𝑆0 is disconnected, and the first negative hyperbolic point is followed by a second
positive hyperbolic point. The associated foliated open book is not sorted, so we stabilize it before
constructing the associated bordered sutured Heegaard diagram H2. The result of the stabilization is
shown in Figure 7.4.

By keeping track of the four elliptic points in the embedded open book decomposition of (𝑆3, 𝜉std)
and their images on the two Heegaard diagrams, we see that the corresponding Heegaard diagram H
for (𝑆3, 𝜉std) is obtained by gluing H1 to H2 by identifying the outside boundary component of one
diagram to the inside boundary component of the other, and vice versa. Thus, to have consistent labels
(between H1 and H2) of the algebra generators for the given foliation, we must label the generator for
the inside boundary component of H2 by 𝜌2 and the other one by 𝜌1. Let s be the unique intersection
point on the 𝑆𝜖 part of H2, and let t be the other intersection point. The type D structure B̂SD(H2) is
generated by s and t, and has structure map

𝛿1 (𝑡) = (𝜌1 + 𝜌2) ⊗ 𝑠.

The contact class 𝑐𝐷 (𝐵3, 𝜉2,F2) is the homotopy equivalence class of s.

Example 7.3. We take the box tensor product of the type A structure from Example 7.1 and the type D
structure from Example 7.2, to compute the contact class for (𝑆3, 𝜉std). Considering the idempotents,
B̂SA(H1) � B̂SD(H2) is generated by 𝑦 ⊗ 𝑡 and 𝑥 ⊗ 𝑠.The differential 𝜕 = 𝜕� is trivial, so the homology
𝐻∗(B̂SA(H1) � B̂SD(H2)) is generated by [𝑦 ⊗ 𝑡] and [𝑥 ⊗ 𝑠]. Therefore, [𝑥 ⊗ 𝑠] is the contact class of
the glued three-sphere (𝑆3, 𝜉std).

Example 7.4. Finally, we return to the the running example used throughout this paper: the solid torus
first introduced in Example 2.5. Recall that Example 3.3 constructed the bordered sutured Heegaard
diagram adapted to a sorted foliated open book for this manifold. Here, we compute the associated type
A structure.

For simplicity, we label the intersection points in Heegaard diagram H by 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, and 𝑦2
as in Figure 7.5. In this diagram, we have six generators

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦2, 𝑥3𝑦1, 𝑥3𝑦2, 𝑥4𝑦2}
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Figure 7.5. The Heegaard diagram H from Example 3.3, with intersection points labelled so that 𝑥1𝑦1
is the contact class.

Figure 7.6. The portion of the Heegaard diagram H from Figure 7.5 relevant to the computation of
B̂SA(H). The boundary is parametrized by an arc diagram which consists of two arcs with eight points
on them. The intervals between points are labeled with {1, . . . , 6} in gray.

where 𝑥1𝑦1 is the generator 𝑥+1𝑥
+
3 defined in Section 3.2. Then, we simplify our depiction of the Heegaard

diagram H by first removing the domains adjacent to 𝜕Σ \ 𝑍 and then cutting along the intersection
points 𝑥1, 𝑦1 and 𝑦2. Moreover, H is obtained from H by switching 𝜶 and 𝜷, so we draw 𝜷 arcs in red
and 𝜶 circles in blue. See Figure 7.6.

Every region is adjacent to the boundary, so 𝑚1 = 0. We computed 𝑚𝑖 for 𝑖 > 1, by finding the local
coefficients of curves and computing their Maslov indices. Then, it is easy to see that the curves with
Maslov index one contribute to the maps listed below. Moreover, 𝑚𝑖 = 0 for 𝑖 > 3. Note that instead of

𝑚2(𝑥3𝑦2, 𝐼{2,4}𝑎({1, 5})) = 𝑥3𝑦1

we write simply

𝑚2 (𝑥3𝑦2, {1, 5}) = 𝑥3𝑦1,
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as the appropriate completion of a set of Reeb chords is clear from the context. The nontrivial maps are
as follows.

