
ON SCHACHERMAYER'S EXAMPLE ABOUT THE
BANACH-SAKS PROPERTY

by CARMELO NUNEZf

(Received 9 January, 1989)

1. Introduction. A Banach space (X, || . ||) is said to have the Banach-Saks
property (B.S.P.) if, for every bounded sequence (*„) in X, we can choose a subsequence
(x'n) of (*„) such that the sequence

converges in the ^-norm. This property, that a Banach space may enjoy or not, has been
extensively studied.

On the other hand, we recall that L2([0, 1], A'), which we shall refer to as L\X), is
the Banach space of the Bochner measurable functions from [0,1] to X, with the norm

1/2

We use [3] as our reference for L2(X) spaces.
It is known that L2([0, 1]) has the B.S.P. Nevertheless there are examples (the first

ones are due to J. Bourgain and W. Schachermayer) of Banach spaces X which have the
B.S.P. but such that L2(X) does not. The example of Professor W. Schachermayer seems
to be the easiest, and has been neatly described in [1, p. 152]. Our aim is to present a
slight refinement of known results about this space that we will call (/?,, | | . ||), as in [1].
There it is shown that there exists a sequence (/„) <= L2(X) which satisfies:

(a) \\fn(t)\\ = 1. &( ' ) ) -* 0 for every t e [0, 1] and therefore (£)-*<);
(b) for each t e [0, 1], there exists an increasing sequence of integers (n(k))—this

sequence depending on t—such that for every subsequence (f'n(k)) of (fn(k))>

- I 2/«(*)(')|-»0 asm^oo.
m ll*sm II

(c)

lim inff- £ £/n( l ) : u <n(l) < . . .<«(*), e, = ± l ) = 1,

for every k e N.
(We note that (b) follows from (a) and the fact that B, has the B.S.P.) Our

improvement is as follows.
(d) For every increasing sequence of integers (n(k))

| i ^ 6 [ 0 , l ] : l i m - | 2 e / B ( 0 ( 0 | =

where e, = ±1 and JX is Lebesgue measure.
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The result (d) should be compared to previous ones of, for example, [2], [4] and [7].
There, if (gn):[0, 1]-*Y, and for every te[0, 1] we can choose a sequence (n(k))—
depending on t—such that (gn(*)(0) satisfies "something" then we can find a sequence of
integers (m(k)) such that (gm^)) satisfies "something" a.e.

2. Proof of (d). We use the terminology of [1, p. 152]. In order to simplify the
notation we shall say that the set {en:neA} is totally admissible if AczM is totally
admissible.

First, we show that

(*) Mt e [0, 1]: Urn - W etft{ti = 1 j) = 1.
\ I k K ll/s* II J>

Let r: N-* N be any function satisfying:
(a) r(*)/*->0as*-»oo,
(b) Y.k(k + l)/2rW<°°.

(Here r(n) = [V/z], where [.] denotes the integer part of any real number, will do.)
We want the following equality. If Bk = {te [0, 1]: {/ r W(0, • . • , / , (*)+/ ' ) , . . . ,/*(*)} is a
totally admissible set}, then

/=0

To prove (**), we define (for any j = 0 , . . . , k - r(k))gj(t) to be the unique element
of N such that

(a) 2 'w<g,(0<2r (* ) + 1 ,
(b) t(r(k) +j) 6 [gj(t)/2

r(k), (gj(t) + l ) / 2^ [ .
Then it is clear that the condition / e Bk is equivalent to gM^g^t) if i ±j. Due to

the fact that {gy:/ = 0 , . . . , r(k)} is a set of independent random variables, we obtain
(**).

Note now that

(f e [0, l]:lim|te<-,7;(0l =
I * His* II n \j>n

In fact, if / e Pi Bj, then for k > n, we have

where Pk is the projection on the totally admissible set

^ * ( 0 = {n0'):/r(/t)+A0 = e"U)> j = ®, • • • , k — t
and so

I \\2 e,f,(t)h\( 2 \\eM)\\) = (* " r(k) + \)lk.
f Ilis/t II K \r(fc)sisA: /
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Observing that log(l - x) 2: -2x if 0 < x < \, we have, for k sufficiently large,

> -2 2

Now, using the fact that 1 -e~x<x if * > 0 , it is clear that E (1 -b{k))«*>. We

deduce that |i U ( D B / = 1 and so (*) is proved.
\ n \j>n II

Finally, we prove (d). For every increasing sequence of integers (n(k)), we let

Bk = {t e [0, 1]: {/n(r(/t))(0» •• • . /«(r(*)+y)(0, • • • >/«(*)(')} is a totally admissible set}.

Obviously the set Bk depends on the sequence of integers (n{k)). Then we obtain
k-r(k) k-r(k)

KBk)= El (1-J72"w*»)a: [I (l-//2rW).
y=o y=o

The last inequality holds since n(i)>i. It only remains for the reader to repeat the
analysis of the case n(k) = k.

REMARK. The reader should note that the generalization of a property related to the
Cesaro summation method to other summation methods is straightforward if the
convergence that we are studying is the norm convergence of a Banach space (see [5] and
[1, p. 58]), but the convergence a.e. is not of this kind. Nevertheless we can obtain (with
the notation of [5]) the following result.

(d') For every A u.a.n.r.s.m., and for every sequence of integers (n(k)), we have

J\t e |0, 1|: lim inf 12 a*(£;/n(0(o| ̂  l)) = 1.
\L * ||/<oo II } '

The proof is similar and we omit it.
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