𝑚2 (𝑥3𝑦2, 5) = 𝑥4𝑦2

𝑚2 (𝑥3𝑦2, {1, 5}) = 𝑥3𝑦1

𝑚2 (𝑥3𝑦2, {2, 4}) = 𝑥3𝑦1

𝑚2 (𝑥3𝑦2, 2) = 𝑥2𝑦2

𝑚2 (𝑥3𝑦2, 23) = 𝑥1𝑦2

𝑚2 (𝑥3𝑦2, 56) = 𝑥1𝑦2

𝑚2 (𝑥3𝑦2, {123, 5}) = 𝑥1𝑦1

𝑚2 (𝑥3𝑦2, {2, 456}) = 𝑥1𝑦1

𝑚2 (𝑥4𝑦2, 123) = 𝑥1𝑦1

𝑚2 (𝑥4𝑦2, 1) = 𝑥3𝑦1

𝑚2 (𝑥4𝑦2, 6) = 𝑥1𝑦2

𝑚2 (𝑥2𝑦2, 4) = 𝑥3𝑦1

𝑚2 (𝑥2𝑦2, 456) = 𝑥1𝑦1

𝑚2 (𝑥2𝑦2, 3) = 𝑥1𝑦2

𝑚2 (𝑥3𝑦1, 23) = 𝑥1𝑦1

𝑚2 (𝑥3𝑦1, 56) = 𝑥1𝑦1

𝑚3 (𝑥4𝑦2, {1, 6}, 5) = 𝑥1𝑦1

𝑚3 (𝑥4𝑦2, 1, {5, 6}) = 𝑥1𝑦1

𝑚3 (𝑥4𝑦2, {4, 6}, 2) = 𝑥1𝑦1

𝑚3 (𝑥4𝑦2, 4, {2, 6}) = 𝑥1𝑦1

𝑚3 (𝑥1𝑦2, 1, 5) = 𝑥1𝑦1

𝑚3 (𝑥1𝑦2, 4, 2) = 𝑥1𝑦1

𝑚3 (𝑥2𝑦2, 4, {2, 3}) = 𝑥1𝑦1

𝑚3 (𝑥2𝑦2, {3, 4}, 2) = 𝑥1𝑦1

𝑚3 (𝑥2𝑦2, 1, {3, 5}) = 𝑥1𝑦1

𝑚3 (𝑥2𝑦2, {1, 3}, 5) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {1, 23}, 5) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {4, 56}, 2) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {4, 23}, 2) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {1, 56}, 5) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {1, 2}, {3, 5}) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {4, 5}, {2, 6}) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {2, 4}, {2, 3}) = 𝑥1𝑦1

𝑚3 (𝑥3𝑦2, {1, 5}, {5, 6}) = 𝑥1𝑦1

Example 7.5. Our next example is the solid torus in (𝑆3, 𝜉std) which is the complement of the previous
example. As in Example 7.2, the embedded foliated open book arising from the disk open book for
(𝑆3, 𝜉std) is not sorted. A sequence of two stabilizations results in a sorted foliated open book, the first
and last page of which are shown in Figure 7.7.

The construction from Section 3.2 yields the Heegaard diagram H′ shown in Figure 7.8.
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Figure 7.7. The first and last page of a sorted foliated open book for the solid torus of Example 7.5.

Figure 7.8. The bordered sutured Heegaard diagram H′ adapted to the sorted foliated open book
depicted in Figure 7.7.

We label the intersection points in Heegaard diagram H′ by 𝑥 ′1, 𝑥 ′2, 𝑥 ′3, 𝑥 ′4, 𝑥 ′5, 𝑥 ′6, 𝑦′1, and 𝑦′2 as in
Figure 7.8. We have eight generators{

𝑥 ′1𝑦
′
1, 𝑥

′
1𝑦

′
2, 𝑥

′
2𝑦

′
2, 𝑥

′
3𝑦

′
1, 𝑥

′
4𝑦

′
1, 𝑥

′
4𝑦

′
2, 𝑥

′
5𝑦

′
1, 𝑥

′
6𝑦

′
2
}
,

where 𝑥 ′1𝑦
′
1 is the generator 𝑥+2𝑥

+
4 defined in Section 3.2. By removing the domains adjacent to 𝜕Σ\𝑍 and

then cutting along the points 𝑥 ′1, 𝑥
′
4, 𝑦

′
1 and 𝑦′2 we get the planar depiction of the Heegaard diagram H′

shown in Figure 7.9. By matching elliptic points again, as in Example 7.2, we obtain labels {1, . . . , 6}
on the intervals of the arc diagram for H′ consistent with those for the diagram H from Example 7.4.

This time, we have a nice diagram, and the type D structure is straightforward to compute. The type
D structure maps are listed below.

𝛿1(𝑥 ′1𝑦
′
1) = 0

𝛿1(𝑥 ′1𝑦
′
2) = 2 ⊗ 𝑥 ′1𝑦

′
1 + 5 ⊗ 𝑥 ′1𝑦

′
1

𝛿1(𝑥 ′2𝑦
′
2) = 𝐼 ⊗ 𝑥 ′3𝑦

′
1 + 1 ⊗ 𝑥 ′1𝑦

′
2

𝛿1(𝑥 ′3𝑦
′
1) = 12 ⊗ 𝑥 ′1𝑦

′
1

𝛿1(𝑥 ′4𝑦
′
1) = 123 ⊗ 𝑥 ′1𝑦

′
1 + 456 ⊗ 𝑥 ′1𝑦

′
1 + 3 ⊗ 𝑥 ′3𝑦

′
1 + 6 ⊗ 𝑥 ′5𝑦

′
1

𝛿1(𝑥 ′4𝑦
′
2) = 123 ⊗ 𝑥 ′1𝑦

′
2 + 456 ⊗ 𝑥 ′1𝑦

′
2 + 23 ⊗ 𝑥 ′2𝑦

′
2 + 2 ⊗ 𝑥 ′4𝑦

′
1 + 5 ⊗ 𝑥 ′4𝑦

′
1 + 56 ⊗ 𝑥 ′6𝑦

′
2

𝛿1(𝑥 ′5𝑦
′
1) = 45 ⊗ 𝑥 ′1𝑦

′
1

𝛿1(𝑥 ′6𝑦
′
2) = 4 ⊗ 𝑥 ′1𝑦

′
2 + 𝐼 ⊗ 𝑥

′
5𝑦

′
1

Example 7.6. We take the box tensor product of the type A structure from Example 7.4 and the type D
structure from Example 7.5 to compute the contact class for (𝑆3, 𝜉std).
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Figure 7.9. The portion of the Heegaard diagram H′ from Figure 7.8 relevant to the computation of
B̂SD(H′).

Considering the idempotents, B̂SA(H) � B̂SD(H′) has 8 generators:{
𝑥1𝑦1 ⊗ 𝑥 ′1𝑦

′
1, 𝑥1𝑦2 ⊗ 𝑥

′
2𝑦

′
2, 𝑥1𝑦2 ⊗ 𝑥 ′3𝑦

′
1, 𝑥1𝑦2 ⊗ 𝑥 ′5𝑦

′
1

𝑥1𝑦2 ⊗ 𝑥 ′6𝑦
′
2, 𝑥2𝑦2 ⊗ 𝑥

′
4𝑦

′
1, 𝑥3𝑦2 ⊗ 𝑥 ′4𝑦

′
2, 𝑥4𝑦2 ⊗ 𝑥 ′4𝑦

′
1

}
.

Moreover, the differential 𝜕 = 𝜕� is given as follows:

𝜕
(
𝑥3𝑦2 ⊗ 𝑥

′
4𝑦

′
2
)
= 𝑥2𝑦2 ⊗ 𝑥

′
4𝑦

′
1 + 𝑥4𝑦2 ⊗ 𝑥

′
4𝑦

′
1 + 𝑥1𝑦2 ⊗ 𝑥 ′2𝑦

′
2 + 𝑥1𝑦2 ⊗ 𝑥 ′6𝑦

′
2

𝜕
(
𝑥2𝑦2 ⊗ 𝑥

′
4𝑦

′
1
)
= 𝑥1𝑦2 ⊗ 𝑥

′
3𝑦

′
1 + 𝑥1𝑦1 ⊗ 𝑥

′
1𝑦

′
1

𝜕
(
𝑥4𝑦2 ⊗ 𝑥

′
4𝑦

′
1
)
= 𝑥1𝑦2 ⊗ 𝑥

′
5𝑦

′
1 + 𝑥1𝑦1 ⊗ 𝑥

′
1𝑦

′
1

𝜕
(
𝑥1𝑦2 ⊗ 𝑥

′
2𝑦

′
2
)
= 𝑥1𝑦2 ⊗ 𝑥

′
3𝑦

′
1 + 𝑥1𝑦1 ⊗ 𝑥

′
1𝑦

′
1

𝜕
(
𝑥1𝑦2 ⊗ 𝑥

′
6𝑦

′
2
)
= 𝑥1𝑦2 ⊗ 𝑥

′
5𝑦

′
1 + 𝑥1𝑦1 ⊗ 𝑥

′
1𝑦

′
1

It is easy to see that the homology is generated by [𝑥1𝑦1⊗𝑥
′
1𝑦

′
1] and [𝑥1𝑦2⊗𝑥

′
2𝑦

′
2+𝑥2𝑦2⊗𝑥

′
4𝑦

′
1]. Therefore,

[𝑥1𝑦1 ⊗ 𝑥 ′1𝑦
′
1] is the contact class (𝑆3, 𝜉std). Observe that this agrees with the result in Example 7.3.
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